The exemplary embodiments described herein relate to, for example, jukebox systems and, more particularly, to digital downloading jukebox systems of the type that typically include a central server and remote jukebox devices that communicate with the central server for royalty accounting and/or content updates and, still more particularly, to jukebox systems that have revenue-enhancing features such as, for example, music recommendation engines and bartender loyalty programs.
Jukeboxes have been around for decades and provide users with the ability to select desired music for reproduction in a convenient and advantageous manner. Jukeboxes conventionally have been provided in commercial establishments, such as restaurants and bars, to provide desired music on demand for patrons thereof for a fee. Over the last several years, a new generation of jukebox devices have become available that provide significant improvements in the operation thereof for all parties involved. More specifically, the conventional standalone phonorecord and CD jukeboxes are being replaced by digital downloading jukeboxes that are controlled by and communicate with a central server. An example of this new generation jukebox system is shown in U.S. Pat. No. 6,308,204, the entire disclosure of which is incorporated herein by reference. A leading provider of this new generation of jukebox systems is TouchTunes Music Corporation.
The jukebox devices 16 (sometimes referred to as simply “jukeboxes” herein) are operable to communicate with the central server 12 through a communications network 14, such as, for example, the Internet. The jukeboxes 16 periodically communicate with the server 12 to provide information to the server 12 regarding the specific songs that have been played on the jukebox. The central server then uses this information to determine the appropriate royalties and/or other payments that are owed for songs played on each jukebox. Thus, one advantage of this new generation of jukeboxes is that the sound reproduction and/or other applicable music rights can be adhered to in a more accurate and reliable manner, thereby assuring the proper royalties are paid to the artists or music owners. The central server 12 also can provide new songs to the jukebox 16 to assure that the appropriate or most popular songs are maintained on the jukebox based on the specific customers at that location. Thus, the songs available on each jukebox can be customized through communication with the central server to provide the songs and/or types of music that customers generally request at each jukebox location. As described in the above-referenced U.S. Pat. No. 6,308,204, the central server also advantageously can be used to update the operating software on the jukeboxes in order to, for example, change the operation of the jukebox, such as to provide new or improved features. Thus, another advantage of this new generation of jukeboxes is that the songs (or other audio and/or visual content), and the operation of the jukebox itself can be remotely changed as desired, thereby reducing the need to have someone (such as a routeman) personally service the jukebox. Instead, such updates can be done using the central server 12.
As indicated above, the jukebox devices 16 each include a mass storage device, such as a hard drive, which stores the songs and associated video/graphics data (if any), as well as any other desired graphical information for reproduction on the jukebox. The mass storage device of the jukebox typically has limited storage capacity relative to the storage device of the central server 12. As a result, only a fraction of the songs stored on the central server typically are stored on the mass storage device of the jukebox at any one time. There may be other reasons as well, such as for security of the data or limited room in the jukebox itself, for having limited storage capacity on the jukebox and/or limiting the number of songs stored thereon. For example, physical space may be limited on wall-mount jukeboxes or the like, which are designed to be small in size as compared to free-standing models. As explained above, the songs on the jukebox can be changed through communication with the central server, but typically any one jukebox only stores a relatively small subset of the complete library of songs maintained by the central server at any one time.
To increase the revenue that a jukebox generates, the most desired songs may be made available on the jukebox over time. If customers cannot find songs they like on the jukebox, usage of the jukebox (and the revenue generated thereby) may be reduced. On the other hand, it is difficult to predict in advance exactly what a customer at any particular location will desire to play on the jukebox. In fact, there are likely many instances where a customer would have selected a song that exists on the central server but is not currently present on the jukebox. As a result, the jukebox may not be enjoyed and used to its fullest extent. To address this problem and increase revenue, jukebox systems have in the past provided a feature that enables the user to search for songs on the central server from the jukebox and request an immediate download of a desired song from the central server to the jukebox for an additional fee. This feature enables the user to play any song in the master library of songs maintained by the central server using the jukebox, regardless of whether the specific song is presently stored in the mass storage of the jukebox itself. Thus, the user can first look for desired songs on the local storage of the jukebox and then, if desired, search further on the central server for desired songs. The jukebox device typically charges an additional fee (such as five credits instead on one credit) for an immediate download and play of a song from the central server as opposed to a standard play directly from the jukebox's local storage.
For most users, a relationship with a jukebox extends only as far as a choice of songs to play. Casual users may find it difficult to make selections rapidly and/or to locate specific songs. Regular users, however, frequently choose the same songs, and they may become frustrated with always having to make the same selections. Both problems may result in a loss of revenue from intimidation, frustration, etc.
Accordingly, it is a feature of certain exemplary embodiments to create a relationship between the jukebox and the patrons, in view of the further feature of creating a relationship with a whole community of jukebox users. Such a system can establish a trust relationship between the jukebox and the patrons, while also creating a sense of ownership for the patrons by allowing them to customize their services and communicate with their friends. Such a relationship and feeling of ownership can greatly increase the convenience of using a jukebox and its related services while also decreasing intimidation, frustration, etc.
In certain exemplary embodiments described herein, the jukebox can be made the centerpiece for music services as well as other services that enhance the experience of users as well as the revenues of location managers. For example, a jukebox can become a contact point at a given location through which users can reach out to their friends. For instance, users may call a get together using the jukebox, share music through the jukebox system, or meet up at a jukebox if they become separated at a crowded club. Similarly, a jukebox can become, for example, a contact point at a given location through which the manager of the location can reach out to customers. For instance, a manager can advertise specials, notify regulars of special events, etc. Such communications can be initiated by users, by location managers, or by the jukebox itself.
When jukebox users leave a location, their connection to the music, and, more particularly, the jukebox itself, typically ends. Users provide massive amounts of data to the jukeboxes, such as, for example, which users like certain types of music or certain songs, when they listen to music, how frequently they listen to it, etc. With conventional jukeboxes, this information is not leveraged to provide additional features and/or services to interested users. Thus, collected information typically is wasted, and users experience only a fleeting sense of ownership. Users cannot, for example, recreate the experience of a particular night out.
Proprietors also lose out, because their connection to jukebox users disappears when users leave their establishments. Thus, proprietors lose customers until they return and are forced to rely on traditional, often ignored, methods of bulk advertisement. This form of advertising typically lacks specificity and does not reflect a personalized sense of belonging for users. Additionally, proprietors also cannot recreate specific events at which, for example, they had a particularly profitable nights.
Online communities typically, for example, on the Internet, have sprung-up to try to connect disparate users in a virtual space. These communities provide potentially continuous access to a broad range of features and users alike. However, conventional online communities are virtual only—when a user steps away from a computer, the connection, quite literally, is broken. Thus, while users may access this broad host of features and customize their experiences and even build an online persona complete with, for example, buying and viewing habits, the experience is fleeting.
By connecting jukebox users through an online community, however, the information provided to the jukebox can be used to provide a variety of features and services to the users. And, because jukeboxes are present at thousands of meeting points, connections exist at thousands of physical locations apart from the online virtual community. Thus, by leveraging the data collected by jukeboxes and tying users to an online community, a mixed real-and-virtual community may be established, for example, creating a lasting sense of ownership, personalizing services for potentially all users, drawing users together, establishing a vibrant socially active community of users connected by music, etc. Proprietors may similarly benefit by, for example, achieving a pipeline to additional business by connecting with customers while they are away from their locations, thus drawing them to their locations, etc.
Thus, a jukebox with an associated remote application can, for example, change users' perceptions of jukeboxes. Jukeboxes need not be stand-alone devices accessible only at bars. Rather, certain exemplary embodiments allow users to consider jukeboxes as, for example, media centers, meeting points, portals to online communities, etc. Moreover, with the advent of web-enabled portable devices (such as, for example, cell phones, personal digital assistants, etc.), users even can take the virtual community with them wherever they go. Users potentially may use portable devices to directly download music at any time, such as, for example, when they hear a song at home, in the car, at a bar, etc.
In certain exemplary embodiments, users' actions on jukeboxes and/or via remote interfaces may be represented by avatars specific to and/or customizable by the user. Jukeboxes may include avatar action programmed logic circuitry (e.g., any appropriate combination of hardware, software, or the like) to take actions on behalf of and/or represent the actions of the user. Such actions may include introducing songs with audio and/or video, singing and/or dancing along with music, marking online transactions (e.g., messages, postings, file transfers, etc.), etc. As such, user avatars may yet further increase senses of ownership and/or belonging, drawing users to jukeboxes. Moreover, avatars may further increase the enjoyment of the individual user, regular patrons, and/or newcomers to an area.
Although these features all have contributed to increased senses of ownership and personalization of jukeboxes, further improvements still could be made. The success of a jukebox operating model may be measured, in part, by assessing the revenue earned per jukebox. It will be appreciated that a higher per-jukebox revenue would be indicative of a healthy operating model in which jukebox providers, operators, proprietors of location, and jukebox end-users all benefit. Thus, it will be appreciated that there is a need in the art to increase the revenue earned per-jukebox. Furthermore, inasmuch as some jukebox patrons over time become accustomed to and complacent with conventional jukebox features and even new jukebox features provided to digital downloading jukeboxes, it will be appreciated that there is a need for innovative techniques for both increasing per-jukebox revenue as well as keeping jukebox patrons engaged with the jukebox. Still further, it will be appreciated that there is a correlation between keeping jukebox patrons engaged and maintaining a healthy jukebox operating model.
Accordingly, certain exemplary embodiments relate to jukebox systems that have revenue-enhancing features such as, for example, music recommendation engines and bartender loyalty programs. Such innovative techniques help to both increase per-jukebox revenue as well as keep jukebox patrons engaged with the jukebox.
In certain exemplary embodiments, a method of operating a digital jukebox device is provided. A plurality of instances of media available for playback via the digital jukebox device is provided. A number of credits available for use on the digital jukebox device is collected from a user of the digital jukebox device. Instances of media are queued-up for playback via the digital jukebox device in exchange for a first predetermined number of credits and subtracting the first predetermined number of credits from the number of credits available. It is determined when the number of credits available falls below a predetermined threshold. When the number of credits falls below the predetermined threshold, at least one recommended instance of media is recommended to the user for possible playback on the digital jukebox device in exchange for a second predetermined number of credits.
In certain exemplary embodiments, a digital jukebox device is provided. A storage location stores a plurality of instances of media available for playback via the digital jukebox device. A payment acceptor is configured to collect a number of credits available for use on the digital jukebox device from a user of the digital jukebox device. A user interface is configured to enable the user to select instances of media for playback via the digital jukebox device in exchange for a first predetermined number of credits, with the first predetermined number of credits being subtracted from the number of credits available following a selection. A music recommendation engine is configured to (1) determine when the number of credits available falls below a predetermined threshold, and (2) when the number of credits falls below the predetermined threshold, recommend to the user at least one recommended instance of media for possible playback on the digital jukebox device in exchange for a second predetermined number of credits.
In certain exemplary embodiments, a method of implementing a staff member loyalty program on a digital jukebox device provided at an out-of-home location is provided. At least one condition under which staff members are to be provided with points in connection with the loyalty program is defined, and a number of points are associated with each said condition. At least one staff member logs in to the loyalty program via the digital jukebox device. Upon each occurrence of the at least one condition, the number of points associated with the relevant condition is provided to the at least one staff member.
In certain exemplary embodiments, a digital jukebox device provided at an out-of-home location is provided. A user interface is configured to enable at least one staff member to login to a staff member loyalty program system via the digital jukebox device, with the loyalty program system defining at least one condition under which staff members are to be provided with points in connection with the loyalty program, and with a number of points being associated with each said condition. Upon each occurrence of the at least one condition, the digital jukebox device is configured to provide the number of points associated with the relevant condition to the at least one staff member and update the loyalty program system accordingly.
Certain exemplary embodiments may be implemented as any suitable combination of programmed logic circuitry (e.g., hardware, software, firmware, and/or the like). For example, the processors, modules, graphical user interfaces, etc. of certain exemplary embodiments may be implemented as any suitable combination of programmed logic circuitry. Additionally, certain exemplary embodiments may be tangibly stored as instructions on a computer readable storage medium.
These and other features, aspects, and advantages of the instant invention will be further understood by review of the following detailed description of the exemplary embodiments when read in conjunction with the appended drawings, in which:
Referring now more particularly to the drawings,
The songs (and/or other data) may be digitized, compressed, and encrypted by the central server 12 prior to sending songs to the jukeboxes for security and bandwidth purposes using known techniques. The songs may then be decompressed and decrypted by the jukeboxes for storage and reproduction thereon. Thus, each of the jukeboxes can maintain in a database a library of digitized songs for play on the jukebox, wherein the library can be changed or updated through communication by the central server. The jukeboxes also may receive and store data constituting images (e.g., still and/or moving video and/or graphical images) that can be displayed on the display 18 of the jukebox device 16. In one exemplary embodiment, the jukebox devices have similar structure and operation described in U.S. Pat. No. 6,308,204 referenced above. Thus, the jukebox devices 16 each may include one or more microprocessors, such as a main CPU and an audio DSP, a memory, such as a hard drive, for storing songs and/or other content, a display for displaying visual items, an audio arrangement 20 for providing audio, a communication system for enabling the jukebox to communicate with the central server 12 through the communications network 14, and operating software, possibly including a multitasking operating system, that controls the operation of the jukebox. The operating software also may be updateable through communication with the central server 12 as described, for example, in U.S. Pat. No. 6,308,204 referenced above. The jukeboxes 16 further include one or more payment devices, such as coin, bill, and/or credit/debit card input devices, for enabling a customer to pay for usage of the jukebox device in a convenient manner. The screen 18 is a touch screen that enables the user to input selections by touching the screen.
Each jukebox device has, in one exemplary embodiment, a local server 22 that can be accessed by the jukebox device. The local servers are respectively connected to the jukebox devices using Ethernet or other type of local connection. In another exemplary embodiment, the local server simply may be a logical extension (e.g., partition, directory, or area) of the jukebox's hard drive, rather than a separate hardware device. The local servers 22 each may include a mirror copy of the master library of musical recordings maintained by the central server 12. The local server 22 can be loaded with the master library by the entity that owns and/or controls the jukebox network prior to shipping the local server and jukebox device to the jukebox distributor or operator. Of course, over time, the local sever will no longer correspond identically to the central server, because of the fact that the central server may be continually updated with additional or new songs. Thus, the local servers 22 also may be updated periodically to maintain a correspondence with the library on the central server 12. This updating can be done, for example, by the central server 12 through communication with the jukebox devices connected with the local servers 22 using, for example, either dial-up or broadband modems. Alternatively, the updating can be done personally with an update tool that can be connected by a routeman or other person directly to the jukebox or local server for the purpose of updating the contents of the local server. The portable tool could include a removable storage medium, such as a hard drive, that could be returned to and reused by the owner of the jukebox system for future updates. The tool itself could be kept by the operator or other person in charge of maintaining specific jukeboxes for use upon receipt of the updated removable storage medium from the owner of the jukebox system.
