1. Field of the Invention
This invention generally relates to hearing aids. More specifically, the invention provides an advanced digital hearing aid system.
2. Description of the Related Art
Digital hearing aids are known in this field. These hearing aids, however, suffer from several disadvantages that are overcome by the present invention. For instance, one embodiment of the present invention includes an occlusion sub-system which compensates for the amplification of the digital hearing aid user's own voice within the ear canal. Another embodiment of the present invention includes a directional processor and a headroom expander which optimize the gain applied to the acoustical signals received by the digital hearing aid and combine the amplified signals into a directionally-sensitive response. In addition, the present invention includes other advantages over known digital hearing aids, as described below.
A digital hearing aid is provided that includes front and rear microphones, a sound processor, and a speaker. Embodiments of the digital hearing aid include an occlusion subsystem, and a directional processor and headroom expander. The front microphone receives a front microphone acoustical signal and generates a front microphone analog signal. The rear microphone receives a rear microphone acoustical signal and generates a rear microphone analog signal. The front and rear microphone analog signals are converted into the digital domain, and at least the front microphone signal is coupled to the sound processor. The sound processor selectively modifies the signal characteristics and generates a processed signal. The processed signal is coupled to the speaker which converts the signal to an acoustical hearing aid output signal that is directed into the ear canal of the digital hearing aid user. The occlusion sub-system compensates for the amplification of the digital hearing aid user's own voice within the ear canal. The directional processor and headroom expander optimizes the gain applied to the acoustical signals received by the digital hearing aid and combine the amplified signals into a directionally-sensitive response.
a-5c are graphs illustrating exemplary gain adjustments that may be performed by the threshold and gain control block shown in FIG. 4.
Turning now to the drawing figure,
Sound is received by the pair of microphones 24, 26, and converted into electrical signals that are coupled to the FMIC 12C and RMIC 12D inputs to the IC 12A. FMIC refers to “front microphone,” and RMIC refers to “rear microphone.” The microphones 24, 26 are biased between a regulated voltage output from the RREG and FREG pins 12B, and the ground nodes FGND 12F, RGND 12G. The regulated voltage output on FREG and RREG is generated internally to the IC 12A by regulator 30.
The tele-coil 28 is a device used in a hearing aid that magnetically couples to a telephone handset and produces an input current that is proportional to the telephone signal. This input current from the tele-coil 28 is coupled into the rear microphone A/D converter 32B on the IC 12A when the switch 76 is connected to the “T” input pin 12E, indicating that the user of the hearing aid is talking on a telephone. The tele-coil 28 is used to prevent acoustic feedback into the system when talking on the telephone.
The volume control potentiometer 14 is coupled to the volume control input 12N of the IC. This variable resistor is used to set the volume sensitivity of the digital hearing aid.
The memory-select toggle switch 16 is coupled between the positive voltage supply VB 18 to the IC 12A and the memory-select input pin 12L. This switch 16 is used to toggle the digital hearing aid system 12 between a series of setup configurations. For example, the device may have been previously programmed for a variety of environmental settings, such as quiet listening, listening to music, a noisy setting, etc. For each of these settings, the system parameters of the IC 12A may have been optimally configured for the particular user. By repeatedly pressing the toggle switch 16, the user may then toggle through the various configurations stored in the read-only memory 44 of the IC 12A.
The battery terminals 12K, 12H of the IC 12A are preferably coupled to a single 1.3 volt zinc-air battery. This battery provides the primary power source for the digital hearing aid system.
The last external component is the speaker 20. This element is coupled to the differential outputs at pins 12J, 12I of the IC 12A, and converts the processed digital input signals from the two microphones 24, 26 into an audible signal for the user of the digital hearing aid system 12.
There are many circuit blocks within the IC 12A. Primary sound processing within the system is carried out by the sound processor 38. A pair of A/D converters 32A, 32B are coupled between the front and rear microphones 24, 26, and the sound processor 38, and convert the analog input signals into the digital domain for digital processing by the sound processor 38. A single D/A converter 48 converts the processed digital signals back into the analog domain for output by the speaker 20. Other system elements include a regulator 30, a volume control A/D 40, an interface/system controller 42, an EEPROM memory 44, a power-on reset circuit 46, and a oscillator/system clock 36.
