The present invention relates to heating devices and, more particularly, to gas fueled, indirect-fired burners.
Gas burners, incorporated for example into indirect heating devices, utilize the combustion of a gas or similar fuel (e.g., propane, natural gas, or fuel oil) for heating a work substance, oftentimes a flowable substance such as air or water. For example, heated air may be directed into the interior of a home for general comfort heating purposes. In operation, natural gas or other fuel is controllably forced through a nozzle or jet portion of the burner, where it is intermixed (most typically) with air, forming a gas spray or aerosol for enhancing combustion. In the case of an indirect heater, the gas spray is ignited, and the combustion product (heated air/plasma) is directed into a heat exchanger, where the energy produced by the combustion process is transferred to the work substance to be heated. The combustion exhaust is then moved to an exhaust exit, possibly after one or more recirculation steps or the like to further recapture heat from the combustion product.
For a gas heating device, the amount of fuel burned per unit time (e.g., liters or btu per hour) is referred to as the firing rate. Simple heating devices are configured to run at a single firing rate, with the heater being cycled on and off in cases where it is desired to achieve an average output that is less than the maximum possible output. If a heating device is capable of steady state operation at two or more firing rates within acceptable combustion parameters (e.g., combustion byproducts are kept to below a desired level, according to ANSI safety and performance standards or the like), this is referred to in the industry as “turndown.” In other words, while keeping within acceptable operational parameters, it is possible to “turn down” the heating device from the maximum possible firing rate to one or more lower firing rates. The ratio of the highest firing rate to the lowest firing rate in a heating device, at steady state operation and keeping within acceptable operational parameters, is referred to as the “turndown ratio” of the heating device.
High turndown ratios are desirable for achieving greater levels of efficiency in a heating device. For example, although it is possible to vary the average actual heat output of a single firing rate heating device by cycling the device between on and off operational modes, this can result in low levels of combustion efficiency, higher levels of fuel use per unit heat output, and a greater level of undesirable combustion byproducts. Among other reasons, this is because the conditions in the combustion chamber vary widely over time as the combustion process is turned on and off. When combustion is ongoing, the gas spray produced by the burner is consistent, and the temperature in the combustion chamber is high, factors that favor efficient operation. However, when combustion is turned off or restarted, this results in temperature variations in the combustion chamber, and variances in the quality of the gas spray input, factors that inhibit efficient operation.
High turndown burners exist in the industry, typically for use in process heating, that is, for heating a work substance for an industrial or manufacturing process. Current technology tends to use techniques such as pre-mixing of the combustion air and gas mixture to assure a proper air/fuel ratio prior to ignition, ceramic liners or “targets” that retain heat in the combustion chambers to assure ignition at low gas flow rates, multiple individual burners that are “staged” using electromechanical or electronic controls, rudimentary mechanical linkages between the gas valve and a damper on the combustion air blower, or simple electronic controls that modulate the gas valve and blower together but are auxiliary or add-on systems to the basic HVAC unit controls. The published range of operation of any of these systems tends to peak at a turndown ratio of 20:1 for a single burner, again, referring to the ratio of highest firing rate to lowest firing rate. (Higher turndown ratios than this may be achieved in a heating device by using a multiple burner approach, where the turndown ratio is directly related to the number of burners. However, such devices are not directly relevant to the present case, since each individual burner has a low or unitary turndown ratio.)
One of the limiting factors in achieving higher turndown ratios is the loss of control of the air/fuel mixture at low flow rates. Failing to achieve the theoretically ideal fuel/air mixture can result in emissions of carbon monoxide, aliphatic aldehydes, nitrous oxides, and other contaminants that are judged to be harmful. Producing those contaminants will cause a burner design to fail ANSI (American National Standards Institute) safety and performance standard tests. A second limitation of these designs is the inability to consistently ignite or maintain combustion of the air/fuel mixture at very low flow rates. The ability to do so is also part of the ANSI safety and performance standards.
It is an object of the present invention to provide a burner system having a very high turndown ratio, typically 30:1, 60:1, or 90:1 that meets all applicable safety and performance standards across an entire range of firing rates.
It is another object of the present invention to provide a gas burner system having a very high turndown ratio, typically of 90:1 or greater, that meets both ANSI safety and performance standards (or similar standards) across an entire range of firing rates.
To achieve this and other objects, an embodiment of the present invention relates to a gas burner system for a heating device, e.g., an air heater. The system includes a burner, a valve assembly for controlling a flow of fuel to the burner, a blower assembly for directing air to the burner, and a control system. The burner includes one or more burner plates for facilitating the mixture of air and fuel to be combusted in a combustion chamber portion of the heating device. The control system is configured to independently control the valve assembly and the blower assembly according to a control profile, for generating a plurality of air/fuel mixtures each for operation of the burner at a different firing rate, with a turndown ratio of 30:1, 60:1, or 90:1 and higher.