For security reasons, the local server 22 may not include all of the digital data that constitutes any one song that is stored on the local server 22. In addition, the part of the song that is on the local server is encrypted. The jukebox device 16 contains the missing part of each of the songs on the local server, thereby enabling the jukebox to assemble the complete song based on the contents of the local server and the memory on the jukebox device. The missing data located on the jukebox may be needed to decrypt the songs, for example. For example, a single block (or other small fraction) of data for each song may be missing on the local server but present on the jukebox device, and the encryption may be based on the missing block and may proceed on a block by block basis. Thus, none of the blocks can be decrypted without obtaining and/or decrypting a preceding block. This feature provides significant security and prevents or deters theft or other type of unauthorized use or copying of the songs on the local server. Thus, in this embodiment, each local server must be specifically assigned to a specific jukebox device so that the decryption described above can be properly performed.
In accordance with an exemplary embodiment, the local servers may also each be individually registered with and identified to the central server 12, so that the central server can individually manage and monitor each local server. The same is true for the jukebox device itself, e.g., it may also be registered with the central server so that it too can be individually monitored and managed by the central server. As will be understood from the foregoing description, the local servers become an advantageous part of the jukebox system by allowing the contents thereof to be accessed by the jukebox device to provide additional services (such as providing additional songs) not available on the jukebox device itself. As will be explained below, the song library of the central server and/or the storage capacity itself can be advantageously used to provide services to other jukeboxes, such as fee-based residential and commercial jukeboxes and/or other fee-based equipment.
As will be appreciated from the description of the invention above, the addition of the local server significantly enhances the operation of the jukebox devices that are part of a jukebox system. However, the local servers also provide other benefits and features.
A collection of local servers 22 may be used as a network of distributed servers that can be controlled by the central server 12 through its associated jukebox device 16 to provide music services to other devices. For example, the local servers and associated jukebox can be used to deliver requested songs to a dedicated residential or commercial jukebox device (or other suitable jukebox device) in addition to providing song services to the specific jukebox to which it is connected and assigned. Thus, the network of distributed servers can provide a support network for implementing residential and commercial jukeboxes of the type which allow a user to download songs for reproduction and/or storage at a residential or commercial location for an appropriate fee. As a result, the jukebox system operator can provide and control commercial jukeboxes and well as residential jukeboxes through the jukebox system. In one exemplary embodiment, the jukebox device and/or local server are connected to the Internet (or other suitable network) using a broadband modem and is provided with software that can selectively deliver song files to any dedicated residential jukebox device (also connectable to the Internet) under control of the central server. The central server receives requests from a residential jukebox and, by analyzing traffic on the network, provides instructions to a selected jukebox device to download the requested song file (either from its memory or from the local server) to the residential jukebox for a fee or under a subscription plan for the residential jukebox. In certain exemplary embodiments, requested songs may be streamed to a jukebox. It will be appreciated that streamed media may originate at a dedicated server, a network of streaming servers, from a jukebox or jukeboxes (such as peer-to-peer or multipeer downloading), etc.
In accordance with another exemplary aspect of the invention, the local server and jukebox device are used, under control of the central server, to provide management services for other types of coin operated or payment triggered equipment, such as gaming devices, installed in the same location as (or in close proximity to) the jukebox. In other words, the jukebox system may be used to update the functionality of and/or manage other downloading devices present in the same location. As a result, the jukebox becomes a “central hub” for all downloading equipment in a location. This feature is achieved, in one exemplary embodiment, by networking all of the downloading devices in a single location together with the jukebox and local file server. The central server can then download information to the local server together with instructions to the jukebox as to which devices should updated with what data and/or software. The jukebox device and central server can also be used to collect information from the other downloading devices to which it is managing and upload that information to the central server for reporting/accounting purposes. Thus, the owner/operator of the jukebox system can act as a third party service provider to other coin-op companies for the purpose of managing and/or updating their equipment.
The large amounts of memory provided by the local servers and the fact that they are provided and accessible at thousands of locations over a well controlled network, turns the jukebox system into a powerful tool that can be used to perform a variety of functions in the coin-op industry. More and more coin-op manufacturers are going towards games that are software upgradeable through their internal hard drives. These updates are done periodically, but as these devices increase there will be an ever increasing need for a system that can reliably and efficiently perform the updates from a remote location. The jukebox system described herein satisfies this need by enabling suitable electronic coin-op devices at a jukebox location to be managed by the central server using the jukebox and local server at the location. The central server can download software or data updates, store them on the local server and then dispatch the updates to the intended units of equipment in the establishment. Thus, the jukebox system can act as a third party service provider to other companies in the coin-op business, thereby enhancing the functionality of the jukebox system.
As explained above, the local server enables songs to be downloaded to a commercial jukebox to which it is assigned or to residential jukeboxes under control of the central server. In addition, the local servers can be used for an on-premise networked application which manages other coin-op devices. These various features of the instant invention are illustrated in
Alternatively, the user may elect to have a song played in more than one of the zones 121, 123, 125 simultaneously, or in more than one of the zones at different times. The user may have to pay additional credits to implement either of these features. An exemplary embodiment of a multi-zone system could play music at a high quality in the different zones using the system described in application Ser. No. 11/023,390, filed Dec. 29, 2004, entitled “Wireless Digital Transmission System for Loudspeakers,” which is a continuation in part of Ser. No. 09/161,584, filed on Sep. 28, 1998. The entire contents of both applications is incorporated herein by reference. Using this system, for example, a jukebox could compress and transmit audio data through AC power lines to an addressable location, where it could be received, decompressed, converted, and played. In fact, any of the jukebox components herein could be implemented in a manner that uses AC power lines as a communication network for operation.
It will be appreciated that the Wireless Digital Transmission System can be used for other purposes in other embodiments where data needs to be sent between two or more devices. For example, this system could be used to configure dummy terminals. In such an embodiment, the Wireless Digital Transmission System could be used to send information such as, for example, whether to morph, what songs are appropriate given a particular morphing of the jukebox, the zones in which selected music should be played, maximum volume levels, etc, in addition to sending music to the speaker systems.
The operator may also restrict what kind of music is available in a given zone, based on the type of activity in the zone, the time of day, or any other suitable selection criteria. For example, in
In the exemplary embodiment of
Additionally, the graphical interface of the terminals 137, 139 may change in accordance with available selections, themes of the bar, themes of the room in which each terminal is located, or any other suitable criteria.
If the song is not available on the local hard drive, the jukebox checks to see if a high-speed connection to the central server is available 239. If there is no high-speed connection, the jukebox informs the user that the song is temporarily unavailable 241 and orders the song for download 243. The jukebox may or may not charge an additional amount for ordering the song. If, however, there is an available high-speed connection to the central server, the jukebox orders the song immediately and uses the high-speed connection to download the song right away, queuing it up for playing 245. The jukebox then charges the customer the price of a non-standard selection 247. In certain exemplary embodiments, a jukebox may retrieve songs offline, either after a location closes or before it opens. In certain exemplary embodiments, a jukebox may immediately download a song over a dedicated line (e.g., with a dial-up connection). In certain other exemplary embodiments, a song may be downloaded from another jukebox (or other jukeboxes) rather than from a central or limited database to reduce network strain. In certain exemplary embodiments, the jukebox may download songs via a distributed media service in which portions of a given song may be downloaded from a plurality of sources and reassembled for the target jukebox. It will be appreciated that such a peer-to-peer (or jukebox-to-jukebox) or multipeer (several jukeboxes to jukebox) digital downloading network may need to track song licensing information. In certain exemplary embodiments, if a song is not available on a jukebox but other versions or covers are available, the jukebox may recommend to these other songs to the searching user. For example, a user searching for an unavailable Trisha Yearwood version of “How Do I Live” may be recommended available versions by Dolly Parton and/or LeAnn Rimes. Recommendations may be smart enough to ignore similarly named songs that are completely different, such as, for example, the Everly Brothers' “Oh, Pretty Woman” and the Motley Crue's “Pretty Woman.”
The factory drive explained above, combined with the morphing capabilities, eliminates the need for the local server explained above, as the factory drive can provide the same services as the local server, without the need for a separate hardware device. In other words, at least some of the factory drive embodiments described herein may enable a jukebox to be shipped with a single mass storage device of any technology (or multiple technologies and/or multiple devices acting as a single mass storage device), while still enabling a basic playable list to be defined, an expanded playable list to be defined, morphing capabilities, local server services to be provided, as well as all other features described herein. The content of the factory drive, as shipped, may be defined using historical, statistical information on customer preferences.
Similarly, jukebox users may vote for particular instances of media to alter their priority in playlists. In this way, jukebox users can, for example, “battle” for control over the music to be played in a particular zone or particular zones within or among locations. It will be appreciated that this voting/battle mode may be implemented by using, for example, a dynamic queue, a priority queue, multiple queues, etc. It also will be appreciated that a jukebox could be put into a voting mode automatically (e.g., at a particular time of day and/or on a particular day of the week), or it could be triggered manually.
As users see the coming songs, they will be tempted to push up the songs they like so the songs and/or push down the songs they do not like. In general, the more users who vote, the greater the ambiance of good songs. Thus, after step S1908, or in the case that the song is not over, the jukebox receives users' votes for particular songs in step S1910. Voting can be based on credits (as users buy credits), or tied to a user's account. In certain exemplary embodiments, users must login to place a vote, and in certain exemplary embodiments, users can vote a limited number of times. Users may vote from distinct places within a location. The queue is updated based on this voting in step S1912, and the process returns to step S1902, where the displayed list is refreshed.
In certain exemplary embodiments, the queue may be based on the total number of votes for particular songs. In certain other exemplary embodiments, users may vote for and/or against certain songs and the “net” information may be displayed, indicating the number for and against, or merely the net result. If there are more votes against a song than for, the system can perform one or more of the following functions. For example, the jukebox simply may keep the song in the queue with a negative number of votes. Alternatively, the jukebox may keep the song in the queue with a zero or negative number of votes, but, for example, always wait until the net vote reaches at least 1 before playing the song. Still alternatively, the jukebox may drop any song that reaches zero or a negative number of votes.
Mobile devices 26a-26d may communicate through an external network to communicate with jukebox 16 having communicator 25. It will be appreciated that mobile devices 26a-26d may communicate over a LAN, wireless Internet, Bluetooth, or any other suitable communications network.
A central database of recognized user information may be maintained and accessible by each of the jukebox devices 16, 16a-f and remote devices 26a-d. However, in some exemplary embodiments, local databases of recognized user information may be maintained on devices. The devices may communicate with each other through a communications network, such as, for example, the Internet. However, it will be appreciated that other communications methods are possible, such as, for example, through wired communications over a LAN, wireless communications, etc.
Remote devices 26a-c allow users to login to jukebox 16 remotely, without having to access jukebox 16 and user interface 24 directly. Thus, a user can, for example, play songs, edit playlists, and perform other jukebox-related activities without using user interface 24 directly. It will be appreciated that remote devices 27a-c may have their own user interfaces, which may be the same as or different from user interface 24. User profile information may be stored locally on jukebox 16, on a remote server (not pictured), or on a remote device 27. A change made by a remote device (e.g., to user profile information, playlist contents, purchased media, etc.) would be mirrored on jukebox 16, any other associated remote devices, and/or on other jukeboxes, etc.
Exemplary Music Recommendation Engine Feature
As noted above, it would be desirable to provide innovative techniques for both increasing per-jukebox revenue while also keeping jukebox patrons engaged with the jukebox, as there is a correlation between keeping jukebox patrons engaged by providing new and interesting services and maintaining a healthy jukebox operating model. To this end, in certain exemplary embodiments, a patron may be encouraged to play more songs when in front of the jukebox, e.g., via the use of a recommendation engine that makes song recommendations to the jukebox user. In certain exemplary embodiments, the recommendations may be made before, during, and/or after the user has made a paid music selection, therefore encouraging the user to insert more funds (e.g., coinage or other credits) and queue up more songs for play.
Target customers for the recommendation engine of certain exemplary embodiments may be all jukebox users. On the other hand, certain exemplary embodiments, however, may target the recommendation engine to only a subset of users such as, for example, registered users, users who use the jukebox during certain times of the day or days of the week, etc.
The song recommendations may be available directly from the music catalogue stored on the jukebox, e.g., from the country catalogue to which the jukebox is associated, in certain exemplary embodiments. In such exemplary embodiments, songs that are not on the jukebox and thus must be downloaded would not be recommended, as the user should have their recommended song immediately available. However, in certain other exemplary embodiments, songs available from the local server may be recommend and, in still other exemplary embodiments, any song available via the jukebox network may be recommended. It will be appreciated that a the normal amount of credits or an increased number of credits may be charged to play a recommended song in certain exemplary embodiments. In certain other exemplary embodiments, a normal number of credits may be charged for songs available directly from the jukebox, a first increased number of credits may be charged for songs available from the local server, and a second increased number of credits greater than the first increased number of credits may be charged for songs that need to be downloaded before they can be played. It will be appreciated that other pricing schemes may be used in connection with certain other exemplary embodiments.
It is assumed that displaying song recommendations based on the song or songs that a user has selected will result in the user inserting more coinage in order to play the recommended song(s). This recommendation feature of certain exemplary embodiments may be done somewhat transparently, e.g., without interrupting the user's experience in front of the jukebox. Furthermore, the recommendation system of certain exemplary embodiments may give accurate and precise results, even for a wide variety of selections.
In certain exemplary embodiments, once a user has selected a song and/or credits are almost depleted (e.g., the credits fall below a certain percentage of the total number of credits inserted or the credits fall below an absolute number), song recommendations may be made, e.g., based at least in part on the last song selected or the last several songs selected. Selectively enabling the song recommendation feature when the credits are almost depleted may help to extend the user's experience in front of the jukebox and/or to reduce the chances of a user's experience being cut shorter than it otherwise could be. This sort of processing also helps to improve the amount of revenue that may be obtained from individual patrons. The number of credits remaining when the song recommendation feature is displayed may vary in certain exemplary embodiments. For example, it may be higher or lower depending on the type of user, time of day or day of week, etc. As noted above, the songs may or may not be available for immediate playback in certain exemplary embodiments, and/or the recommended song(s) may be made available at various price levels.