The sound processor 38 preferably includes a directional processor and headroom expander 50, a pre-filter 52, a wide-band twin detector 54, a band-split filter 56, a plurality of narrow-band channel processing and twin detectors 58A-58D, a summer 60, a post filter 62, a notch filter 64, a volume control circuit 66, an automatic gain control output circuit 68, a peak clipping circuit 70, a squelch circuit 72, and a tone generator 74.
Operationally, the sound processor 38 processes digital sound as follows. Sound signals input to the front and rear microphones 24, 26 are coupled to the front and rear A/D converters 32A, 32B, which are preferably Sigma-Delta modulators followed by decimation filters that convert the analog sound inputs from the two microphones into a digital equivalent. Note that when a user of the digital hearing aid system is talking on the telephone, the rear A/D converter 32B is coupled to the tele-coil input “T” 12E via switch 76. Both of the front and rear A/D converters 32A, 32B are clocked with the output clock signal from the oscillator/system clock 36 (discussed in more detail below). This same output clock signal is also coupled to the sound processor 38 and the D/A converter 48.
The front and rear digital sound signals from the two A/D converters 32A, 32B are coupled to the directional processor and headroom expander 50 of the sound processor 38. The rear A/D converter 32B is coupled to the processor 50 through switch 75. In a first position, the switch 75 couples the digital output of the rear A/D converter 32 B to the processor 50, and in a second position, the switch 75 couples the digital output of the rear A/D converter 32B to summation block 71 for the purpose of compensating for occlusion.
Occlusion is the amplification of the users own voice within the ear canal. The rear microphone can be moved inside the ear canal to receive this unwanted signal created by the occlusion effect. The occlusion effect is usually reduced in these types of systems by putting a mechanical vent in the hearing aid. This vent, however, can cause an oscillation problem as the speaker signal feeds back to the microphone(s) through the vent aperture. Another problem associated with traditional venting is a reduced low frequency response (leading to reduced sound quality). Yet another limitation occurs when the direct coupling of ambient sounds results in poor directional performance, particularly in the low frequencies. The system shown in
The directional processor and headroom expander 50 includes a combination of filtering and delay elements that, when applied to the two digital input signals, forms a single, directionally-sensitive response. This directionally-sensitive response is generated such that the gain of the directional processor 50 will be a maximum value for sounds coming from the front microphone 24 and will be a minimum value for sounds coming from the rear microphone 26.
The headroom expander portion of the processor 50 significantly extends the dynamic range of the A/D conversion, which is very important for high fidelity audio signal processing. It does this by dynamically adjusting the A/D converters 32A/32B operating points. The headroom expander 50 adjusts the gain before and after the A/D conversion so that the total gain remains unchanged, but the intrinsic dynamic range of the A/D converter block 32A/32B is optimized to the level of the signal being processed. The headroom expander portion of the processor 50 is described below in more detail with reference to
The output from the directional processor and headroom expander 50 is coupled to a pre-filter 52, which is a general-purpose filter for pre-conditioning the sound signal prior to any further signal processing steps. This “pre-conditioning” can take many forms, and, in combination with corresponding “post-conditioning” in the post filter 62, can be used to generate special effects that may be suited to only a particular class of users. For example, the pre-filter 52 could be configured to mimic the transfer function of the user's middle ear, effectively putting the sound signal into the “cochlear domain.” Signal processing algorithms to correct a hearing impairment based on, for example, inner hair cell loss and outer hair cell loss, could be applied by the sound processor 38. Subsequently, the post-filter 62 could be configured with the inverse response of the pre-filter 52 in order to convert the sound signal back into the “acoustic domain” from the “cochlear domain.” Of course, other pre-conditioning/post-conditioning configurations and corresponding signal processing algorithms could be utilized.
The pre-conditioned digital sound signal is then coupled to the band-split filter 56, which preferably includes a bank of filters with variable corner frequencies and pass-band gains. These filters are used to split the single input signal into four distinct frequency bands. The four output signals from the band-split filter 56 are preferably in-phase so that when they are summed together in block 60, after channel processing, nulls or peaks in the composite signal (from the summer) are minimized.
