1. Field of the Invention
This invention relates to a digital image acquisition system having a portrait mode for generating an image of a foreground object against a blurred background, and a corresponding method.
2. Description of the Related Art
In digital cameras the depth of field (DOF) is typically much greater than for conventional cameras due to the image sensor being somewhat smaller than a 35 mm film negative. This means that portrait images, in particular, will tend to have the background in sharp focus, which may not be desirable as the photographer may wish to emphasize the person's face and de-emphasize the background of the picture. This problem can be corrected by careful photography combined with careful use of camera settings. Alternatively, portrait images are often blurred manually by professional photographers using image processing algorithms. A blurring algorithm may apply various techniques using convolution kernels to create the blurring effects. These effects are normally added on a desktop computer after an image has been captured. This may involve manual intervention and be time-consuming.
US 2003/0052991 discloses to adjust image brightness based on depths of different image features. A digital camera simulates the use of fill flash. The camera takes a series of photographs of a scene at various focus distances. The photographs are stored, along with their corresponding focus distances. The photographs are analyzed to determine distances to objects at various locations of the scene. Regions of a final photograph are selectively adjusted in brightness based on distance information to simulate the effect that would have resulted had fill flash been used.
There is provided a digital image acquisition system having no photographic film. The system includes an apparatus for capturing digital images and a flash unit for providing illumination during image capture. The system has a portrait mode for generating an image of a foreground object against a blurred background. The portrait mode is operable to capture first, second and third images of nominally the same scene, not necessarily in the order stated. One of the first and second images is taken with flash and the other is taken without flash. The third image is blurred compared to the first and second images. The portrait mode is operable to determine foreground and background regions of the scene using the first and second images, and to substitute the blurred background of the third image for the background of a substantially in-focus image of the scene.
There is further provided a method of generating a digital image of a foreground object against a blurred background. The method includes capturing first, second and third images of nominally the same scene, not necessarily in the order stated. One of the first and second images is taken with flash and the other is taken without flash. The third image is blurred compared to the first and second images. Foreground and background regions of the scene are determined using the first and second images. The blurred background of the third image is substituted for the background of a substantially in-focus image of the scene.
In one embodiment, the substantially in-focus image is one of the first and second images.
In a second embodiment, the substantially in-focus image is a fourth image.
Embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
In the case of preview images which are generated in the pre-capture mode 32 with the shutter button half-pressed, the display 100 can assist the user in composing the image, as well as being used to determine focusing and exposure. Temporary storage 82 is used to store one or more of the preview images and can be part of the image store 80 or a separate component. The preview image is preferably generated by the image capture component 60. For speed and memory efficiency reasons, preview images preferably have a lower pixel resolution than the main image taken when the shutter button is fully depressed, and are generated by subsampling a raw captured image using software 124 which can be part of the general processor 120 or dedicated hardware or combination thereof. Depending on the settings of this hardware subsystem, the pre-acquisition image processing may satisfy some predetermined test criteria prior to storing a preview image. Such test criteria may be chronological, such as to constantly replace the previous saved preview image with a new captured preview image every 0.5 seconds during the pre-capture mode 32, until the final high resolution image is captured by full depression of the shutter button. More sophisticated criteria may involve analysis of the preview image content, for example, testing the image for changes, before deciding whether the new preview image should replace a previously saved image. Other criteria may be based on image analysis such as sharpness, or metadata analysis such as an exposure condition, whether a flash is going to happen, and/or a distance to the subject.
If test criteria are not met, the camera continues by capturing the next preview image without saving the current one. The process continues until the final high resolution image is acquired and saved by fully depressing the shutter button.
Where multiple preview images can be saved, a new preview image will be placed on a chronological First In First Out (FIFO) stack, until the user takes the final picture. The reason for storing multiple preview images is that the last preview image, or any single preview image, may not be the best reference image for comparison with the final high resolution image in, for example, a red-eye correction process or, in a preferred embodiment, portrait mode processing. By storing multiple images, a better reference image can be achieved, and a closer alignment between the preview and the final captured image can be achieved in an alignment stage discussed later.