Additionally, the recommended song(s) may be popular, and the popularity of the songs available for playback therefore may be taken into account in making recommendations, e.g., using the catalogue by country. The popularity of the song may be judged based on a particular location, a particular geographic region, on the entire jukebox network plays, on external objective measures (e.g., Billboard rankings, new album sales, radio plays, etc.), and/or the like. Furthermore, it has been discovered that patrons generally will not spend as much money discovering new songs as compared to playing a song (or an artist) that they have some familiarity with (e.g., have heard before, have heard of, etc.). Accordingly, the plays for a particular jukebox, the objective indicators noted above for a certain geographic region, the playlists of registered users, etc., may be weighted more heavily when recommending songs.
In certain exemplary embodiments, during the paid song selection process, when the user has not reached the point where the recommendation feature (e.g., a “Music Recommender”) has been automatically activated (e.g., without direct user control), the user may be allowed to select a button (e.g., by touching an area of a touch screen display) or in some other way cause recommendations to be displayed based on their last selection or last selections. The button may be visible and, if the user does not select the button, the user may proceed in the song selection process without having their jukebox experience disturbed.
In certain exemplary embodiments, a button or other display feature indicative of the Music Recommender may be shown, e.g., and also may encourage the user to create a playlist within the remotely accessible (e.g., web-based) system described above. For example, a message such as, “We can enhance your recommendations if you let us know the type of songs you listen to!” may be displayed, thereby providing an explicitly approved form of data collection that helps to determine a user's preferences. If such a selection is made, the user may be directed to the appropriate section to become a registered user and/or to create a playlist. The remotely accessible website also may be mentioned as a means of creating playlists, thereby encouraging users to visit it and use jukebox-related features remotely (e.g., reducing crowding at the jukebox itself). After a user becomes a registered user (for example, identifying music preferences generally and/or specifically) and/or creates a playlist, recommendations may be more precisely made, e.g., based on the user's explicitly provided musical preferences. In certain exemplary embodiments, this feature may be displayed after a user has played a recommended song, since the user may then be identified as someone that enjoys the interactive process of the jukebox. There also may be an explicit (e.g., active) data collection process, as implicit (e.g., inactive) data collection does not necessarily rely on the direct input of a user's opinion but is instead (or in addition) implied by a user's actions. This process does not always accurately represent the user's true opinion when compared to explicit data collection.
As a part of an explicit data collection process, the recommendation process may be tailored for a user by asking questions, collecting data, and then making recommendations for the user. This process may be done in certain exemplary embodiments when a user is defined as an active user (e.g., a user who has just inserted above average coinage), although it may be done in certain other exemplary embodiments for all users, only registered users, randomly, etc. Having a criteria such as one of the above may help to avoid the jukebox from being blocked by users customizing their recommendations without inserting any or additional money. Questions may be used to narrow the genre, style, listening preferences, etc., the user has to help determine ideal song recommendations.
In general, it has been observed that there are, on average, 2.3 users in front of a jukebox when a song selection is made. Thus, the criteria for recommending a song in certain exemplary embodiments may include searching for patterns of music selection, and then narrowing the field of songs by filtering by style and genre. Grouping of styles may be made in certain exemplary embodiments, in addition or in the alternative, so that styles that fit together are linked. In these and/or other ways, filters may be generated and/or applied to recommendations. For example, a filtering process may be applied with respect to era or generation of the songs.
Also, in certain exemplary embodiments, a series of links may be made for certain artists and bands. For example, the following links may be made:
TABLE-US-00001 Artist Recommendation Link The Police Sting Pink Floyd Roger Waters Genesis Peter Gabriel Phil Collins
These links may be made to work in reverse, as well. The links may be established manually (e.g., by a human), or may be created entirely or in part by a computerized process. For example, a computerized process may search for and establish linkages between members of bands who have “gone solo” (e.g., Fergie and the Black Eyed Peas, Justin Timberlake and N'Sync, etc.), bands that have changed their names (e.g., Jefferson Airplane to Jefferson Starship, etc.), for bands and their different members (e.g., the Doobie Brothers, Michael McDonald, Tom Johnston, and Bobby LaKind), between singers and songwriters (e.g., Johnny Cash and Kris Kristofferson), and so forth.
The lifecycle of an exemplary music recommendation engine feature, and how it may being used on a jukebox in accordance with an exemplary embodiment, will now be described. As alluded to above, the exemplary music recommendation engine feature may help improve the revenue generated by the jukebox, e.g., by offering patrons musical recommendations that match their musical tastes.
In an illustrative server side data map generation step, play patterns are compiled to form a data map where the different elements are linked with each other. Each link possesses a weight conveying the strength of the link between two elements. This data map may be post processed and altered to suit the needs of the client side recommendation system. These modifications and optimizations may include operations such as re-weighting of rankings (e.g., the rankings need not be ordinal in nature, may vary depending, for example, on time of day, number of songs chosen at a time, whether the user was a registered and/or logged in user, etc.), alternative ranking methods, addition of explicit linking rules (e.g., to filter out inappropriate songs based on, for example, venue type, explicit content restrictions, etc.), and/or the like. The output of this process includes a data map that may be accessible by (e.g., sent to) jukeboxes units to fuel client side music recommendation engines. The data map of certain exemplary embodiments may be one or more files. In certain exemplary embodiments, the data map may be stored as any suitable data structure including, for example, as a directed or undirected graph, table, list, etc.
In an illustrative jukebox side recommendation algorithm step, following the accessing (e.g., reception and installation) of the matrix file, the jukebox side implementation of the recommendation engine may take the received data as an input to a system that has a number of different parameters. The raw recommendation output offered by the data map may be used as a base for the recommendations. Alternatively, the raw recommendation output may be further influenced by situation specific factors such as, for example, music files metadata, local behavior of the jukebox, the play habits of the complete jukebox network, the play habits of the location, the play habits of the logged in users, feedback of past recommendations, etc.
In an illustrative data presentation to the user step, these choices may present themselves via the user interface, e.g., on explicit invocation of the feature or implicitly. In the later case, an implicit invocation may be a consequence of events on the jukebox such as, for example, particular songs being selected, running low on credits (e.g., when the number of credits deposited by a particular user reaches a certain percentage or absolute number), when music in the queue falls below a certain level (e.g., below a certain percentage full or absolute number), etc. When either the explicit or implicit invocation technique is activated, certain exemplary embodiments may then proactively recommend music selections to the end user.
In an illustrative feedback step, the songs that were played and/or detailed usage of the recommendation engine may be logged and uploaded to the server. For example, such information may include the number of recommendations selected, which recommendations were selected and/or which recommendations were not selected, how many and/or which recommendations were selected if multiple recommendations were made in a row, etc. General jukebox usage may be processed locally to directly feed the jukebox recommendation engine, thereby helping to ensure the best recommendations possible, at least at the local level. Log files may be made accessible (e.g., uploaded) to the central server to allow for the regeneration of an updated data match map.
Exemplary Staff Member Loyalty Features
Another way of providing innovative techniques for both increasing per-jukebox revenue while also keeping jukebox patrons engaged with the jukebox involves, in certain exemplary embodiments, augmenting jukebox music revenue by implementing a relationship between the jukebox and the location staff members.
To this end, certain exemplary embodiments may provide a loyalty program for barmaids/bartenders and location staff that will drive more paid plays on jukeboxes. As described in greater detail below, in such exemplary embodiments, the incentive for the barmaid/bartender/staff may involve earning points and redeeming them for prizes, participation in random drawings for prizes (e.g., such as one draw entry for every login), etc. Points may be accumulated when barmaid(s)/bartender(s) are logged in and coinage is inserted into the jukebox. The target customer in certain exemplary embodiments may be all barmaids, bartenders, and/or staff employed at jukebox locations. That is, location staff members may be targeted as an audience for specific features via the loyalty program.
The loyalty program may run continuously during the day and/or night in certain exemplary embodiments. However, the loyalty program may be restricted to certain dates and/or times (e.g., non-peak hours) in certain exemplary embodiments.
The jukebox target audience has traditionally been the bar patrons. This feature of certain exemplary embodiments marks a shift toward designing features oriented at the location staff members. A focus of this feature is to give the bar staff a way to identify themselves and let the jukebox know who they are to, in turn, have access to location staff member specific features. This comes with recognition that staff members are always on-location; therefore, using them to drive paid plays may provide an overall benefit to the jukebox providers, operators, and end-users. Indeed, if staff members already insert money into the jukebox, they may be tempted to insert more money via the loyalty program. Furthermore, staff members may be able to drive patrons to insert more coinage in order for them to accumulate points.
In this regard, in certain exemplary embodiments, a login system may be provided for location staff members. A fully featured account system thus may target location staff members for these accounts, e.g., in order to start offering personalized features. Such an account may contain personal information (e.g., name or nickname, contact information, shift information, etc.), personalized media such as photos and avatars, and feature-specific information for each user. Access to user accounts may be available via a jukebox at a location and/or remotely (e.g., via a remotely accessible website or the like).
A bartender loyalty program feature may be provided in certain exemplary embodiments and thus may be designed to offer an incentive to the bar staff to log in and encourage jukebox plays. For example, registered staff may be offered access to prizes, e.g., through the accumulation of loyalty points. Points may be earned in certain exemplary embodiments through usage of the jukebox by jukebox patrons and then transferred to location staff members. In certain exemplary embodiments, instead of or in addition to points, drawings, giveaways, etc., may be offered to registered staff. For example, the more a staff member encourages plays, the more entries in a raffle the staff member may be automatically afforded. Additional details and examples are provided below.
The bar staff will be given a way to log in the jukebox, and stay logged in throughout their shift. The exact login methods may be communicated and advertised on the jukebox at the specific times when the staff member is directly interacting with the jukebox. For example, login methods may be “advertised” to staff members at the start or end of their shifts, during setup or cleanup of a bar (e.g., before or after customers have entered or left the location), etc.
Once logged in, a staff member may be presented with specific information concerning the features to which the staff member has access. For example, in the case of bartender loyalty, current account status may be displayed (e.g., active vs. inactive, number of points, comparative ranking to other staff members in the location or among a group of locations, etc.). In certain exemplary embodiments, more than one staff member may be logged in at the same time.
As alluded to above, points may be earned as part of a bartender loyalty program. The loyalty program may offer an incentive to the bar staff to log in by offering the possibility to earn points based on certain conditions such as, for example, the general usage of the jukebox during the logged-in period. As the jukebox is used, points may be accumulated following a specific built-in logic (e.g., X points for Y plays, A points for B different users using the jukebox, etc.).
In addition, certain exemplary embodiments may provide a suite of patron-oriented features as a part of the bartender loyalty program. Features targeting the jukebox patron may be derived from a situation where more than one staff member is logged in at the same time, for example. Jukebox patron targeted features may include, for example, letting the jukebox patron select which logged in staff member should be awarded points, etc. Thus, the patron may help ensure that points are allotted to the proper staff member. Similarly, patrons also may help indicate which staff members are their favorites, etc.
Location staff member accounts may be synchronized with a central server to help ensure consistency and proper tracking of users in certain exemplary embodiments. Synchronization also may be advantageous, as some staff members may work at multiple locations. Statistics may be collected and cross-linked to locations to monitor patterns and play increases. Adjustments to the bartender loyalty program may be made, if deemed necessary. For example, more loyalty points may be provided if staff members are not responding to current levels, better or more prizes may be given out, etc. Log files of the above information may be generated and stored locally and/or on the central server, e.g., as individual files, in a database, etc.
The bartender loyalty program may offer prize giveaways based on certain criteria. A mechanism to manage user points to allow for participation in contests, sweepstakes, and/or conversion of points to merchandises or services also may be provided. In certain exemplary embodiments, a catalog may be provided through which staff members may trade in points for prizes or awards. In certain exemplary embodiments, staff members may be entered into contests such as, for example, giveaways, raffles, or the like. In certain exemplary embodiments, points may be traded in for entries into such contests. It will be appreciated that other point and/or reward systems also are possible in addition to, or in place of, the above-noted systems.
A more detailed description of the above-described staff member loyalty features of certain exemplary embodiments will now be provided. They also are shown visually, for example, in
When an employee uses the wireless remote to adjust the jukebox volume, a message along the following lines may appear on the screen: “Select P2 on the wireless remote to access the Loyalty Program.” When P2 or other similar button is selected, a screen may be displayed with the two following options: “LOGIN/LEARN MORE ABOUT THE LOYALTY PROGRAM-VISIT www.mytouchtunes/myLoyalty.com.” There also may be instructions displayed on the screen detailing how to login.
When a staff member visits the MyLoyalty website, the staff member may be asked to create an account with some or all of the following illustrative information: username and password, full name, street address, city, state/province, zip Code/postal Code, email address, avatar upload (optional), location, etc. Rules and regulations may be displayed when the form is completed, and the staff member may be required to click to accept the terms. There can be multiple players per location, but certain exemplary embodiments may impose a limit of only one player account being created per employee name and/or email address. Operators may distribute information about the loyalty program, prompting staff members to participate in it.
In other words, a loyalty website may be created where staff members are be able to create accounts. Such a website also may allow points to be redeemed for rewards, e.g., after allowing for available prizes and rewards, player ranking at the location (e.g., in comparison to other locations or other staff members, etc.), and/or other link information is viewed.
The first time staff members login to the “MyLoyalty” website, they may be prompted to create an account, e.g., specifying the information above. Accumulated points and objectives may also be displayed via the MyLoyalty website once a staff member has logged in. In this regard, “objectives” may include encouraging a certain number of plays within a time period or overall (e.g., X plays in an hour, Y plays per day, Z total plays, etc.), being voted the most popular bartender at a bar, etc.
If a prize is “purchased,” the appropriate number of points may be deducted from the staff member's point total, and the new amount of available points may be displayed. The new point information may be updated throughout the system, e.g., by sending an appropriate message to a database on the central server and/or to the appropriate jukebox(es).
Similarly, a staff member may be able to access a login section via the jukebox itself using the P2 or other button on a remote control, or via a dedicated button or switch. In the later case, the button or switch may be concealed on the jukebox to reduce the likelihood of location patrons accessing the feature when they should not. The button or switch may be a physical button or switch or a “soft” button or switch accessible via the user interface of the jukebox (e.g., by pressing an otherwise innocuous-appearing location, series of locations or selections, etc.). The means for finding this button or switch may be described in leaflets distributed by operators, etc.