In another embodiment, the control profile in effect maps an optimal range of operation of the gas valve assembly to an optimal range of operation of the blower assembly. The control profile is generated by testing the gas burner system across the operational ranges (or portion thereof) of both the valve assembly and the blower assembly, which enables data to be captured for any non-linear operational modes. Thus, the burner system is assured of operating at the proper air/fuel mixture over a very wide range of firing rates, i.e., for each air/fuel mixture, the burner system/heating device operates within ANSI safety and performance standards or similar official standards in countries other than the United States.
In another embodiment, the control system receives a control signal that indicates a desired or designated firing rate. For example, the control signal might be generated by an HVAC system, based on a user control input of a desired heat output. The control system cross-references the control signal to the control profile, for determining a first operational signal to apply to the valve assembly, and another, second operational signal to apply to the blower assembly. Application of the respective operational signals to the valve assembly and the blower assembly results in the generation of the proper air/fuel mixture for the firing rate designated by way of the control signal.
In another embodiment, the burner includes two burner or aeration plates. The burner plates are arranged in a generally V-shaped configuration, and each has a number of circular aeration apertures for facilitating the mixture of air and fuel. the apertures are sized so as to help with achieving the proper air/fuel mix across a wide range of firing rates.
The present invention will be better understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein below:
With reference to
With reference to
The housing 26 is a generally rectangular enclosure, made of sheet metal or the like, which is connected directly to the end of the combustion chamber 46. The blower assembly 32 includes a blower fan 52, an AC or other motor 54, and a blower motor controller 56. An output shaft of the motor 54 rotatably drives an impeller portion of the fan 52, which is located inside a fan housing 58 connected to the burner housing 26, for moving air from outside the fan housing 58 (and outside the burner housing) to inside the burner housing 26. The blower motor controller 56 has a control input for receiving a blower operational signal 60 from the control system 36, e.g., a 0-10 VDC signal, and a power output terminal electrically connected to the blower motor 54. The controller 56 outputs a PWM (pulse width modulation) power signal to the motor 54, for controlling the speed of the motor, based on the blower operational signal 60 as received from the control system. For example, it may be a linear relationship, such that a 0 V operational signal 60 from the control system 36 corresponds to a “motor off” condition, and a 10 V operational signal 60 from the control system 36 corresponds to a maximum speed of the motor. Typically, the power output terminal of the blower motor controller 56 will include from 2 to 3 electrical outputs, each of which is attached to one of the electrical terminals of the motor by an electrical line or cable. The PWM power signal applied to the motor by the blower motor controller 56 includes one or more separate electrical power signals applied to each of these cables/lines, according to a standard power waveform for powering the type of motor 54 in question. Thus, in operation, the blower motor controller 56 converts the 0-10 VDC blower operational signal 60 into an appropriate proportional power output signal for power the fan motor 54.
The gas valve assembly 28 includes an AC gas valve actuator 62 and a ball-type valve 64, which is interfaced with a gas supply line 66. The gas supply line 66 runs from a gas main (or other gas source), through the housing 26, and into the burner unit 24, as discussed in more detail below. The ball-type valve 64 is operably disposed in the path of the supply line 66, and the gas valve actuator 62 positions the ball-type valve 64 to control the flow rate of gas 30 through the supply line 66 and into the burner unit 24. The gas valve actuator 62 receives a valve operational signal 68 from the control system 36, which governs the position of the ball-type valve 64 and therefore the flow rate of gas into the burner. Like the blower operational signal 60, the valve operational signal 68 may be a 0-10 VDC signal, with the gas valve actuator 62 controlling the valve 64 proportional to the level of the received signal 68. For example, if the valve actuator 62 receives a 0 VDC signal 68 from the control system 36, the gas valve actuator 62 closes the valve 64 (or maintains the valve in a closed state), and if the valve actuator 62 receives a 10 VDC signal 68 from the control system 36, the gas valve actuator 62 opens the valve 64 to a fully open state. The gas supply line and/or gas valve assembly may be outfitted with other standard components for safety or operational purposes, such as a gas pressure regulator (not shown).
Turning in particular to
The aeration plates 70a, 70b are sized according to the desired heat capacity and/or gas input range of the burner system. For example, a 200-400 MBH burner system might utilize 6-inch (width) aeration plates, and a 600 MBH burner system might utilize 12-inch aeration plates. (“MBH” refers to thousands of BTU's per hour, e.g., 1 MBH=1 MBTU/hour, where “MBTU” is a standard abbreviation for 1000 BTU's.)