Channel processing of the four distinct frequency bands from the band-split filter 56 is accomplished by a plurality of channel processing/twin detector blocks 58A-58D. Although four blocks are shown in
Each of the channel processing/twin detectors 58A-58D provide an automatic gain control (“AGC”) function that provides compression and gain on the particular frequency band (channel) being processed. Compression of the channel signals permits quieter sounds to be amplified at a higher gain than louder sounds, for which the gain is compressed. In this manner, the user of the system can hear the full range of sounds since the circuits 58A-58D compress the full range of normal hearing into the reduced dynamic range of the individual user as a function of the individual user's hearing loss within the particular frequency band of the channel.
The channel processing blocks 58A-58D can be configured to employ a twin detector average detection scheme while compressing the input signals. This twin detection scheme includes both slow and fast attack/release tracking modules that allow for fast response to transients (in the fast tracking module), while preventing annoying pumping of the input signal (in the slow tracking module) that only a fast time constant would produce. The outputs of the fast and slow tracking modules are compared, and the compression slope is then adjusted accordingly. The compression ratio, channel gain, lower and upper thresholds (return to linear point), and the fast and slow time constants (of the fast and slow tracking modules) can be independently programmed and saved in memory 44 for each of the plurality of channel processing blocks 58A-58D.
After channel processing is complete, the four channel signals are summed by summer 60 to form a composite signal. This composite signal is then coupled to the post-filter 62, which may apply a post-processing filter function as discussed above. Following post-processing, the composite signal is then applied to a notch-filter 64, that attenuates a narrow band of frequencies that is adjustable in the frequency range where hearing aids tend to oscillate. This notch filter 64 is used to reduce feedback and prevent unwanted “whistling” of the device. Preferably, the notch filter 64 may include a dynamic transfer function that changes the depth of the notch based upon the magnitude of the input signal.
Following the notch filter 64, the composite signal is then coupled to a volume control circuit 66. The volume control circuit 66 receives a digital value from the volume control A/D 40, which indicates the desired volume level set by the user via potentiometer 14, and uses this stored digital value to set the gain of an included amplifier circuit.
From the volume control circuit, the composite signal is then coupled to the AGC-output block 68. The AGC-output circuit 68 is a high compression ratio, low distortion limiter that is used to prevent pathological signals from causing large scale distorted output signals from the speaker 20 that could be painful and annoying to the user of the device. The composite signal is coupled from the AGC-output circuit 68 to a squelch circuit 72, that performs an expansion on low-level signals below an adjustable threshold. The squelch circuit 72 uses an output signal from the wide-band detector 54 for this purpose. The expansion of the low-level signals attenuates noise from the microphones and other circuits when the input S/N ratio is small, thus producing a lower noise signal during quiet situations. Also shown coupled to the squelch circuit 72 is a tone generator block 74, which is included for calibration and testing of the system.
The output of the squelch circuit 72 is coupled to one input of summer 71. The other input to the summer 71 is from the output of the rear A/D converter 32B, when the switch 75 is in the second position. These two signals are summed in summer 71, and passed along to the interpolator and peak clipping circuit 70. This circuit 70 also operates on pathological signals, but it operates almost instantaneously to large peak signals and is high distortion limiting. The interpolator shifts the signal up in frequency as part of the D/A process and then the signal is clipped so that the distortion products do not alias back into the baseband frequency range.
The output of the interpolator and peak clipping circuit 70 is coupled from the sound processor 38 to the D/A H-Bridge 48. This circuit 48 converts the digital representation of the input sound signals to a pulse density modulated representation with complimentary outputs. These outputs are coupled off-chip through outputs 12J, 12I to the speaker 20, which low-pass filters the outputs and produces an acoustic analog of the output signals. The D/A H-Bridge 48 includes an interpolator, a digital Delta-Sigma modulator, and an H-Bridge output stage. The D/A H-Bridge 48 is also coupled to and receives the clock signal from the oscillator/system clock 36 (described below).
The interface/system controller 42 is coupled between a serial data interface pin 12M on the IC 12, and the sound processor 38. This interface is used to communicate with an external controller for the purpose of setting the parameters of the system. These parameters can be stored on-chip in the EEPROM 44. If a “black-out” or “brown-out” condition occurs, then the power-on reset circuit 46 can be used to signal the interface/system controller 42 to configure the system into a known state. Such a condition can occur, for example, if the battery fails.