Once a staff member has triggered the login screen, the staff member may login in using a username and password, which may have been created on the website, on the jukebox, or provided for the staff member. The username and password may be validated by verifying the information on a central database. A welcome screen may appear asking the employee to enter shift information. Point totals to-date also may be displayed. The staff member may view the potential point multiples that can be gained during the hourly shifts. For example, something like the following illustrative table that lists hours and points multipliers may be displayed:
TABLE-US-00002 Upcoming Hours Points Multiplier 1:00 PM-2:00 PM 3.times. the points 2:00 PM-3:00 PM 4.times. the points 3:00 PM-4:00 PM 3.times. the points 4:00 PM-5:00 PM 2.times. the points
The staff member may receive a predetermined number of points for each song play (e.g., 1), multiplied by the points multiplier. The points multiplier may be defined on the following basis in certain exemplary embodiments: higher multipliers during non-peak hours, lower multipliers during peak hours. Multiplier rules may be specified centrally, e.g., on the central server, and the totals may be calculated centrally on a per-jukebox basis, e.g., for hourly or other timeframes, and/or may be calculated locally and then uploaded to a central database. Of course, it will be appreciated that various other schemes may be used that may be different from those listed above.
A timeout function may be implemented in connection with the above-mentioned screens. For example, if the screen is not touched or input is not otherwise made in a predetermined amount of time (e.g., 5 seconds, 10 seconds, etc.), then the regular user interface may be displayed.
Any coinage entered after login and selected paid plays using the normal interface may be logged. For example, song ID, time, PIN, jukebox, barmaid/bartender logged in, etc., may be logged. The logged information may be sent to the central server, e.g., for accounting, loyalty reward, and/or other purposes.
The jukebox may remain in the mode of the logged in player until the employee's shift has ended, e.g., as pre-programmed by the staff member or proprietor, or until the staff member or other authorized user has indicated that the shift is over.
Multiple staff members may log in at the same time in certain exemplary embodiments. In certain exemplary embodiments, when a second staff member logs in, the interface may display other staff members already logged in. A staff member may bump out another staff member if the other staff member is logged in but not currently working, in certain exemplary embodiments.
When there are multiple staff members currently logged in and credits are inserted, a screen may be displayed via jukebox, which may enable the user to indicate which staff member encouraged the play. For example, the message may state, “Thank you. Who is your favorite bartender?,” and the avatars and/or usernames of location staff currently logged in may be displayed along with the message. The selected staff member may have the points for the inserted coinage credited to the appropriate account.
Optionally, the staff members' avatars and/or names (e.g., which may have been provided during or subsequent to account creation) may be inserted into the jukebox's “attract mode” loop. If a staff member has not logged in for more than a predetermined number of days (e.g., more than 7 days, more than 10 days, etc) or if they have been removed by an authorized user (e.g., the proprietor of the location, an operator, etc.), then their avatar may be removed from the attract loop. Avatar validation may be performed, e.g., to help ensure that the avatars meet decency requirements of the location.
In certain exemplary embodiments, the loyalty program may be implemented for certain geographic regions (e.g., the entire multi-country jukebox system, an entire country, a group of states, a single state, etc.). In certain exemplary embodiments, the rewards given out may be tailored to the particular area in which the program is being run.
While the preferred aspects of the invention have been illustrated and described herein, it will be apparent to one of ordinary skill in the art that various changes and/or modifications can be made. Thus, the specific description herein is meant to be exemplary only and is not intended to limit the invention beyond the terms of appended claims.
This application is a divisional of application Ser. No. 12/737,395 filed Jan. 7, 2011, which is a National Phase of International Application No. PCT/US2009/003998 filed Jul. 9, 2009, which claims the benefit of Provisional Application No. 61/129,637 filed Jul. 9, 2008, the entire contents of each of which are hereby incorporated by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
3807541 | Kortenhaus | Apr 1974 | A |
3982620 | Kotenhaus | Sep 1976 | A |
4008369 | Theurer et al. | Feb 1977 | A |
4186438 | Benson | Jan 1980 | A |
4232295 | McConnell | Nov 1980 | A |
4335809 | Wain | Jun 1982 | A |
4335908 | Burge | Jun 1982 | A |
4336935 | Goldfarb | Jun 1982 | A |
4356509 | Skerlos et al. | Oct 1982 | A |
4369442 | Werth et al. | Jan 1983 | A |
4375287 | Smith | Mar 1983 | A |
4412292 | Sedam | Oct 1983 | A |
4413260 | Siegel et al. | Nov 1983 | A |
4521014 | Sitrick | Jun 1985 | A |
4528643 | Freeny | Jul 1985 | A |
4558413 | Schmidt et al. | Dec 1985 | A |
4572509 | Sitrick | Feb 1986 | A |
4577333 | Lewis et al. | Mar 1986 | A |
4582324 | Koza | Apr 1986 | A |
4588187 | Dell | May 1986 | A |
4593904 | Graves | Jun 1986 | A |
4597058 | Izumi | Jun 1986 | A |
4636951 | Harlick | Jan 1987 | A |
4652998 | Koza | Mar 1987 | A |
4654799 | Ogaki | Mar 1987 | A |
4658093 | Hellman | Apr 1987 | A |
4667802 | Verduin et al. | May 1987 | A |
4674055 | Ogaki et al. | Jun 1987 | A |
4675538 | Epstein | Jun 1987 | A |
4677311 | Morita | Jun 1987 | A |
4677565 | Ogaki | Jun 1987 | A |
4703465 | Parker | Oct 1987 | A |
4704725 | Harvey et al. | Nov 1987 | A |
4707804 | Leal | Nov 1987 | A |
4722053 | Dubno | Jan 1988 | A |
4761684 | Clark | Aug 1988 | A |
4766581 | Korn et al. | Aug 1988 | A |
4787050 | Suzuki | Nov 1988 | A |
4792849 | McCalley | Dec 1988 | A |
4807052 | Amano | Feb 1989 | A |
4811325 | Sharples | Mar 1989 | A |
4814972 | Winter et al. | Mar 1989 | A |
4825054 | Rust | Apr 1989 | A |
4829570 | Schotz | May 1989 | A |
4852154 | Lewis et al. | Jul 1989 | A |
4857714 | Sunyich | Aug 1989 | A |
4868832 | Marrington | Sep 1989 | A |
4885694 | Pray et al. | Dec 1989 | A |
4905279 | Nishio | Feb 1990 | A |
4920432 | Eggers | Apr 1990 | A |
4922420 | Nakagawa | May 1990 | A |
4924378 | Hershey | May 1990 | A |
4926485 | Yamashita | May 1990 | A |
4937807 | Weitz | Jun 1990 | A |
4949187 | Cohen | Aug 1990 | A |
4953159 | Hayden et al. | Aug 1990 | A |
4956768 | Sidi | Sep 1990 | A |
4958835 | Tashiro | Sep 1990 | A |
4965675 | Masashi et al. | Oct 1990 | A |
4977593 | Ballance | Dec 1990 | A |
4999806 | Chernow | Mar 1991 | A |
5008814 | Mathur | Apr 1991 | A |
5012121 | Hammond | Apr 1991 | A |
5027426 | Chiocca | Jun 1991 | A |
5041921 | Scheffler | Aug 1991 | A |
5046093 | Wachob | Sep 1991 | A |
5053758 | Cornett et al. | Oct 1991 | A |
5058089 | Yoshimara | Oct 1991 | A |
5077607 | Johnson et al. | Dec 1991 | A |
5081534 | Geiger et al. | Jan 1992 | A |
5101451 | Ash et al. | Mar 1992 | A |
5101499 | Streck et al. | Mar 1992 | A |
5106097 | Levine | Apr 1992 | A |
5117407 | Vogel | May 1992 | A |
5128862 | Mueller | Jul 1992 | A |
5138712 | Corbin | Aug 1992 | A |
5148159 | Clark et al. | Sep 1992 | A |
5155847 | Kirouac | Oct 1992 | A |
5159678 | Wengelski et al. | Oct 1992 | A |
5163131 | Row | Nov 1992 | A |
5166886 | Molnar | Nov 1992 | A |
5172413 | Bradley et al. | Dec 1992 | A |
5180309 | Egnor | Jan 1993 | A |
5189630 | Barstow et al. | Feb 1993 | A |
5191573 | Hair | Mar 1993 | A |
5191611 | Lang | Mar 1993 | A |
5192999 | Graczyk | Mar 1993 | A |
5197094 | Tillery | Mar 1993 | A |
5203028 | Shiraishi | Apr 1993 | A |
5210854 | Beaverton et al. | May 1993 | A |
5214761 | Barrett et al. | May 1993 | A |
5222134 | Waite et al. | Jun 1993 | A |
5228015 | Arbiter et al. | Jul 1993 | A |
5231157 | Herzig et al. | Jul 1993 | A |
5237157 | Kaplan | Aug 1993 | A |
5237322 | Heberle | Aug 1993 | A |
5239480 | Huegel | Aug 1993 | A |
5250747 | Tsumura | Oct 1993 | A |
5252775 | Urano | Oct 1993 | A |
5260999 | Wyman | Nov 1993 | A |
5261104 | Bertram et al. | Nov 1993 | A |
5262875 | Mincer et al. | Nov 1993 | A |
5276866 | Paolini | Jan 1994 | A |
5278904 | Servi | Jan 1994 | A |
5282028 | Johnson et al. | Jan 1994 | A |
5289476 | Johnson et al. | Feb 1994 | A |
5289546 | Hetherington | Feb 1994 | A |
5315161 | Robinson | May 1994 | A |
5315711 | Barone et al. | May 1994 | A |
5319455 | Hoarty et al. | Jun 1994 | A |
5321846 | Yokota et al. | Jun 1994 | A |
5327230 | Dockery | Jul 1994 | A |
5335313 | Douglas | Aug 1994 | A |
5339095 | Redford | Aug 1994 | A |
5339413 | Koval | Aug 1994 | A |
5341350 | Frank | Aug 1994 | A |
5355302 | Martin et al. | Oct 1994 | A |
5357276 | Banker | Oct 1994 | A |
5369778 | SanSoucie | Nov 1994 | A |
5375206 | Hunter | Dec 1994 | A |
5386251 | Movshovich | Jan 1995 | A |
5389950 | Bouton | Feb 1995 | A |
5404505 | Levinson | Apr 1995 | A |
5406634 | Anderson et al. | Apr 1995 | A |
5408417 | Wilder | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5410703 | Nilsson et al. | Apr 1995 | A |
5418713 | Allen | May 1995 | A |
5420923 | Beyers | May 1995 | A |
5428252 | Walker | Jun 1995 | A |
5428606 | Moskowitz | Jun 1995 | A |
5431492 | Rothschild | Jul 1995 | A |
5440632 | Bacon et al. | Aug 1995 | A |
5444499 | Saitoh | Aug 1995 | A |
5445295 | Brown | Aug 1995 | A |
5455619 | Truckenmiller et al. | Oct 1995 | A |
5455926 | Keele | Oct 1995 | A |
5457305 | Akel | Oct 1995 | A |
5465213 | Ross | Nov 1995 | A |
5465329 | Whisler | Nov 1995 | A |
5467326 | Miyashita et al. | Nov 1995 | A |
5469370 | Ostrover et al. | Nov 1995 | A |
5469573 | McGill et al. | Nov 1995 | A |
5471576 | Yee | Nov 1995 | A |
5473746 | Pritt et al. | Dec 1995 | A |
5475835 | Hickey | Dec 1995 | A |
5481509 | Knowles | Jan 1996 | A |
5487167 | Dinallo et al. | Jan 1996 | A |
5489103 | Okamoto | Feb 1996 | A |
5495610 | Shing | Feb 1996 | A |
5496178 | Back | Mar 1996 | A |
5499921 | Sone | Mar 1996 | A |
5511000 | Kaloi | Apr 1996 | A |
5513117 | Small | Apr 1996 | A |
5515173 | Mankovitz et al. | May 1996 | A |
5519435 | Anderson | May 1996 | A |
5519457 | Nishigaki et al. | May 1996 | A |
5521631 | Budow et al. | May 1996 | A |
5521918 | Kim | May 1996 | A |
5521922 | Fujinami et al. | May 1996 | A |
5523781 | Brusaw | Jun 1996 | A |
5528732 | Klotz | Jun 1996 | A |
5532734 | Goertz | Jul 1996 | A |
5532991 | Sasaki | Jul 1996 | A |
5546039 | Hewitt et al. | Aug 1996 | A |
5548729 | Akiyoshi | Aug 1996 | A |
5550577 | Verbiest | Aug 1996 | A |
5554968 | Lee | Sep 1996 | A |
5555244 | Gupta | Sep 1996 | A |
5557515 | Abbruzzese et al. | Sep 1996 | A |
5557541 | Schulhof | Sep 1996 | A |
5557724 | Sampat et al. | Sep 1996 | A |
5559505 | McNair | Sep 1996 | A |