The camera is also able to capture and store in the temporary storage 82 one or more low resolution post-view images when the camera is in portrait mode, as will be described. Post-view images are preferably the same as preview images, except that they occur after the main high resolution image is captured.
The camera 20 preferably has a user-selectable portrait mode 30. Alternatively, camera software may include face detection functionality arranged to detect one or more faces in one or more of a series of preview images being captured and if so to switch to portrait mode. In portrait mode, when the shutter button is depressed the camera is caused to automatically capture and store a series of images at close intervals so that the images are nominally of the same scene. The particular number, resolution and sequence of images, whether flash is used or not, and whether the images are in or out of focus, depends upon the particular embodiment, as will be described. A portrait mode processor 90 analyzes and processes the stored images according to a workflow to be described. The processor 90 can be integral to the camera 20—indeed, it could be the processor 120 with suitable programming—or part of an external processing device 10 such as a desktop computer. In this embodiment the processor 90 receives a main high resolution image from the image store 80 as well as one or more pre- or post-view images from temporary storage 82.
Where the portrait mode processor 90 is integral to the camera 20, the final processed image may be displayed on image display 100, saved on a persistent storage 112 which can be internal or a removable storage such as CF card, SD card or the like, or downloaded to another device, such as a personal computer, server or printer via image output component 110 which can be tethered or wireless. In embodiments where the processor 90 is implemented in an external device 10, such as a desktop computer, the final processed image may be returned to the camera 20 for storage and display, or stored and displayed externally of the camera.
First, portrait mode is selected at 200. Now, when the shutter button is fully depressed, the camera automatically captures and stores three digital images. The first image includes a high pixel resolution, in-focus, flash image of the subject of interest (image A) at 202. This is the main image whose background is to be substituted by a blurred background. The second image includes a low pixel resolution, in-focus, non-flash post-view image (image B), at 204. The third image includes a low pixel resolution, de-focussed (i.e. deliberately blurred) post-view image (image C) at 206.
These three images are taken in rapid succession so that the scene captured by each image is nominally the same. If desired, image A could be taken non-flash and image B taken with flash. In general, one of them is taken with flash and one without. Normally, in portraiture, the main image A would be the flash image but this will depend on other lighting. Image C can be flash or non-flash, but is preferably flash to provide a good contrast between foreground and background. It is to be understood that when we refer to an image being in-focus or blurred we are speaking in relative terms, since no image is perfectly in focus and especially not all over. Thus, by saying that images A and B are in focus we mean that these images, and especially in the case of image A and its background, are substantially more in focus than image C.
At 200 to 206 of
Images A and B are aligned at 208, to compensate for any slight movement in the subject or camera between taking these images. Alignment may be performed globally across entire images or locally using various techniques such as those described in U.S. patent application Ser. No. 11/217,788, filed Aug. 30, 2005 , which is assigned to the same assignee as the present application and is hereby incorporated by reference. Then, at 210, the images A and B are matched in pixel resolution by up-sampling image B and/or down-sampling image A. Next, at 212, the flash and non-flash images A and B are used to construct a foreground/background (f/b) map, step 212, which identifies foreground and background regions of the scene captured in the images A, B and C. Processes 208, 210 and 212 are preferably as described in the Ser. No. 11/217,788 application, incorporated by reference above.
At 214, the pixel resolution of blurred low resolution image C is matched to that of the original image A (i.e., as it was before any processing at 208 to 212) by up-sampling image C. Next, using the f/b map constructed at 212, the blurred background from image C is used to replace the background in image A. To speed up this process, blocks of memory from the blurred background image C may be written to the corresponding blocks of image A, rather than replacing on a pixel by pixel basis. Finally, at 218, image processing filters are applied to smooth the transition between the composited foreground and background regions of the composite image resulting from 216.
Variations of the foregoing embodiment are possible. For example, one or both of the images B and C could be pre-view images rather than post-view images. Also, image B and/or image C could be the same resolution as image A. This can serve to avoid matching image resolution at 210 and/or 214.