The occlusion sub-system includes two signal paths: (1) an intended signal received by the front microphone 24 and amplified for the hearing impaired user, and (2) an acoustical occlusion signal originating in the ear canal that is received by the rear microphone 26 and cancelled in a feedback loop by the occlusion sub-system. The intended signal received by the front microphone is converted from the analog to the digital domain with the front microphone A/D converter 32A. The front microphone A/D converter 32A includes an A/D conversion block 206 which converts the signal into the digital domain, and a decimator block 207 which down-samples the signal to achieve a lower-speed, higher-resolution digital signal. The decimator block 207 may, for example, down-sample the signal by a factor of sixty-four (64). The output from the front microphone A/D converter 32A is then coupled to the sound processor 38 which amplifies and conditions the signal as described above with reference to FIG. 1.
The output from the sound processor 38 is filtered by the high frequency equalizer block 203. The characteristics of the high frequency equalizer block 203 are described below with reference to FIG. 3. The output from the high frequency equalizer block 203 is up-sampled by the interpolator 204, and coupled as a positive input to the summation circuit 71. The interpolator 204 may, for example, up-sample the signal by a factor of four (4). The interpolation block 204 is included to transform the low-rate signal processing output from the sound processor 38 and high frequency equalizer 203 to a medium-rate signal that may be used for the occlusion cancellation process.
The acoustical occlusion signal received by the rear microphone 26 is similarly converted from the analog to the digital domain with the rear microphone A/D converter 32B. The rear microphone A/D converter 32B includes an A/D conversion block 208 which converts the occlusion signal to the digital domain and a decimator block 209 which down-samples the signal. The decimator block 209 may, for example, down-sample the occlusion signal by a factor of sixteen (16), resulting in lower-speed, higher-resolution signal characteristics that are desirable for both low power and low noise operation.
The output from the rear microphone A/D converter 32A is coupled to the microphone equalizing circuit 200 which mirrors the magnitude response of the rear microphone 26 and A/D combination in order to yield an overall flat microphone effect that is desirable for optimal performance. The output of the microphone equalizing circuit 200 is then coupled as a negative input to the summation circuit 71.
The output from the summation circuit 71 is coupled to the loop filter 202 which filters the signal to the optimal magnitude and phase characteristics necessary for stable closed-loop operation. The filter characteristics for the loop filter 202 necessary to obtain a stable closed loop operation are commonly understood by those skilled in the art of control system theory. Ideally, a gain greater than unity gain is desirable to achieve the beneficial results of negative feedback to reduce the occlusion effect. The loop gain should, however, be less than unity when the overall phase response passes through 180 degrees of shift. Otherwise, the overall feedback may become positive, resulting in system instability.
The output from the loop filter 202 is coupled to the speaker equalization filter 201 which flattens the overall transfer function of the Interpolator 70, D/A 48 and speaker 20 combination. It should be understood, however, that the loop filter 202 and speaker equalization filter 201 could be combined into one filter block, but are separated in this description to improve clarity. The output of the speaker equalizer filter 201 is then coupled to the speaker 20 through the interpolator/peak clipper 70 and D/A converter 48, as described above with reference to FIG. 1.
Operationally, the filtered occlusion signal coupled as a negative input to the summation circuit 71 produces an overall negative feedback loop when coupled by blocks 202, 201, 70 and 48 to the speaker 20. Ideally, the frequency at which the overall phase response of the occlusion sub-system approaches 180 degrees (zero phase margin) is as high as practically possible. Time delays resulting from inherent sample-based mathematical operations used in digital signal processing may produce excess phase delay. In addition, the common use of highly oversampled low resolution sigma delta analog to digital (and digital to analog) converters and their associated high-order decimators and interpolators may produce significant group delays leading to less then optimal performance from a system as described herein. Thus, the illustrated occlusion sub-system provides a mixed sample rate solution whereby the low time delay signal processing is performed at a higher sampling rate than the hearing loss compensation algorithms resulting in greatly reduced delays since the decimation and interpolator designs need not be as high order.
In one alternative embodiment, also illustrated on
Operationally, the headroom expander circuits 400-403 optimize the operating point of the analog-to-digital converters 404 by adjusting the gain of the preamplifiers 405 in a controlled fashion while adjusting the gain of the multipliers 400 in a correspondingly opposite fashion. Thus, the overall gain from the input to the A/D converters 32A, 32B through to the output of the multipliers 400 is substantially independent of the actual gain of the preamplifiers 405. The gain applied by the preamplifiers 405 is in the analog domain while the gain adjustment by the multipliers 400 is in the digital domain, thus resulting in a mixed signal compression expander system that increases the effective dynamic range of the analog-to-digital converters 404.