5559549 | Hendricks | Sep 1996 | A |
5559714 | Banks et al. | Sep 1996 | A |
5561709 | Remillard | Oct 1996 | A |
5565908 | Ahmad | Oct 1996 | A |
5566237 | Dobbs | Oct 1996 | A |
5570363 | Holm | Oct 1996 | A |
5578999 | Matsuzawa et al. | Nov 1996 | A |
5579404 | Fielder et al. | Nov 1996 | A |
5583561 | Baker et al. | Dec 1996 | A |
5583937 | Ullrich et al. | Dec 1996 | A |
5583994 | Rangan | Dec 1996 | A |
5583995 | Gardner et al. | Dec 1996 | A |
5592482 | Abraham | Jan 1997 | A |
5592551 | Lett | Jan 1997 | A |
5592611 | Midgely et al. | Jan 1997 | A |
5594509 | Florin | Jan 1997 | A |
5596702 | Stucka et al. | Jan 1997 | A |
5607099 | Yeh et al. | Mar 1997 | A |
5612581 | Kageyama | Mar 1997 | A |
5613909 | Stelovsky | Mar 1997 | A |
5616876 | Cluts | Apr 1997 | A |
5617565 | Augenbraun et al. | Apr 1997 | A |
5619247 | Russo | Apr 1997 | A |
5619249 | Billock et al. | Apr 1997 | A |
5619250 | McClellan et al. | Apr 1997 | A |
5619698 | Lillich | Apr 1997 | A |
5623666 | Pike | Apr 1997 | A |
5631693 | Wunderlich et al. | May 1997 | A |
5636276 | Brugger | Jun 1997 | A |
5638426 | Lewis | Jun 1997 | A |
5642337 | Oskay et al. | Jun 1997 | A |
5643831 | Ochiai et al. | Jul 1997 | A |
5644714 | Kikinis | Jul 1997 | A |
5644766 | Coy | Jul 1997 | A |
5654714 | Takahashi et al. | Aug 1997 | A |
5659466 | Norris et al. | Aug 1997 | A |
5661517 | Budow et al. | Aug 1997 | A |
5661802 | Nilssen | Aug 1997 | A |
5663756 | Blahut et al. | Sep 1997 | A |
5668592 | Spaulding | Sep 1997 | A |
5668778 | Quazi | Sep 1997 | A |
5668788 | Allison | Sep 1997 | A |
5675734 | Hair | Oct 1997 | A |
5680533 | Yamato et al. | Oct 1997 | A |
5684716 | Freeman | Nov 1997 | A |
5689641 | Ludwig et al. | Nov 1997 | A |
5691778 | Song | Nov 1997 | A |
5691964 | Niederlein et al. | Nov 1997 | A |
5696914 | Nahaboo et al. | Dec 1997 | A |
5697844 | Von Kohorn | Dec 1997 | A |
5703795 | Mankowitz | Dec 1997 | A |
5708811 | Arendt | Jan 1998 | A |
5712976 | Falcon et al. | Jan 1998 | A |
5713024 | Halladay | Jan 1998 | A |
5715416 | Baker | Feb 1998 | A |
5717452 | Janin et al. | Feb 1998 | A |
5721583 | Harada et al. | Feb 1998 | A |
5721815 | Ottesen et al. | Feb 1998 | A |
5721827 | Logan et al. | Feb 1998 | A |
5721829 | Dunn et al. | Feb 1998 | A |
5724525 | Beyers et al. | Mar 1998 | A |
5726909 | Krikorian | Mar 1998 | A |
5734719 | Tsevdos et al. | Mar 1998 | A |
5734961 | Castille | Mar 1998 | A |
5739451 | Winksy et al. | Apr 1998 | A |
5743745 | Reintjes | Apr 1998 | A |
5745391 | Topor | Apr 1998 | A |
5748254 | Harrison et al. | May 1998 | A |
5748468 | Notenboom et al. | May 1998 | A |
5748954 | Mauldin | May 1998 | A |
5751336 | Aggarwal et al. | May 1998 | A |
5752232 | Basore et al. | May 1998 | A |
5757936 | Lee | May 1998 | A |
5758340 | Nail | May 1998 | A |
5761655 | Hoffman | Jun 1998 | A |
5762552 | Vuong | Jun 1998 | A |
5774527 | Handelman et al. | Jun 1998 | A |
5774668 | Choquier | Jun 1998 | A |
5774672 | Funahashi | Jun 1998 | A |
5778395 | Whiting | Jul 1998 | A |
5781889 | Martin et al. | Jul 1998 | A |
5786784 | Gaudichon | Jul 1998 | A |
5790172 | Imanaka | Aug 1998 | A |
5790671 | Cooper | Aug 1998 | A |
5790856 | Lillich | Aug 1998 | A |
5790935 | Payton | Aug 1998 | A |
5793364 | Bolanos et al. | Aug 1998 | A |
5793980 | Glaser | Aug 1998 | A |
5798785 | Hendricks | Aug 1998 | A |
5802283 | Grady et al. | Sep 1998 | A |
5802558 | Pierce | Sep 1998 | A |
5802599 | Cabrera | Sep 1998 | A |
5805804 | Laursen et al. | Sep 1998 | A |
5808224 | Kato | Sep 1998 | A |
5809246 | Goldman | Sep 1998 | A |
5812643 | Schelberg et al. | Sep 1998 | A |
5815146 | Youden et al. | Sep 1998 | A |
5825884 | Zdepski et al. | Oct 1998 | A |
5828343 | MacDonald et al. | Oct 1998 | A |
5831555 | Yu et al. | Nov 1998 | A |
5831663 | Waterhouse et al. | Nov 1998 | A |
5832024 | Schotz et al. | Nov 1998 | A |
5832287 | Atalla | Nov 1998 | A |
5835843 | Haddad | Nov 1998 | A |
5842869 | McGregor et al. | Dec 1998 | A |
5845104 | Rao | Dec 1998 | A |
5845256 | Pescitelli et al. | Dec 1998 | A |
5848398 | Martin | Dec 1998 | A |
5851149 | Xidos et al. | Dec 1998 | A |
5854887 | Kindell | Dec 1998 | A |
5857020 | Peterson | Jan 1999 | A |
5857707 | Devlin | Jan 1999 | A |
5862324 | Collins | Jan 1999 | A |
5864811 | Tran et al. | Jan 1999 | A |
5864868 | Contois | Jan 1999 | A |
5864870 | Guck | Jan 1999 | A |
5867714 | Todd | Feb 1999 | A |
5870721 | Norris | Feb 1999 | A |
5880386 | Wachi et al. | Mar 1999 | A |
5880769 | Nemirofsky et al. | Mar 1999 | A |
5884028 | Kindell | Mar 1999 | A |
5884298 | Smith | Mar 1999 | A |
5887139 | Madison, Jr. et al. | Mar 1999 | A |
5887193 | Takahashi | Mar 1999 | A |
5893162 | Lau et al. | Apr 1999 | A |
5895455 | Bellinger et al. | Apr 1999 | A |
5896094 | Narisada et al. | Apr 1999 | A |
5903266 | Berstis et al. | May 1999 | A |
5913040 | Rakavy | Jun 1999 | A |
5914712 | Sartain et al. | Jun 1999 | A |
5915094 | Kouloheris | Jun 1999 | A |
5915238 | Tjaden | Jun 1999 | A |
5917537 | Lightfoot | Jun 1999 | A |
5917835 | Barrett | Jun 1999 | A |
5918213 | Bernard et al. | Jun 1999 | A |
5920700 | Gordon et al. | Jul 1999 | A |
5920702 | Johnson | Jul 1999 | A |
5923885 | Johnson | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5926624 | Katz et al. | Jul 1999 | A |
5930765 | Martin | Jul 1999 | A |
5931908 | Gerba | Aug 1999 | A |
5933090 | Christenson | Aug 1999 | A |
5940504 | Griswold | Aug 1999 | A |
5949411 | Doerr et al. | Sep 1999 | A |
5949688 | Montoya | Sep 1999 | A |
5953429 | Wakai et al. | Sep 1999 | A |
5956716 | Kenner et al. | Sep 1999 | A |
5959869 | Miller | Sep 1999 | A |
5959945 | Kleiman | Sep 1999 | A |
5960167 | Roberts et al. | Sep 1999 | A |
5963916 | Kaplan | Oct 1999 | A |
5966495 | Takahashi | Oct 1999 | A |
5970467 | Alavi | Oct 1999 | A |
5978855 | Metz et al. | Nov 1999 | A |
5978912 | Rakavy et al. | Nov 1999 | A |
5980261 | Mino et al. | Nov 1999 | A |
5999499 | Pines et al. | Dec 1999 | A |
5999624 | Hopkins | Dec 1999 | A |
6002720 | Yurt | Dec 1999 | A |
6005599 | Asai et al. | Dec 1999 | A |
6008735 | Chiloyan et al. | Dec 1999 | A |
6009274 | Fletcher | Dec 1999 | A |
6011758 | Dockes et al. | Jan 2000 | A |
6018337 | Peters | Jan 2000 | A |
6018726 | Tsumura | Jan 2000 | A |
6021386 | Davis | Feb 2000 | A |
6023705 | Bellinger et al. | Feb 2000 | A |
6025868 | Russo | Feb 2000 | A |
6034925 | Wehmeyer | Mar 2000 | A |
6038591 | Wolfe et al. | Mar 2000 | A |
6040829 | Croy et al. | Mar 2000 | A |
6041354 | Biliris et al. | Mar 2000 | A |
6049891 | Inamoto | Apr 2000 | A |
6054987 | Richardson | Apr 2000 | A |
6055573 | Gardenswartz et al. | Apr 2000 | A |
6057874 | Michaud | May 2000 | A |
6069672 | Claassen | May 2000 | A |
6072982 | Haddad | Jun 2000 | A |
6107937 | Hamada | Aug 2000 | A |
6118450 | Proehl et al. | Sep 2000 | A |
6124804 | Kitao et al. | Sep 2000 | A |
6131088 | Hill | Oct 2000 | A |
6131121 | Mattaway et al. | Oct 2000 | A |
6134547 | Huxley et al. | Oct 2000 | A |
6138150 | Nichols et al. | Oct 2000 | A |
6148142 | Anderson | Nov 2000 | A |
6151077 | Vogel et al. | Nov 2000 | A |
6151634 | Glaser | Nov 2000 | A |
6154207 | Farris et al. | Nov 2000 | A |
6157935 | Tran et al. | Dec 2000 | A |
6161059 | Tedesco et al. | Dec 2000 | A |
6167358 | Othmer et al. | Dec 2000 | A |
6170060 | Mott et al. | Jan 2001 | B1 |
6173172 | Masuda et al. | Jan 2001 | B1 |
6175861 | Williams, Jr. et al. | Jan 2001 | B1 |
6182126 | Nathan et al. | Jan 2001 | B1 |
6185184 | Mattaway et al. | Feb 2001 | B1 |
6185619 | Joffe et al. | Feb 2001 | B1 |
6191780 | Martin et al. | Feb 2001 | B1 |
6192340 | Abecassis | Feb 2001 | B1 |
6195732 | Adams et al. | Feb 2001 | B1 |
6198408 | Cohen | Mar 2001 | B1 |
6202060 | Tran | Mar 2001 | B1 |
6209060 | Machida | Mar 2001 | B1 |
6212138 | Kalis et al. | Apr 2001 | B1 |
6216175 | Sliger et al. | Apr 2001 | B1 |
6216227 | Goldstein et al. | Apr 2001 | B1 |
6219692 | Stiles | Apr 2001 | B1 |
6223209 | Watson | Apr 2001 | B1 |
6226412 | Schwab | May 2001 | B1 |
6226715 | Van Der Wolf et al. | May 2001 | B1 |
6240550 | Nathan et al. | May 2001 | B1 |
6243725 | Hempleman et al. | Jun 2001 | B1 |
6247022 | Yankowski | Jun 2001 | B1 |
6256773 | Bowman-Amuah | Jul 2001 | B1 |
6262569 | Carr et al. | Jul 2001 | B1 |
6280327 | Leifer et al. | Aug 2001 | B1 |
6282709 | Reha et al. | Aug 2001 | B1 |
6288688 | Hughes et al. | Sep 2001 | B1 |
6288991 | Kajiyama et al. | Sep 2001 | B1 |
6289318 | Barber | Sep 2001 | B1 |
6289382 | Bowman-Amuah | Sep 2001 | B1 |
6292443 | Awazu et al. | Sep 2001 | B1 |
6298373 | Burns et al. | Oct 2001 | B1 |
6301710 | Fujiwara | Oct 2001 | B1 |
6302793 | Fertitta et al. | Oct 2001 | B1 |
6308204 | Nathan et al. | Oct 2001 | B1 |
6311214 | Rhoads | Oct 2001 | B1 |
6315572 | Glaser | Nov 2001 | B1 |
6323911 | Schein et al. | Nov 2001 | B1 |
6332025 | Takahashi et al. | Dec 2001 | B2 |
6336219 | Nathan | Jan 2002 | B1 |
6341166 | Basel | Jan 2002 | B1 |
6344862 | Williams et al. | Feb 2002 | B1 |
6346951 | Mastronardi | Feb 2002 | B1 |
6353820 | Edwards et al. | Mar 2002 | B1 |
6356971 | Katz et al. | Mar 2002 | B1 |
6359616 | Ogura et al. | Mar 2002 | B1 |
6359661 | Nickum | Mar 2002 | B1 |
6370580 | Kriegsman | Apr 2002 | B2 |
6381575 | Martin et al. | Apr 2002 | B1 |
6384737 | Hsu et al. | May 2002 | B1 |
6393584 | McLaren et al. | May 2002 | B1 |
6396480 | Schindler et al. | May 2002 | B1 |
6397189 | Martin et al. | May 2002 | B1 |
6407987 | Abraham | Jun 2002 | B1 |
6408435 | Sato | Jun 2002 | B1 |
6408437 | Hendricks et al. | Jun 2002 | B1 |
6421651 | Tedesco et al. | Jul 2002 | B1 |
6425125 | Fries et al. | Jul 2002 | B1 |
6430537 | Tedesco et al. | Aug 2002 | B1 |
6430738 | Gross et al. | Aug 2002 | B1 |
6434678 | Menzel | Aug 2002 | B1 |
6438450 | DiLorenzo | Aug 2002 | B1 |
6442549 | Schneider | Aug 2002 | B1 |
6446080 | Van Ryzin et al. | Sep 2002 | B1 |
6446130 | Grapes | Sep 2002 | B1 |
6449688 | Peters et al. | Sep 2002 | B1 |
6470496 | Kato et al. | Oct 2002 | B1 |
6473794 | Guheen et al. | Oct 2002 | B1 |
6488508 | Okamoto | Dec 2002 | B2 |
6490570 | Numaoka | Dec 2002 | B1 |
6493871 | McGuire et al. | Dec 2002 | B1 |
6496927 | McGrane et al. | Dec 2002 | B1 |
6498855 | Kokkosoulis et al. | Dec 2002 | B1 |
6522707 | Brandstetter et al. | Feb 2003 | B1 |
6535911 | Miller et al. | Mar 2003 | B1 |
6538558 | Sakazume et al. | Mar 2003 | B2 |
6543052 | Ogasawara | Apr 2003 | B1 |
6544122 | Araki et al. | Apr 2003 | B2 |
6549719 | Mankovitz | Apr 2003 | B2 |
D475029 | Nathan et al. | May 2003 | S |
6560651 | Katz et al. | May 2003 | B2 |
6570507 | Lee et al. | May 2003 | B1 |
6571282 | Bowman-Amuah | May 2003 | B1 |
6577735 | Bharat | Jun 2003 | B1 |
6578051 | Mastronardi et al. | Jun 2003 | B1 |
6587403 | Keller et al. | Jul 2003 | B1 |
6590838 | Gerlings et al. | Jul 2003 | B1 |
6598230 | Ballhorn | Jul 2003 | B1 |
6622307 | Ho | Sep 2003 | B1 |
6628939 | Paulsen | Sep 2003 | B2 |
6629318 | Radha et al. | Sep 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643690 | Duursma et al. | Nov 2003 | B2 |
6650747 | Bala | Nov 2003 | B1 |
6654801 | Mann et al. | Nov 2003 | B2 |
6658090 | Harjunen et al. | Dec 2003 | B1 |
6662231 | Drosset et al. | Dec 2003 | B1 |