In the embodiment of
As before, any one or more of images B1, B2 and C could be a pre-view image, and image C could be the same resolution as image A to avoid matching image resolution at 214.
The present invention is not limited to the embodiments described above herein, which may be amended or modified without departing from the scope of the present invention as set forth in the appended claims, and structural and functional equivalents thereof. In methods that may be performed according to preferred embodiments herein and that may have been described above and/or claimed below, the operations have been described in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations.
In addition, all references cited above herein, in addition to the background and summary of the invention sections, are hereby incorporated by reference into the detailed description of the preferred embodiments as disclosing alternative embodiments and components.
Number | Name | Date | Kind |
---|---|---|---|
4683496 | Tom | Jul 1987 | A |
5046118 | Ajewole et al. | Sep 1991 | A |
5063448 | Jaffray et al. | Nov 1991 | A |
5109425 | Lawton | Apr 1992 | A |
5130935 | Takiguchi | Jul 1992 | A |
5164993 | Capozzi et al. | Nov 1992 | A |
5329379 | Rodriguez et al. | Jul 1994 | A |
5500685 | Kokaram | Mar 1996 | A |
5504846 | Fisher | Apr 1996 | A |
5534924 | Florant | Jul 1996 | A |
5594816 | Kaplan et al. | Jan 1997 | A |
5621868 | Mizutani et al. | Apr 1997 | A |
5724456 | Boyack et al. | Mar 1998 | A |
5812787 | Astle | Sep 1998 | A |
5844627 | May et al. | Dec 1998 | A |
5878152 | Sussman | Mar 1999 | A |
5880737 | Griffin et al. | Mar 1999 | A |
5949914 | Yuen | Sep 1999 | A |
5990904 | Griffin | Nov 1999 | A |
6005959 | Mohan et al. | Dec 1999 | A |
6008820 | Chauvin et al. | Dec 1999 | A |
6018590 | Gaborski | Jan 2000 | A |
6061476 | Nichani | May 2000 | A |
6069635 | Suzuoki et al. | May 2000 | A |
6069982 | Reuman | May 2000 | A |
6122408 | Fang et al. | Sep 2000 | A |
6198505 | Turner et al. | Mar 2001 | B1 |
6240217 | Ercan et al. | May 2001 | B1 |
6243070 | Hill et al. | Jun 2001 | B1 |
6292194 | Powell, III | Sep 2001 | B1 |
6326964 | Snyder et al. | Dec 2001 | B1 |
6407777 | Deluca | Jun 2002 | B1 |
6483521 | Takahashi et al. | Nov 2002 | B1 |
6526161 | Yan | Feb 2003 | B1 |
6535632 | Park et al. | Mar 2003 | B1 |
6538656 | Cheung et al. | Mar 2003 | B1 |
6577762 | Seeger et al. | Jun 2003 | B1 |
6577821 | Malloy Desormeaux | Jun 2003 | B2 |
6593925 | Hakura et al. | Jul 2003 | B1 |
6631206 | Cheng et al. | Oct 2003 | B1 |
6670963 | Osberger | Dec 2003 | B2 |
6678413 | Liang et al. | Jan 2004 | B1 |
6683992 | Takahashi et al. | Jan 2004 | B2 |
6744471 | Kakinuma et al. | Jun 2004 | B1 |
6756993 | Popescu et al. | Jun 2004 | B2 |
6781598 | Yamamoto et al. | Aug 2004 | B1 |
6803954 | Hong et al. | Oct 2004 | B1 |
6804408 | Gallagher et al. | Oct 2004 | B1 |
6836273 | Kadono | Dec 2004 | B1 |
6842196 | Swift et al. | Jan 2005 | B1 |