The analog signal generated by the front microphone 24 is coupled as an input to the preamplifier 405 which applies a variable gain that is controlled by a feedback signal from the threshold and gain control block 402. The amplified output from the preamplifier 405 is then converted to the digital domain by the analog-to-digital conversion block 404. The analog-to-digital conversion block 404 may, for example, be a Sigma-Delta modulator followed by decimation filters as described above with reference to
The digital output from the analog-to-digital conversion block 404 is coupled as inputs to the multiplier 400 and the level detector 403. The level detector 403 determines the magnitude of the output of the analog-to-digital conversion block 404, and generates an energy level output signal. The level detector 403 operates similarly to the twin detector 54 described above with reference to FIG. 1.
The energy level output signal from the level detector 403 is coupled to the threshold and gain control block 402 which determines when the output of the analog-to-digital converter 404 is above a pre-defined level. If the output of the analog-to-digital converter 404 rises above the pre-defined level, then the threshold and gain control block 402 reduces the gain of the preamplifier 405 and proportionally increases the gain of the multiplier 400. The threshold and gain control block 402 controls the gain of the preamplifier 405 with a preamplifier control signal 412 that is converted to the analog domain by the digital-to-analog converter 406. With respect to the multiplier 400, the threshold and gain control block 402 adjusts the gain by generating an output gain control signal 414 which is delayed by the delay block 401 and is coupled as a second input to the multiplier 400. The delay introduced to the output gain control signal 414 by the delay block 401 is pre-selected to match the delay resulting from the process of analog to digital conversion (including any decimation) performed by the analog-to-digital conversion block 404. Exemplary gain adjustments that may be performed by the threshold and gain control block 402 are described below with reference to
Similarly, the signal from the rear microphone 26 is optimized by the rear microphone A/D converter 32B and the second headroom expander circuit 400-403. The outputs from the two multipliers 400 are then coupled as inputs to a directional processor 410. As described above with reference to
a-5c are graphs 500, 600, 700 illustrating exemplary gain adjustments that may be performed by the threshold and gain control block 402 shown in FIG. 4.
The single-step gain 502 illustrated in
The multi-step gain 602 illustrated in
The continuous gain 702 illustrated in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art.
This application claims priority from and is related to the following prior application: Digital Hearing Aid System, U.S. Provisional Application No. 60/283,310, filed Apr. 12, 2001. This prior application, including the entire written description and drawing figures, is hereby incorporated into the present application by reference.
Number | Name | Date | Kind |
---|---|---|---|
4119814 | Harless | Oct 1978 | A |
4142072 | Berland | Feb 1979 | A |
4187413 | Moser | Feb 1980 | A |
4289935 | Zollner et al. | Sep 1981 | A |
4395588 | Franssen, deceased et al. | Jul 1983 | A |
4403118 | Zollner et al. | Sep 1983 | A |
4455675 | Bose et al. | Jun 1984 | A |
4471171 | Köpke et al. | Sep 1984 | A |
4494074 | Bose | Jan 1985 | A |
4508940 | Steeger | Apr 1985 | A |
4592087 | Killion | May 1986 | A |
4644581 | Sapiejewski | Feb 1987 | A |
4689818 | Ammitzboll | Aug 1987 | A |