The burner unit side plates 72a, 72b are attached to and extend between the side edges of the aeration plates 70a, 70b and the main body 76 of the manifold 74. Thereby, the side plates 72a, 72b enclose the sides of burner unit, for facilitating the passage of air from the interior of the housing 26 (e.g., air blown therein by the blower assembly 32) through the aeration apertures 92, 94 of the aeration plates 70a, 70b. The entire burner unit 24 is disposed in the housing 26 as best shown in
As should be appreciated, the chute 90 is a rectangular extension of the housing 26, made of sheet metal or otherwise, which provides an exit from the housing and burner unit for passage of the combustion product into the combustion chamber 48. Because the chute 90 “sticks out” from the housing proper, it also acts to project the exit or trailing end of the burner unit, defined by the trailing ends of the aeration plates and side plates attached to the inner surface of the chute, further into the combustion chamber 46 than if the burner terminated coextensively with the housing side walls.
In general operation (without yet referring to the control profile 38, which is discussed in more detail below), the control system 36 receives a control signal 98 from an HVAC controller 100 or otherwise. The control signal 98 contains information relating to a desired heat output level of the heating device 22. For example, the control signal 98 may be a DC voltage signal having a range from “Vmin” to “Vmax,” with the intended or designated heat output of the heating device being linearly proportional to the DC voltage level of the signal 98. Thus, “Vmin” might indicate a minimum heating output level, or that the heating device remain or enter a “turned off” state, whereas “Vmax” might indicate a maximum heating output level of the heating device. Based on the control signal 98, the control system 36 outputs a blower operational signal 60 and a valve operational signal 68, for independent control of the blower assembly 32 and the gas valve assembly 28, respectively, so as to produce the desired heat output of the heating device 22.
Based on the blower operational signal 60 received from the control system 36, the blower assembly motor controller 56 powers the motor 54 for operation of the blower fan 52. The fan 52 draws in air 34 from an ambient external source, and blows it into the interior of the housing 26. Because the aeration apertures 92, 94 of the aeration plates 70a, 70b represent the only egress for air 34 in the housing (considering the positive pressure generated by the fan output), the air is forced through the aeration apertures 92, 94 and into the space between the two aeration plates 70a, 70b. Concurrently, based on the valve operational signal 68 received from the control system 36, the gas valve actuator 62 operates the ball-type valve 64 for allowing natural gas or other fuel 30 to flow through the supply line 66 at a particular rate. The gas 30 passes into the interior of the burner manifold 74, where it is directed through the longitudinal slot 82 for passage into the space located between the V-oriented aeration plates 70a, 70b. The air 34 mixes with the gas 30 to form an air/fuel mixture 44, and is ignited by a standard ignition system 102. The ignition system may include, for example, a spark igniter, a flame rod, and/or the like. The ignited air/fuel mixture 44 then passes out the exit end of the burner system, out of the chute 90, and into the combustion chamber 46 for transferring heat energy to the working substance in the heat exchanger. The aeration plates 70a, 70b generally facilitate the mixing of air and fuel in the burner, before, during, and after ignition, and it has been found that the particular aeration aperture size and pattern discussed above enhances this mixing effect across a very wide range of air and fuel flow rates.
As noted above, the control profile 38 in effect maps the operational ranges of the gas valve assembly 28 and the blower assembly 32 to one another, for operation of the burner system at the proper air/fuel mixture over a very wide range of flow rates. As has been shown in many cases of prior development of burner technology, maintaining a proper air/fuel mixture is not a linear relationship. This is due to the non-linear nature of fluid flows through valves and fans. By “mapping” the characteristics of both the gas valve assembly and the blower assembly in effect independently, and then embedding those characteristics in the control system, the burner is assured of operating at the proper air/fuel mixture over a very wide range of flows. The control system uses two independent output channels 60, 68 to achieve this result.
As implemented, the control profile 38 can take several forms. In a first, with reference to
As shown in
Whereas
In a preferred embodiment, the gas valve operational signal is the primary control signal and the blower operational signal is secondary. That is, the control system employs the gas valve operational signal before the blower operational signal when generating air/fuel mixtures. It will be appreciated, however, that either the gas or blower operational signals may be employed as the primary signal without departing form the scope of the invention. It will also be appreciated that the sequence of the claimed components, in particular, the blower and valve assemblies, may be varied without departing from the present invention.