6702585 | Okamoto | Mar 2004 | B2 |
6724974 | Naruto et al. | Apr 2004 | B2 |
6728824 | Chen | Apr 2004 | B1 |
6728956 | Ono | Apr 2004 | B2 |
6728966 | Arsenault et al. | Apr 2004 | B1 |
6744882 | Gupta et al. | Jun 2004 | B1 |
6751794 | McCaleb et al. | Jun 2004 | B1 |
6755744 | Nathan et al. | Jun 2004 | B1 |
6762585 | Liao | Jul 2004 | B2 |
6789215 | Rupp et al. | Sep 2004 | B1 |
6816578 | Kredo et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6898161 | Nathan | May 2005 | B1 |
6904592 | Johnson | Jun 2005 | B1 |
6920614 | Schindler et al. | Jul 2005 | B1 |
6928653 | Ellis et al. | Aug 2005 | B1 |
6934700 | Ijdens et al. | Aug 2005 | B1 |
6942574 | LeMay et al. | Sep 2005 | B1 |
6974076 | Siegel | Dec 2005 | B1 |
7024485 | Dunning et al. | Apr 2006 | B2 |
7073172 | Chamberlain | Jul 2006 | B2 |
7103583 | Baum et al. | Sep 2006 | B1 |
7107109 | Nathan et al. | Sep 2006 | B1 |
7111129 | Percival | Sep 2006 | B2 |
7114013 | Bakke et al. | Sep 2006 | B2 |
7124194 | Nathan et al. | Oct 2006 | B2 |
7181458 | Higashi | Feb 2007 | B1 |
7188352 | Nathan et al. | Mar 2007 | B2 |
7195157 | Swartz et al. | Mar 2007 | B2 |
7198571 | LeMay et al. | Apr 2007 | B2 |
7205471 | Looney et al. | Apr 2007 | B2 |
7206417 | Nathan | Apr 2007 | B2 |
7210141 | Nathan et al. | Apr 2007 | B1 |
7231656 | Nathan | Jun 2007 | B1 |
7237198 | Chaney | Jun 2007 | B1 |
7281652 | Foss | Oct 2007 | B2 |
7293277 | Nathan | Nov 2007 | B1 |
7356831 | Nathan | Apr 2008 | B2 |
7406529 | Reed | Jul 2008 | B2 |
7415707 | Taguchi et al. | Aug 2008 | B2 |
7418474 | Schwab | Aug 2008 | B2 |
7424731 | Nathan et al. | Sep 2008 | B1 |
7430736 | Nguyen et al. | Sep 2008 | B2 |
7433832 | Bezos et al. | Oct 2008 | B1 |
7448057 | Nathan | Nov 2008 | B1 |
7483958 | Elabbady et al. | Jan 2009 | B1 |
7500192 | Mastronardi | Mar 2009 | B2 |
7512632 | Mastronardi et al. | Mar 2009 | B2 |
7519442 | Nathan et al. | Apr 2009 | B2 |
7522631 | Brown et al. | Apr 2009 | B1 |
7533182 | Wurtzel et al. | May 2009 | B2 |
7549919 | Nathan et al. | Jun 2009 | B1 |
7574727 | Nathan et al. | Aug 2009 | B2 |
7612433 | Huang | Nov 2009 | B2 |
7647613 | Drakoulis et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7668747 | Murphy | Feb 2010 | B2 |
D616414 | Nathan et al. | May 2010 | S |
7749083 | Nathan et al. | Jul 2010 | B2 |
7757264 | Nathan | Jul 2010 | B2 |
7761538 | Lin et al. | Jul 2010 | B2 |
7770165 | Olson et al. | Aug 2010 | B2 |
7778879 | Nathan et al. | Aug 2010 | B2 |
7780529 | Rowe | Aug 2010 | B2 |
7783593 | Espino | Aug 2010 | B2 |
7783774 | Nathan et al. | Aug 2010 | B2 |
7793331 | Nathan et al. | Sep 2010 | B2 |
7819734 | Nathan et al. | Oct 2010 | B2 |
7822687 | Brillon et al. | Oct 2010 | B2 |
D629382 | Nathan et al. | Dec 2010 | S |
7884489 | Stortini | Feb 2011 | B1 |
D642553 | Nathan et al. | Aug 2011 | S |
7992178 | Nathan et al. | Aug 2011 | B1 |
7993197 | Kaminkow | Aug 2011 | B2 |
7996873 | Nathan et al. | Aug 2011 | B1 |
8015200 | Seiflein et al. | Sep 2011 | B2 |
8028318 | Nathan | Sep 2011 | B2 |
8032879 | Nathan et al. | Oct 2011 | B2 |
8037412 | Nathan et al. | Oct 2011 | B2 |
8052512 | Nathan et al. | Nov 2011 | B2 |
8103589 | Nathan et al. | Jan 2012 | B2 |
8151304 | Nathan et al. | Apr 2012 | B2 |
8214874 | Nathan | Jul 2012 | B2 |
D665375 | Garneau et al. | Aug 2012 | S |
8292712 | Nathan et al. | Oct 2012 | B2 |
8332895 | Nathan et al. | Dec 2012 | B2 |
8429530 | Neuman et al. | Apr 2013 | B2 |
20010016815 | Takahashi et al. | Aug 2001 | A1 |
20010023403 | Martin et al. | Sep 2001 | A1 |
20010030660 | Zainoulline | Oct 2001 | A1 |
20010030912 | Kalis et al. | Oct 2001 | A1 |
20010037367 | Iyer | Nov 2001 | A1 |
20010044725 | Matsuda et al. | Nov 2001 | A1 |
20020002079 | Martin et al. | Jan 2002 | A1 |
20020002483 | Siegel et al. | Jan 2002 | A1 |
20020113824 | Myers | Aug 2002 | A1 |
20020116476 | Eyal et al. | Aug 2002 | A1 |
20020118949 | Jones et al. | Aug 2002 | A1 |
20020120925 | Logan | Aug 2002 | A1 |
20020123331 | Lehaff et al. | Sep 2002 | A1 |
20020126141 | Mastronardi | Sep 2002 | A1 |
20020129036 | Ho Yuen Lok et al. | Sep 2002 | A1 |
20020162104 | Raike et al. | Oct 2002 | A1 |
20030004833 | Pollak | Jan 2003 | A1 |
20030005099 | Sven et al. | Jan 2003 | A1 |
20030006911 | Smith et al. | Jan 2003 | A1 |
20030008703 | Gauselmann | Jan 2003 | A1 |
20030018740 | Sonoda et al. | Jan 2003 | A1 |
20030027120 | Jean | Feb 2003 | A1 |
20030031096 | Nathan et al. | Feb 2003 | A1 |
20030041093 | Yamane et al. | Feb 2003 | A1 |
20030065639 | Fiennes et al. | Apr 2003 | A1 |
20030076380 | Yusef et al. | Apr 2003 | A1 |
20030088538 | Ballard | May 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030101450 | Davidsson et al. | May 2003 | A1 |
20030104865 | Itkis et al. | Jun 2003 | A1 |
20030108164 | Laurin et al. | Jun 2003 | A1 |
20030135424 | Davis et al. | Jul 2003 | A1 |
20030144910 | Flaherty | Jul 2003 | A1 |
20030176218 | LeMay et al. | Sep 2003 | A1 |
20030191753 | Hoch | Oct 2003 | A1 |
20030200142 | Hicks | Oct 2003 | A1 |
20030208586 | Mastronardi et al. | Nov 2003 | A1 |
20030212589 | Kish | Nov 2003 | A1 |
20030225834 | Lee et al. | Dec 2003 | A1 |
20040010800 | Goci | Jan 2004 | A1 |
20040025185 | Goci et al. | Feb 2004 | A1 |
20040085334 | Reaney | May 2004 | A1 |
20040103150 | Ogdon et al. | May 2004 | A1 |
20040145477 | Easter | Jul 2004 | A1 |
20040158491 | Ishii | Aug 2004 | A1 |
20040158555 | Seedman et al. | Aug 2004 | A1 |
20040204220 | Fried et al. | Oct 2004 | A1 |
20040205171 | Nathan et al. | Oct 2004 | A1 |
20040220926 | Lamkin et al. | Nov 2004 | A1 |
20050014588 | Gebrian | Jan 2005 | A1 |
20050048816 | Higgins | Mar 2005 | A1 |
20050060405 | Nathan et al. | Mar 2005 | A1 |
20050073782 | Nathan | Apr 2005 | A1 |
20050086172 | Stefik | Apr 2005 | A1 |
20050111671 | Nathan | May 2005 | A1 |
20050125833 | Nathan et al. | Jun 2005 | A1 |
20050201254 | Looney et al. | Sep 2005 | A1 |
20050209917 | Anderson | Sep 2005 | A1 |
20050267819 | Kaplan | Dec 2005 | A1 |
20060018208 | Nathan et al. | Jan 2006 | A1 |
20060031896 | Pulitzer | Feb 2006 | A1 |
20060035707 | Nguyen et al. | Feb 2006 | A1 |
20060062094 | Nathan et al. | Mar 2006 | A1 |
20060143575 | Sauermann | Jun 2006 | A1 |
20060178193 | Hunter | Aug 2006 | A1 |
20060227673 | Yamashita et al. | Oct 2006 | A1 |
20060239131 | Nathan et al. | Oct 2006 | A1 |
20060293773 | Nathan et al. | Dec 2006 | A1 |
20070025701 | Kawasaki et al. | Feb 2007 | A1 |
20070038515 | Postrel | Feb 2007 | A1 |
20070086280 | Cappello et al. | Apr 2007 | A1 |
20070121430 | Nathan | May 2007 | A1 |
20070139410 | Abe et al. | Jun 2007 | A1 |
20070142022 | Madonna et al. | Jun 2007 | A1 |
20070145686 | Wisniewski | Jun 2007 | A1 |
20070160224 | Nathan | Jul 2007 | A1 |
20070174113 | Rowen | Jul 2007 | A1 |
20070199014 | Clark | Aug 2007 | A1 |
20070204263 | Nathan et al. | Aug 2007 | A1 |
20070209053 | Nathan | Sep 2007 | A1 |
20070214182 | Rosenberg | Sep 2007 | A1 |
20070220052 | Kudo et al. | Sep 2007 | A1 |
20070247979 | Brillon et al. | Oct 2007 | A1 |
20080065925 | Oliverio et al. | Mar 2008 | A1 |
20080066016 | Dowdy et al. | Mar 2008 | A1 |
20080069545 | Nathan et al. | Mar 2008 | A1 |
20080077962 | Nathan | Mar 2008 | A1 |
20080086379 | Dion et al. | Apr 2008 | A1 |
20080096659 | Kreloff et al. | Apr 2008 | A1 |
20080137849 | Nathan | Jun 2008 | A1 |
20080155588 | Roberts et al. | Jun 2008 | A1 |
20080168807 | Dion et al. | Jul 2008 | A1 |
20080171594 | Fedesna et al. | Jul 2008 | A1 |
20080195443 | Nathan et al. | Aug 2008 | A1 |
20080198271 | Malki | Aug 2008 | A1 |
20080222199 | Tiu et al. | Sep 2008 | A1 |
20080239887 | Tooker et al. | Oct 2008 | A1 |
20080300990 | Guiton | Dec 2008 | A1 |
20080305738 | Khedouri et al. | Dec 2008 | A1 |
20090030802 | Plotnick et al. | Jan 2009 | A1 |
20090037969 | Nathan et al. | Feb 2009 | A1 |
20090042632 | Guenster et al. | Feb 2009 | A1 |
20090063976 | Bull et al. | Mar 2009 | A1 |
20090070341 | Mastronardi et al. | Mar 2009 | A1 |
20090083122 | Angell | Mar 2009 | A1 |
20090091087 | Wasmund | Apr 2009 | A1 |
20090100092 | Seiflein et al. | Apr 2009 | A1 |
20090138111 | Mastronardi | May 2009 | A1 |
20090150236 | Price | Jun 2009 | A1 |
20090172565 | Jackson et al. | Jul 2009 | A1 |
20090177301 | Hayes | Jul 2009 | A1 |
20090241061 | Asai et al. | Sep 2009 | A1 |
20090265734 | Dion et al. | Oct 2009 | A1 |
20090282491 | Nathan | Nov 2009 | A1 |
20090287696 | Galuten | Nov 2009 | A1 |
20090307314 | Smith et al. | Dec 2009 | A1 |
20100042505 | Straus | Feb 2010 | A1 |
20100211818 | Nathan et al. | Aug 2010 | A1 |
20100241259 | Nathan | Sep 2010 | A1 |
20100247081 | Pons | Sep 2010 | A1 |
20100269066 | Nathan | Oct 2010 | A1 |
20100299232 | Nathan et al. | Nov 2010 | A1 |
20110066943 | Brillon et al. | Mar 2011 | A1 |
20110246517 | Nathan et al. | Oct 2011 | A1 |
20110270894 | Mastronardi et al. | Nov 2011 | A1 |
20110283236 | Beaumier et al. | Nov 2011 | A1 |
20110321026 | Nathan et al. | Dec 2011 | A1 |
20120009985 | Nathan et al. | Jan 2012 | A1 |
20120053713 | Nathan | Mar 2012 | A1 |
20120105464 | Franceus | May 2012 | A1 |
20120143732 | Nathan et al. | Jun 2012 | A1 |
20120150614 | Dion et al. | Jun 2012 | A1 |
20120158531 | Dion et al. | Jun 2012 | A1 |
20120166965 | Nathan et al. | Jun 2012 | A1 |
20120240140 | Nathan | Sep 2012 | A1 |
20120323652 | Mastronardi et al. | Dec 2012 | A1 |
20130021281 | Tse et al. | Jan 2013 | A1 |
20130040715 | Nathan et al. | Feb 2013 | A1 |
20130044995 | Cappello et al. | Feb 2013 | A1 |
20130070093 | Rivera et al. | Mar 2013 | A1 |
20130091054 | Nathan et al. | Apr 2013 | A1 |
20140026154 | Nathan | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
199954012 | Apr 2000 | AU |
1340939 | Mar 2002 | CN |
3406058 | Aug 1985 | DE |
3723737 | Jan 1988 | DE |
3820835 | Jan 1989 | DE |
3815071 | Nov 1989 | DE |
4244198 | Jun 1994 | DE |
19539172 | Sep 1996 | DE |
19610739 | Sep 1997 | DE |
19904007 | Aug 2000 | DE |
0082077 | Jun 1983 | EP |
0140593 | May 1985 | EP |
0256921 | Feb 1988 | EP |
0283304 | Sep 1988 | EP |
0283350 | Sep 1988 | EP |
0309298 | Mar 1989 | EP |
0313359 | Apr 1989 | EP |
0340787 | Nov 1989 | EP |
0363186 | Apr 1990 | EP |
0425168 | May 1991 | EP |
0464562 | Jan 1992 | EP |
0480558 | Apr 1992 | EP |
0498130 | Aug 1992 | EP |
0507110 | Oct 1992 | EP |
0529834 | Mar 1993 | EP |
0538319 | Apr 1993 | EP |
0631283 | Dec 1994 | EP |
0632371 | Jan 1995 | EP |
0711076 | May 1996 | EP |
0786122 | Jul 1997 | EP |
0817103 | Jan 1998 | EP |
0841616 | May 1998 | EP |
0919964 | Jun 1999 | EP |
0959570 | Nov 1999 | EP |
0974896 | Jan 2000 | EP |
0974941 | Jan 2000 | EP |
0982695 | Mar 2000 | EP |
1001391 | May 2000 | EP |
1170951 | Jan 2002 | EP |
1288802 | Mar 2003 | EP |
1408427 | Apr 2004 | EP |
1549919 | Apr 2004 | EP |
1962251 | Aug 2008 | EP |
2602352 | Feb 1988 | FR |
2808906 | Nov 2001 | FR |
2122799 | Jan 1984 | GB |
2166328 | Apr 1986 | GB |
2170943 | Aug 1986 | GB |
2193420 | Feb 1988 | GB |
2238680 | Jun 1991 | GB |
2254469 | Oct 1992 | GB |
2259398 | Mar 1993 | GB |
2262170 | Jun 1993 | GB |
2380377 | Apr 2003 | GB |
2505584 | Aug 2014 | GB |
57173207 | Oct 1982 | JP |
58-179892 | Oct 1983 | JP |
60-253082 | Dec 1985 | JP |