4689820 | Köpke et al. | Aug 1987 | A |
4696032 | Levy | Sep 1987 | A |
4712244 | Zwicker et al. | Dec 1987 | A |
4750207 | Gebert et al. | Jun 1988 | A |
4833719 | Carme et al. | May 1989 | A |
4852175 | Kates | Jul 1989 | A |
4868880 | Bennett, Jr. | Sep 1989 | A |
4882762 | Waldhauer | Nov 1989 | A |
4947432 | T pholm | Aug 1990 | A |
4947433 | Gebert | Aug 1990 | A |
4953216 | Beer | Aug 1990 | A |
4953217 | Twiney et al. | Aug 1990 | A |
4985925 | Langberg et al. | Jan 1991 | A |
4989251 | Mangold | Jan 1991 | A |
4995085 | Kern et al. | Feb 1991 | A |
5029217 | Chabries et al. | Jul 1991 | A |
5033082 | Eriksson et al. | Jul 1991 | A |
5033090 | Weinrich | Jul 1991 | A |
5046102 | Zwicker et al. | Sep 1991 | A |
5111419 | Morley, Jr. et al. | May 1992 | A |
5144674 | Meyer et al. | Sep 1992 | A |
5189704 | Krauss | Feb 1993 | A |
5201006 | Weinrich | Apr 1993 | A |
5202927 | T pholm | Apr 1993 | A |
5210803 | Martin et al. | May 1993 | A |
5241310 | Tiemann | Aug 1993 | A |
5247581 | Gurcan | Sep 1993 | A |
5251263 | Andrea et al. | Oct 1993 | A |
5267321 | Langberg | Nov 1993 | A |
5276739 | Krokstad et al. | Jan 1994 | A |
5278912 | Waldhauer | Jan 1994 | A |
5347587 | Takahashi et al. | Sep 1994 | A |
5376892 | Gata | Dec 1994 | A |
5389829 | Milazzo | Feb 1995 | A |
5448644 | Pfannemueller et al. | Sep 1995 | A |
5452361 | Jones | Sep 1995 | A |
5479522 | Lindemann et al. | Dec 1995 | A |
5500902 | Stockham, Jr. et al. | Mar 1996 | A |
5515443 | Meyer | May 1996 | A |
5524150 | Sauer | Jun 1996 | A |
5600729 | Darlington et al. | Feb 1997 | A |
5604812 | Meyer | Feb 1997 | A |
5608803 | Magotra et al. | Mar 1997 | A |
5613008 | Martin | Mar 1997 | A |
5649019 | Thomasson | Jul 1997 | A |
5661814 | Kälin et al. | Aug 1997 | A |
5687241 | Ludvigsen | Nov 1997 | A |
5706351 | Weinfurtner | Jan 1998 | A |
5710820 | Martin et al. | Jan 1998 | A |
5717770 | Weinfurtner | Feb 1998 | A |
5719528 | Rasmussen et al. | Feb 1998 | A |
5724433 | Engebretson et al. | Mar 1998 | A |
5740257 | Marcus | Apr 1998 | A |
5740258 | Goodwin-Johansson | Apr 1998 | A |
5754661 | Weinfurtner | May 1998 | A |
5796848 | Martin | Aug 1998 | A |
5809151 | Husung | Sep 1998 | A |
5815102 | Melanson | Sep 1998 | A |
5838801 | Ishige et al. | Nov 1998 | A |
5838806 | Sigwanz et al. | Nov 1998 | A |
5848171 | Stockham, Jr. et al. | Dec 1998 | A |
5862238 | Agnew et al. | Jan 1999 | A |
5878146 | Anderson | Mar 1999 | A |
5896101 | Melanson | Apr 1999 | A |
5912977 | Gottschalk-Schoenig | Jun 1999 | A |
6005954 | Weinfurtner | Dec 1999 | A |
6044162 | Mead et al. | Mar 2000 | A |
6044163 | Weinfurtner | Mar 2000 | A |
6049617 | Sigwanz et al. | Apr 2000 | A |
6049618 | Saltkov | Apr 2000 | A |
6108431 | Bachler | Aug 2000 | A |
6118878 | Jones | Sep 2000 | A |
6175635 | Meyer et al. | Jan 2001 | B1 |
6198830 | Holube et al. | Mar 2001 | B1 |
6236731 | Brennan et al. | May 2001 | B1 |
6240192 | Brennan et al. | May 2001 | B1 |
6240195 | Bindner et al. | May 2001 | B1 |
6272229 | Baekgaard | Aug 2001 | B1 |
6278786 | McIntosh | Aug 2001 | B1 |
6445799 | Taenzer et al. | Sep 2002 | B1 |
20020076073 | Taenzer et al. | Jun 2002 | A1 |
20020150269 | Ludvigsen | Oct 2002 | A1 |
20020164041 | Zurek | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
19624092 | Nov 1997 | DE |
19822021 | Dec 1999 | DE |
19935013 | Nov 2000 | DE |
89101149.6 | Aug 1989 | EP |
91480009.9 | Jul 1992 | EP |
93203072.9 | May 1994 | EP |
2-192300 | Jul 1990 | JP |
WO 8302212 | Jun 1983 | WO |
WO 8904583 | May 1989 | WO |
WO 9508248 | Mar 1995 | WO |
WO 9714266 | Apr 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20030012391 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
60283310 | Apr 2001 | US |