Moreover, while the present invention facilitates very high turndown ratios of 30:1, 60:1, or 90:1 and greater, other intermediate ratios, e.g., 40:1, 50:1 or 70:1, are possible. As stated, the inventive system allows for very high turndown ratios while meeting or exceeding both ANSI safety and performance standards across the entire ratio.
As mentioned above, because blower assemblies, gas valve assemblies, burner units, combustion chambers, etc. all involve the control, flow, and/or mixing of one or more fluids (e.g., gas/fuel or air) in a confined space with a varying geometry (e.g., flow through a valve opening), heating devices of the type disclosed herein are non-linear systems. Thus, the combustion output of the heating device is not a linear function of the control inputs, across the operational range of the heating device. In certain heating devices, non-linear effects are minimized by having a small turndown ratio. For achieving a high-turndown ratio, however, the burner system of the present invention takes into account non-linear system effects. Thus, despite the fact that very low flow rates may be especially non-linear, the system of the present invention is able to achieve such low flow rates, and thereby achieve a very high turndown ratio (again, while meeting ANSI standards across the entire range of operation).
Because non-linear flow characteristics are dependent on the particular geometry and configuration of a burner system, the control profile 38 is tailored for individual use with the burner system and/or heating device. (In other words, for different burner systems, each system has its own customized control profile 38.) To prepare a control profile 38 for a particular burner system or heating device, a prototype (i.e., physical implementation) of the heating device is first constructed, according to a desired heat capacity, size, operational characteristics, and the like. Then, the prototype heating device is tested in operation, across a designated, wide range of fuel and air flow rates, all the while collecting data points relating to the combustion product or output of the heating device, in terms of heat output, combustion exhaust, and other combustion performance characteristics. If the measured data points for a particular fuel and air flow rate fall outside a desired range (e.g., ANSI safety and performance standards), that fuel and air flow rate is not used as part of the control profile. Instead, the control profile is an amalgam/grouping of those air/fuel data points that exhibit the best operational characteristics for providing the designated range of heat output.
The process is explained in more detail in
Once the prototype heating device is interfaced with the testing and data acquisition system, it would be possible to commence testing by running the heating device at every possible iteration and combination of possible operational signals 60, 68. This could be done by dividing the gas valve operational signal into a plurality of testing points, such as 100 or 1000 divisions between 0-10 VDC. Each test signal would then be sequentially applied to the gas valve assembly, e.g., 0 V, 0.1 V, 0.2 V, and so on. For each of these input signals, the blower assembly would be run across its entire operational signal range, again, according to a designated level of granularity, such as 100 or 1000 divisions between 0-10 VDC. Thus, for a 0.1 V gas valve operational signal, the blower assembly would be sequentially run according to a 0 V, 0.1 V, 0.2 V, 0.3 V signal and so on. At each iteration, the testing and data acquisition system would record data received from the sensors.
Because testing the prototype heating device in this manner would generate a very large set of data, e.g., 1,000 points of iteration for two 0-10 VDC signals each divided into 100 increments, most of which would not be useful, testing may be targeted or focused by first preparing a theoretical or projected characterization curve of burner unit performance, as in Step 204 in
As mentioned, the purpose of a theoretical or projected characterization curve as in
Once the data 112 is collected for all testing points of the gas valve assembly and blower assembly, the data is analyzed as at Step 208 in
The “window” testing approach discussed above might fall outside the optimum performance level for a given testing point. If so, the window may be adjusted until an optimum point is reached. Additionally, it will typically be the case that several iterations of the process is carried out for achieving the most fine-tuned control profile, e.g., the control profile generated in the first run-through (based on a theoretical characterization curve) is used as the theoretical characterization curve in the next run-through, and so on.
As should be appreciated, because the control profile 38 is generated based on actual testing data acquired across a wide operational range of the heating device, with independent control of the blower assembly and gas valve assembly, non-linear system effects are fully accounted for, i.e., even in instances where the system acts particularly non-linear, such instances are identified and compensated for through the testing data. This also enables operation of the system at a high turndown ratio. For example, in the case where a linear control profile might result in unsafe performance at a very low firing rate, vis-à-vis a high firing rate along the same linear profile, this is avoided by using a control profile according to the present invention, which can be non-linear.
The control system 36 is typically implemented as part of, and/or interfaced directly with, the HVAC controller 100.
Since certain changes may be made in the above-described digital high turndown burner, without departing from the spirit and scope of the invention herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the invention.
The present application is a continuation-in-part of application Ser. No. 12/141,418 filed on Jun. 18, 2008, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12141418 | Jun 2008 | US |
Child | 12206399 | US |