61084143 | Apr 1986 | JP |
62-192849 | Aug 1987 | JP |
62-284496 | Dec 1987 | JP |
63-60634 | Mar 1988 | JP |
2-153665 | Jun 1990 | JP |
5-74078 | Mar 1993 | JP |
5122282 | May 1993 | JP |
07281682 | Oct 1995 | JP |
07-311587 | Nov 1995 | JP |
8274812 | Oct 1996 | JP |
08279235 | Oct 1996 | JP |
08289976 | Nov 1996 | JP |
928918 | Feb 1997 | JP |
9114470 | May 1997 | JP |
9127964 | May 1997 | JP |
09-244900 | Sep 1997 | JP |
10-098344 | Apr 1998 | JP |
10-222537 | Aug 1998 | JP |
11-003088 | Jan 1999 | JP |
11-024686 | Jan 1999 | JP |
11-095768 | Apr 1999 | JP |
2002-83640 | Mar 2002 | JP |
2002-537584 | Nov 2002 | JP |
2003-076380 | Mar 2003 | JP |
2003-084903 | Mar 2003 | JP |
2003-099072 | Apr 2003 | JP |
2005-107267 | Apr 2005 | JP |
2005-184237 | Jul 2005 | JP |
2006-048076 | Feb 2006 | JP |
2007-034253 | Feb 2007 | JP |
2007-041722 | Feb 2007 | JP |
2007505410 | Mar 2007 | JP |
07504517 | Mar 2007 | JP |
2007-102982 | Apr 2007 | JP |
2007-104072 | Apr 2007 | JP |
2007-128609 | May 2007 | JP |
2007-164078 | Jun 2007 | JP |
2007-164298 | Jun 2007 | JP |
2007179333 | Jul 2007 | JP |
2007-241748 | Sep 2007 | JP |
2008-058656 | Mar 2008 | JP |
2009-017529 | Jan 2009 | JP |
2009-075540 | Apr 2009 | JP |
WO 8601326 | Feb 1986 | WO |
WO 9000429 | Jan 1990 | WO |
WO 9007843 | Jul 1990 | WO |
WO 9108542 | Jun 1991 | WO |
WO 9120082 | Dec 1991 | WO |
WO 9316557 | Aug 1993 | WO |
WO 9318465 | Sep 1993 | WO |
WO 93021732 | Oct 1993 | WO |
WO 9403894 | Feb 1994 | WO |
WO 9414273 | Jun 1994 | WO |
WO 9415306 | Jul 1994 | WO |
WO 9415416 | Jul 1994 | WO |
WO 9503609 | Feb 1995 | WO |
WO 9529537 | Nov 1995 | WO |
WO 9612255 | Apr 1996 | WO |
WO 9612256 | Apr 1996 | WO |
WO 9612257 | Apr 1996 | WO |
WO 9612258 | Apr 1996 | WO |
WO 9807940 | Feb 1998 | WO |
WO 9811487 | Mar 1998 | WO |
WO 9845835 | Oct 1998 | WO |
WO 9935753 | Jul 1999 | WO |
WO 0100290 | Jan 2001 | WO |
WO 0108148 | Feb 2001 | WO |
WO 0171608 | Sep 2001 | WO |
WO 02060546 | Aug 2002 | WO |
WO 02095752 | Nov 2002 | WO |
WO 01084353 | Jan 2003 | WO |
WO 03069613 | Aug 2003 | WO |
WO-2004019257 | Mar 2004 | WO |
WO 2004029775 | Apr 2004 | WO |
WO 2005026916 | Mar 2005 | WO |
WO 2006014739 | Feb 2006 | WO |
WO 2006056933 | Jun 2006 | WO |
WO 2007092542 | Aug 2007 | WO |
WO 2008-033853 | Mar 2008 | WO |
WO 2011094330 | Aug 2011 | WO |
WO 2013040603 | Mar 2013 | WO |
Entry |
---|
Merriam-Webster, Incorporated, Merriam-Webster's Collegiate Dictionary, 10th Ed (1998) at p. 380. |
Sprague et al. Music Selection using the PartyVote Democratic Jukebox. (May 2008). Retrieved online Aug. 13, 2018. (Year: 2008). |
U.S. Appl. No. 08/817,426, filed Jun. 19, 1997, 2002-0010788, Audiovisual Distribution System. |
U.S. Appl. No. 08/817,437, filed Jun. 12, 1997, U.S. Pat. No. 6,182,126, Home Digital Audiovisual Information Recording and Playback System. |
U.S. Appl. No. 08/817,438, filed Oct. 2, 1997, System for Distributing and Selecting Audio and Video Information and Method Implemented by Said System. |
U.S. Appl. No. 08/817,528, filed Aug. 5, 1997, U.S. Pat. No. 6,308,204, Methods of Communications for an Intelligent Digital Audiovisual Playback System. |
U.S. Appl. No. 08/817,689, filed Jun. 13, 1997, U.S. Pat. No. 7,188,352, Intelligent Digital Audiovisual Playback System. |
U.S. Appl. No. 08/817,690, filed Jul. 23, 1997, 2002-0016968, Intelligent Digital Audiovisual Playback System. |
U.S. Appl. No. 08/817,968, filed Oct. 2, 1997, Intelligent Digital Audiovisual Playback System. |
U.S. Appl. No. 08/935,826, filed Sep. 23, 1997, U.S. Pat. No. 6,345,951, Process for Selecting a Recording on a Digital Audiovisual Reproduction System and System for Implementing the Process. |
U.S. Appl. No. 09/144,440, filed Sep. 1, 1998, U.S. Pat. No. 6,240,550, Remote Loading of Objects or Files in Order to Update a Jukebox System. |
U.S. Appl. No. 09/161,584, filed Sep. 28, 1998, Wireless Digital Transmission System for Loudspeakers. |
U.S. Appl. No. 09/253,734, filed Feb. 22, 1999, Intellegent Digital Audiovisual Playback System. |
U.S. Appl. No. 09/290,999, filed Apr. 14, 1999, Device and Process for Supplying Backed-Up Electric Power for an Audiovisual System. |
U.S. Appl. No. 09/357,758, filed Jul. 21, 1999, U.S. Pat. No. 6,898,161, Sound Control Circuit for a Digital Audiovisual Reproduction System. |
U.S. Appl. No. 09/357,762, filed Jul. 21, 1999, U.S. Pat. No. 6,336,219, Audiovisual Reproduction System. |
U.S. Appl. No. 09/357,764, filed Jul. 21, 1999, U.S. Pat. No. 7,293,277, Remote Control Unit for Intelligent Digital Audiovisual Reproduction Systems. |
U.S. Appl. No. 09/583,863, filed Jun. 1, 2000, U.S. Pat. No. 7,992,178, Downloading File Reception Process. |
U.S. Appl. No. 09/583,864, filed Jun. 1, 2000, U.S. Pat. No. 7,107,109, Process for Adjusting the Sound Volume of a Digital Sound Recording. |
U.S. Appl. No. 09/584,797, filed Jun. 1, 2000, U.S. Pat. No. 7,996,873, Remote Management System for at Least One Audiovisual Information Reproduction Device. |
U.S. Appl. No. 09/585,325, filed Jun. 2, 2000, Process for Ordering a Selection in Advance, Digital System and Jukebox for Embodiment of the Process. |
U.S. Appl. No. 09/598,170, filed Jun. 21, 2000, U.S. Pat. No. 6,578,051, Device and Process for Remote Managemenet of a Network of Audiovisual Information Reproduction Systems. |
U.S. Appl. No. 09/621,674, filed Jul. 24, 2000, U.S. Pat. No. 7,231,656, Audiovisual Reproduction System. |
U.S. Appl. No. 09/621,671, filed Jul. 24, 2000, U.S. Pat. No. 7,448,057, Audiovisual Reproduction System. |
U.S. Appl. No. 09/621,677, filed Jul. 24, 2000, U.S. Pat. No. 8,074,253, Audiovisual Reproduction System. |
U.S. Appl. No. 09/642,928, filed Aug. 22, 2000, U.S. Pat. No. 7,424,731, Home Digital Audiovisual Information Recording and Playback System. |
U.S. Appl. No. 09/664,494, filed Sep. 18, 2000, Method for the Distribution of Audio-visual Information and System for the Distribution of Audio-visual Information. |
U.S. Appl. No. 09/686,405, filed Oct. 12, 2000, U.S. Pat. No. 6,755,744, Communication Device and Method Between an Audiovisual Information Playback System and an Electronic Game Machine. |
U.S. Appl. No. 09/688,698, filed Oct. 17, 2000, U.S. Pat. No. 7,549,919, Jukebox Entertainment System Having Multiple Choice Games Relating to Music. |
U.S. Appl. No. 09/689,726, filed Oct. 13, 2000, U.S. Pat. No. 7,210,141, System for Remote Loading of Objects or Files in Order to Update Software. |
U.S. Appl. No. 09/888,540, filed Jun. 26, 2001, U.S. Pat. No. 7,500,192, Process for Selecting a Recording on a Digital Audiovisual Reproduction System, and System for Implementing the Process. |
U.S. Appl. No. 09/902,707, filed Jul. 12, 2001, U.S. Pat. No. 7,793,331, Communicatios Method for an Intelligent Digital Audiovisual Reproduction System. |
U.S. Appl. No. 10/195,476, filed Jul. 16, 2002, U.S. Pat. No. 7,124,194, An Audiovisual Distribution System for Playing an Audiovisual Piece Among a Plurality of Audiovisual Devices Connected to a Central Server Through a Network. |
U.S. Appl. No. 10/196,258, filed Jul. 17, 2002, U.S. Pat. No. 8,037,412, Pay-Per-Play Audiovisual System with Touch Screen Interface. |
U.S. Appl. No. 10/244,031, filed Sep. 16, 2002, U.S. Pat. No. 7,574,727, Intelligent Digital Audiovisual Playback System. |
U.S. Appl. No. 10/419,787, filed Apr. 22, 2003, U.S. Pat. No. 7,512,632 Device and Process for Remote Management of a Network of Audiovisual Information Reproduction Systems. |
U.S. Appl. No. 10/661,811, filed Sep. 15, 2003, 2005-0060405, Digital Downloading Jukebox System with Central and Local Music Server. |
U.S. Appl. No. 10/845,147, filed May 14, 2004, U.S. Pat. No. 7,749,083, Communication Device and Method Between an Audiovisual Information Playback System and an Electronic Game Machine. |
U.S. Appl. No. 10/965,742, filed Oct. 18, 2004, U.S. Pat. No. 8,189,819, Sound Control Circuit for a Digital Audiovisual Reproduction System. |
U.S. Appl. No. 11/023,390, filed Dec. 29, 2004, U.S. Pat. No. 7,206,417, Wireless Digital Transmission System for Loudspeakers. |
U.S. Appl. No. 11/035,885, filed Jan. 18, 2005, U.S. Pat. No. 8,661,477, System for Distributing and Selecting Audio and Video Information and Method Implementing by Said System. |
U.S. Appl. No. 11/155,690, filed Jun. 20, 2005, U.S. Pat. No. 7,356,831, Method for the Distribution of Audio-visual Information and a System for the Distribution of Audio-visual Information. |
U.S. Appl. No. 11/185,974, filed Jul. 21, 2005, U.S. Pat. No. 8,103,589, Digital Downloading Jukebox System With Central and Local Music Servers. |
U.S. Appl. No. 11/222,036, filed Sep. 9, 2005, U.S. Pat. No. 8,151,304, Digital Downloading Jukebox System With User-Tailored Music Management, Communications, and Other Tools. |
U.S. Appl. No. 11/267,303, filed Nov. 7, 2005, U.S. Pat. No. 7,778,879, Process for Ordering a Selection in Advance Digital System and Jukebox for Embodiment of the Process. |
U.S. Appl. No. 11/358,721, filed Feb. 22, 2006, U.S. Pat. No. 8,332,895, Digital Downloading Jukebox System With User-Tailored Music Management, Communications, and Other Tools. |
U.S. Appl. No. 11/493,574, filed Jul. 27, 2006, U.S. Pat. No. 7,783,774, Audiovisual Distribution System for Playing an Audiovisual Piece Among a Plurality of Audiovisual Devices Conncected to a Central Server Through a Network. |
U.S. Appl. No. 11/495,620, filed Jul. 31, 2006, U.S. Pat. No. 7,519,442, Process for Adjusting the Sound Volume of a Digital Sound Recording. |
U.S. Appl. No. 11/513,018, filed Aug. 31, 2006, U.S. Pat. No. 8,165,318, Process for Adjusting the Sound Volume of a Digital Sound Recording. |
U.S. Appl. No. 11/624,008, filed Jan. 17, 2007, 2008-0171594, Coin Operated Game Terminal. |
U.S. Appl. No. 11/698,060, filed Jan. 26, 2007, U.S. Pat. No. 8,184,508, Intelligent Digital Audiovisual Playback System. |
U.S. Appl. No. 11/714,868, filed Mar. 7, 2007, U.S. Pat. No. 8,428,273, Wireless Digital Transmission System for Loudspeakers. |
U.S. Appl. No. 11/727,391, filed Mar. 26, 2007, U.S. Pat. No. 7,822,687, Jukebox With Customizable Avatar. |
U.S. Appl. No. 11/730,449, filed Apr. 2, 2007, U.S. Pat. No. 8,032,879, System for Remote Loading of Objects or Files in Order to Update Software. |
U.S. Appl. No. 11/797,421, filed May 3, 2007, U.S. Pat. No. 7,757,264, Audiovisual Reproduction System. |
U.S. Appl. No. 11/902,658, filed Sep. 24, 2007, 2008-0086379, Digital Downloading Jukebox With Enhanced Communication Features. |
U.S. Appl. No. 11/902,790, filed Sep. 25, 2007, 2008-0168807, Coin Operated Entertainment System. |
U.S. Appl. No. 11/907,880, filed Oct. 18, 2007, U.S. Pat. No. 8,028,318, Remote Control Unit for Intelligent Digital Audiovisual Reproduction Systems. |
U.S. Appl. No. 11/979,179, filed Oct. 31, 2007, U.S. Pat. No. 8,225,369, Home Digital Audiovisual Information Recording and Playback System. |
U.S. Appl. No. 12/071,003, filed Feb. 14, 2008, U.S. Pat. No. 8,214,874, Method for the Distribution of Audio-visual Information and a System for the Distribution of Audio-visual Information. |
U.S. Appl. No. 12/076,761, filed Mar. 21, 2008, 2008-0239887, Jukebox With Associated Video Server. |