6850236 | Deering | Feb 2005 | B2 |
6930718 | Parulski et al. | Aug 2005 | B2 |
6956573 | Bergen et al. | Oct 2005 | B1 |
6987535 | Matsugu et al. | Jan 2006 | B1 |
6990252 | Shekter | Jan 2006 | B2 |
7013025 | Hiramatsu | Mar 2006 | B2 |
7035477 | Cheatle | Apr 2006 | B2 |
7042505 | Deluca | May 2006 | B1 |
7054478 | Harman | May 2006 | B2 |
7064810 | Anderson et al. | Jun 2006 | B2 |
7081892 | Alkouh | Jul 2006 | B2 |
7102638 | Raskar et al. | Sep 2006 | B2 |
7103227 | Raskar et al. | Sep 2006 | B2 |
7103357 | Kirani et al. | Sep 2006 | B2 |
7149974 | Girgensohn et al. | Dec 2006 | B2 |
7206449 | Raskar et al. | Apr 2007 | B2 |
7218792 | Raskar et al. | May 2007 | B2 |
7295720 | Raskar | Nov 2007 | B2 |
7317843 | Sun et al. | Jan 2008 | B2 |
7359562 | Raskar et al. | Apr 2008 | B2 |
20010000710 | Queiroz et al. | May 2001 | A1 |
20010012063 | Maeda | Aug 2001 | A1 |
20020080261 | Kitamura et al. | Jun 2002 | A1 |
20020093670 | Luo et al. | Jul 2002 | A1 |
20020180748 | Popescu et al. | Dec 2002 | A1 |
20020191860 | Cheatle | Dec 2002 | A1 |
20030038798 | Besl et al. | Feb 2003 | A1 |
20030052991 | Stavely et al. | Mar 2003 | A1 |
20030103159 | Nonaka | Jun 2003 | A1 |
20030169944 | Dowski et al. | Sep 2003 | A1 |
20040047513 | Kondo et al. | Mar 2004 | A1 |
20040145659 | Someya et al. | Jul 2004 | A1 |
20040201753 | Kondo et al. | Oct 2004 | A1 |
20040208385 | Jiang | Oct 2004 | A1 |
20040223063 | Deluca et al. | Nov 2004 | A1 |
20050017968 | Wurmlin et al. | Jan 2005 | A1 |
20050031224 | Prilutsky et al. | Feb 2005 | A1 |
20050041121 | Steinberg et al. | Feb 2005 | A1 |
20050058322 | Farmer et al. | Mar 2005 | A1 |
20050140801 | Prilutsky et al. | Jun 2005 | A1 |
20050213849 | Kreang-Arekul et al. | Sep 2005 | A1 |
20050271289 | Rastogi | Dec 2005 | A1 |
20060008171 | Petschnigg et al. | Jan 2006 | A1 |
20060039690 | Steinberg et al. | Feb 2006 | A1 |
20060104508 | Daly et al. | May 2006 | A1 |
20060153471 | Lim et al. | Jul 2006 | A1 |
20060181549 | Alkouh | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2281879 | Nov 1990 | JP |
4127675 | Apr 1992 | JP |
6014193 | Jan 1994 | JP |
8223569 | Aug 1996 | JP |
10285611 | Oct 1998 | JP |
20102040 | Apr 2000 | JP |
20299789 | Oct 2000 | JP |
21101426 | Apr 2001 | JP |
21223903 | Aug 2001 | JP |
22112095 | Apr 2002 | JP |
23281526 | Oct 2003 | JP |
24064454 | Feb 2004 | JP |
24166221 | Jun 2004 | JP |
24185183 | Jul 2004 | JP |
26024206 | Jan 2006 | JP |
26080632 | Mar 2006 | JP |
26140594 | Jun 2006 | JP |
WO 9426057 | Nov 1994 | WO |
WO-02052839 | Jul 2002 | WO |
WO-02089046 | Nov 2002 | WO |
WO-2004017493 | Feb 2004 | WO |
WO-2004036378 | Apr 2004 | WO |
WO-2004059574 | Jul 2004 | WO |
WO-2005015896 | Feb 2005 | WO |
WO-2005076217 | Aug 2005 | WO |
WO-2005099423 | Oct 2005 | WO |
WO 2007025578 | Mar 2007 | WO |
WO 2007073781 | Jul 2007 | WO |
WO-2007093199 | Aug 2007 | WO |
WO-2007095477 | Aug 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070147820 A1 | Jun 2007 | US |