U.S. Appl. No. 12/078,989, filed Apr. 9, 2008, 2008-0195443, Digital Downloading Jukebox System With Central and Local Music Servers. |
U.S. Appl. No. 61/129,637, filed Jul. 9, 2008, Digital Downloading Jukebox With Revenue-Enhancing Features. |
U.S. Appl. No. 12/222,785, filed Aug. 15, 2008, 2010-0042505, Difital Signage and Gaming Services to Comply With Federal and State Alcohol and Beverage Laws and Regulations. |
U.S. Appl. No. 12/230,254, filed Aug. 26, 2008, U.S. Pat. No. 7,996,438, Device and Process for Remote Management of a Network of Audiovisual Information Reproduction Systems. |
U.S. Appl. No. 12/232,869, filed Sep. 25, 2008, U.S. Pat. No. 8,127,324, Audiovisual Reproduction System. |
U.S. Appl. No. 12/292,123, filed Nov. 12, 2008, 2009-0138111, Process for Selecting a Recording on a Digital Audiovisual Reproduction System, and System for Implementing the Process. |
U.S. Appl. No. 12/318,864, filed Jan. 9, 2009, U.S. Pat. No. 8,332,887, System and/or Methods for Distributing Advertisements From a Central Advertisement Network to a Peripheral Device via a Local Advertisement Server. |
U.S. Appl. No. 61/202,617, filed Mar. 18, 2009, Entertainment Server and Associated Social Networking Services. |
U.S. Appl. No. 12/453,467, filed May 12, 2009, U.S. Pat. No. 7,819,734, Jukebox Entertainment System Having Multiple Choice Games Relating to Music. |
U.S. Appl. No. 12/458,372, filed Jul. 9, 2009, U.S. Pat. No. 8,726,330, Intelligent Digital Audiovisual Playback System. |
U.S. Appl. No. 12/662,639, filed Apr. 27, 2010, U.S. Pat. No. 7,987,282, An Audiovisual Distribution System for Playing an Audiovisual Piece Among a Plurality of Audiovisual Devices Connected to a Central Server. |
U.S. Appl. No. 12/737,395, filed Jan. 7, 2011, 2012-0150614, Digital Downloading Jukebox With Revenue-Enhancing Features. |
U.S. Appl. No. 12/801,119, filed May 24, 2010, U.S. Pat. No. 8,469,820, Communication Device and Method Between an Audiovisual Information Playback System and an Electronic Game Machine. |
U.S. Appl. No. 12/801,272, filed Jun. 1, 2010, 2010-0241259, Audiovisual Reproduction System. |
U.S. Appl. No. 12/801,744, filed Jun. 23, 2010, U.S. Pat. No. 8,275,668, Process for Ordering a Selection in Advance, Digital System and Jukebox for Embodiment of the Process. |
U.S. Appl. No. 12/805,437, filed Jul. 30, 2010, U.S. Pat. No. 8,145,547, Method of Communications for an Intelligent Digital Audiovisual Playback System. |
U.S. Appl. No. 12/805,992, filed Aug. 27, 2007, U.S. Pat. No. 8,473,416, Jukebox With Customizable Avatar. |
U.S. Appl. No. 12/923,426, filed Sep. 21, 2010, U.S. Pat. No. 8,052,512, Jukebox Entertainment System Having Multiple Choice Games Relating to Music. |
U.S. Appl. No. 29/371,355, filed Dec. 14, 2010, U.S. Pat. No. D655,657, Wheel or Wheel Cover. |
U.S. Appl. No. 12/929,466, filed Jan. 26, 2011, 2011-0283236, Digital Jukebox Device With Improved User Interfaces, and Associated Methods. |
U.S. Appl. No. 13/100,715, filed May 4, 2011, U.S. Pat. No. 8,724,436, Audiovisual Distribution System for Playing an Audiovisual Piece Among a Plurality of Audiovisual Devices Connected to a Central Server Through a Network. |
U.S. Appl. No. 13/151,771, filed Jun. 2, 2011, U.S. Pat. No. 8,479,240, Remote Management System for at Least One Audiovisual Information Reproduction Device. |
U.S. Appl. No. 13/164,258, filed Jun. 20, 2011, U.S. Pat. No. 8,495,109, Downloading File Reception Process. |
U.S. Appl. No. 29/401,854, filed Sep. 16, 2011, U.S. Pat. No. D670,675, Jukebox. |
U.S. Appl. No. 61/536,015, filed Sep. 18, 2011, Digital Jukebox Device With Karaoke and/or Photo Booth Features, and Associated Methods. |
U.S. Appl. No. 13/290,470, filed Nov. 7, 2011, U.S. Pat. No. 8,683,541, Audio Visual Reproduction System. |
U.S. Appl. No. 61/584,750, filed Jan. 9, 2012, Digital Jukebox Device With Karaoke and/or Photo Booth Features, and Associated Methods. |
U.S. Appl. No. 13/673,086, filed Nov. 9, 2012, U.S. Pat. No. 8,719,873, Digital Downloading Jukebox System With User-Tailored Music Management, Communications and Other Tools. |
U.S. Appl. No. 13/670,553, filed Nov. 7, 2012, 20130067512, Systems andor Methods for Distributing Advertisements from a Central Advertisement Network to a Peripheral Device via a Loca Advertisement Server. |
U.S. Appl. No. 14/139,385, filed Dec. 23, 2013, U.S. Pat. No. 8,751,611, Digital Downloading Jukebox System With User-Tailored Music Management, Communications and Other Tools. |
“About Ecast”, date unknown, leaflet. |
Ahanger et al.; A Digital On-Demand Video Service Supporting Content-Based Queries; 1993; 9 pages. |
Austin Cyber Limits: Name That Tune [online], [retrieved Jul. 23, 2001]. Retrieved from the Internet: <http://www.pbs.ork/klru/austin/games/namethattune.html>. |
Back to the Tunes [online], [retrieved Jul. 23, 2001]. Retrieved from the Internet: <http://citc5.hispeed.com/rules.html>. |
Bonczek et al, “The DSS Development System”, 1983 National Computer Conference, Anaheim, California, May 16-19, 1983, pp. 441-455. |
Chan et al., “Distributed servers architectures for networked video services”, IEEE Trans on Networking, vol. 9, No. 2, pp. 125-136, 2001. |
Chen et al., “Optimization of the grouped sweeping scheduling (GSS) with heterogeneous multimedia streams”, ACM Multimedia, pp. 1-7, 1993. |
Crutcher et al., “The networked video Jukebox”, IEEE, Trans. on circuits and systems for video technology, vol. 4, No. 2, pp. 105-120, 1994. |
“Darts Revolution Again”, Replay Magazine, Mar. 1991, pp. 146-148. |
Derfler et al., “How Networks Work”, Millennium Ed., Que Corporation, Jan. 2000. |
Drews, C.; Pestoni, F.; “Virtual jukebox: reviving a classic,” Proceedings of the 35th Annual Hawaii International Conference System Sciences, pp. 887-893, Jan. 7-10, 2002. |
“Ecast Forges Landmark International Technology Partnership”, Business Wire at www.findarticles.com/cf_0/m0EIN/2000_July_25/63663604/print.html, 2 pages, Jul. 25, 2000. |
“Ecast Selects Viant to Build Siren Entertainment System (TM)”, ScreamingMedia, PR Newswire San Francisco, industry.java.sum.com/javanews/stories/story2/0,1072,17618,00.html, 3 pages, Aug. 3, 1999. |
Fachbuch, “Unterhaltungselektronic von A-Z” gfu 1, VDE-Verlag GmbH, pp. 12-13, 1983-1984. |
“Foobar 2000 Evaluation Updated,” MonkeyBiz, Aug. 3, 2008, 4 pages (with partial English translation). http://monkeybizinfo.blogspot.jp/2008/08/foobar2000.html. |
Gallardo et al., “Tangible Jukebox: back to palpable music”, ACM TEI, pp. 199-202, 2010. |
Gralla, “How the Internet Works”, Millennium Ed., Que Corporation, Aug. 1999. |
Grimes, Chapter 18, “Taking Advantage of Web-based Audio”. |
Hewlett-Packard Development Co; HP Open View Storage Data Protector Admin's Guideline Manual Edition; May 2003; Copyright 2003, 60 pages http://h20000.www2.hp.com/bc/docs/support/SupportManual/c006637931/c00663793.pdf. |
Hicks et al., “Dynamic software updating”, ACM PLDI, pp. 13-23, 2001. |
IBM Technical Disclosure Bulletin, vol. 30, No. 5, Oct. 1987, “Method for Automated Assembly of Software Versions”, pp. 353-355. |
IBM Technical Disclosure Bulletin, vol. 32, No. 9A, Feb. 1990, “Robotic Wafer Handling System for Class 10 Environments” pp. 141-143. |
IBM Technical Disclosure Bulletin, vol. 33, No. 12, May 1991, “High-speed Opens and Shorts Substrate Tester”, pp. 251-259. |
IBM Technical Disclosure Bulletin, vol. 41, No. 1, Jan. 1998, “Safe Mechanism for Installing Operating System Updates with Applications,” pp. 557-559. |
iTouch 8 Plus brochure, JVL Corporation, 2005, 2 pages. |
iTOUCH 27 New Games brochure, JVL Corporation, 2005, 2 pages. |
Johnny Rockets Name That Tune [online], [retrieved Mar. 7, 2002]. Retrieved from the Internet: <http://www.johnnyrockets.com/docs/funstuff.html>. |
Koskelainem, “Report on Streamworks™”. |
Kozierok, The PC Guide, Site Version 2.2.0, http://www.pcguide.com, Apr. 17, 2001. |
Kraiss et al., “Integrated document caching and prefetching in storage hierarchies based on Markov chain predictions”, The VLDB Journal, vol. 7, issue 3, pp. 141-162, 1998. |
Liang et al., “Dynamic class loading in the Java virtual machine”, ACM OOPSLA, pp. 36-44, 1998. |
Look and iTouch brochure, JVL Corporation, 2004, 2 pages. |
Ludescher et al., “File Storage Management for TFTF physics data”, IEEE, pp. 856-859, 1992. |
Megatouch Champ brochure, Merit Industries, Inc., 2005, 2 pages. |
Melnik et al., “A mediation infrastructure for digital library services”, ACM DL, pp. 123-132, 2000. |
Merriam Webster's Collegiate Dictionary, Tenth Edition, Merriam-Webster, Inc., p. 361 (definition of dynamically). |
Mickey B's Jukebox Revue—Name That Tune! [online], [retrieved Jul. 23, 2001]. Retrieved from the Internet: <http://mickeyb.com/tune/>. |
Mod Box Internet brochure, Merit Entertainment, 2006, 2 pages. |
Newsome et al., “Proxy compilation of dynamically loaded java classes with MoJo”, ACM LCTES, pp. 204-212, Jun. 2002. |
Outlaw, Computer Technology Review, “Virtual Servers Offer Performance Benefits for Network Imaging”, 1993. |
Patent Abstract of Japan vol. 95, No. 010 & JP 07 281682 A (Naguo Yuasa), Oct. 27 1 JP 07 281682, figure 1-6 abrége. |
Peter Pawlowski, “Basic Player Whose Appearance and Functions can be Customized Freely ‘Foobar 2000’ v1.0 is Unveiled,”Windows Forest, Japan, Jan. 12, 2010, 3 pages (with partial English translation). http://forest.impress.co.jp/docs/news/20100112_341870.html. |
Pohlmann, “Principles of Digital Audio”, Third Edition, 1995. |
PR Newswire, Press Release, “MusicMatch Announces Commerical Availability of Meta Trust Certified MusicMatch jukebox”, New York; Nov. 15, 1999, extracted from Internet, http://proquest.umi.com on Sep. 17, 2002. |
Rollins et al., “Pixie: A jukebox architecture to support efficient peer content exchange”, ACM Multimedia, pp. 179-188, 2002. |
Schneier, “Applied Cryptography”, Second Edition, John Wiley & Sons, Inc. New York, 1996. |
Sprague et al., “Music selection using the partyvote democratic Jukebox”, ACM AVI, pp. 433-436, 2008. |
Stevens, “TCP/IP Illustrated: vol. 1, the Protocols”. |
Stewart, “Ecast Deploys Marimba's Castanet to Power an Internet-Based, Entertainment Management System for the Out-of-Home Market”, Marimba, Press Release, 3 pages, www.marimba.com/news/releases/ecast.dec13.html, Dec. 13, 1999. |
Strauss et al., “Information Jukebox A semi public device for presenting multimedia information content”, Pers. Ubiquit Comput, 7, pp. 217-220, 2003. |
Tom & Liz's Name That Tune [online], [retrieved Jul. 23, 2001]. Retrieved from the Internet: <http://home.att.net/˜tomnliz/Music.html>. |
Vortex Brochure, JVL Corporation, 2005, 2 pages. |
Waingrow, “Unix Hints & Hacks”, Que Corporation, Indianapolis, IN, 1999. |
White, “How Computers Work”, Millennium Ed., Que Corporation, Indianapolis, IN, Sep. 1999 (Sep. 22, 1999). |
Yuki Murata, iTunes no ‘Kankyo Settei’ Catalog & Tips 10 Sen, Mac People, ASCII Corporation, Oct. 1, 2007. |
International Search Report for PCT/US2009/003998, dated Aug. 17, 2009. |
Number | Date | Country | |
---|---|---|---|
20140310085 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61129637 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12737395 | US | |
Child | 14313274 | US |