1. Technical Field of the Invention
The present invention relates generally to digital image processing, and particularly to demosaicing methods for interpolating colors at each pixel location.
2. Description of Related Art
Digital color image sensors are predominately of two types: CCDs (Charge Coupled Devices) and CMOS—APS (Complimentary Metal Oxide Semiconductor—Active Pixel Sensors). Both types of sensors typically contain an array of photo-detectors (pixels), arranged in rows and columns, that sample color within an image. Each pixel measures the intensity of light within one or more ranges of wavelengths, corresponding to one or more colors.
In addition, both types of sensors may include a color filter array (CFA), such as the CFA described in U.S. Pat. No. 3,971,065 to Bayer (hereinafter referred to as Bayer), which is hereby incorporated by reference. With the Bayer CFA, each pixel sees only one color: red, green or blue. The sampling pattern is shown below.
A sensor fitted with a Bayer CFA produces a mosaiced image that is sampled in both the color space and in the spatial domain. The sampling process produces aliasing artifacts in both the color space and in the spatial domain. For example, since the full color spectrum is sampled only at certain pixel locations (depending on the CFA colors), it is impossible to accurately reconstruct the true color of an image, thereby producing color space aliasing artifacts. In addition, since high spatial frequencies in the original image are sampled at too low of a frequency, the original high frequencies in the image cannot be restored later on through image processing, thereby producing spatial domain aliasing artifacts.
One solution to the color space and spatial domain aliasing artifact problems is demosaicing. Demosaicing is the process of interpolating colors of a digital image obtained from an image sensor to obtain all three primary colors at a single pixel location. When viewed, the resulting demosaiced image provides a better quality and more visually pleasing image than the mosaiced image.
Previous demosaicing methods have included, for example, pixel replication, bilinear interpolation and median interpolation. In pixel replication, each missing value is taken from the neighbor to the left, above, or diagonally above and left, whichever is nearest. Bilinear interpolation offers some improvement over pixel replication with a moderate increase in complexity. In the bilinear interpolation method, each missing value is calculated based on an average of the neighboring pixel values, horizontally, vertically and/or diagonally. Median interpolation, which is a nonlinear interpolation method, offers the best results among these three algorithms (pixel replication, bilinear and median), especially when there are defective pixels, but has the maximum complexity. Median interpolation has two steps. First, missing values having four diagonal neighbors are interpolated using the median of those four values. Second, the remaining missing pixels are interpolated by the median of north, south, east, and west neighbors.
However, with all of the above demosaicing methods, noticeable aliasing artifacts appear at edges within the image, producing a “zipper” effect in the demosaiced image. The “zipper” effect makes a straight edge in the image appear as a zipper. Solutions to the “zipper” effect have been proposed in U.S. Pat. No. 5,652,621 to Adams, Jr. et al. (hereinafter referred to as the Adams-Hamilton algorithm) and Kuno et al., “Aliasing reduction method for color digital still cameras with a single-chip charge-coupled device,” Journal of Electronic Imaging, Vol. 8, No. 4, October 1999, pp. 457–466 (hereinafter referred to as the Kuno algorithm), both of which are hereby incorporated by reference.
The Adams-Hamilton interpolation algorithm seeks to optimize the performance of image systems that sample images having horizontal and vertical edges. In the Adams-Hamilton interpolation algorithm, an interpolation method for interpolating a missing color value is selected. The interpolation direction is selected by calculating horizontal and vertical (or positive diagonal and negative diagonal) classifier values that are based on values taken from the color plane being interpolated and the color plane of the pixel location.
The two classifier values are compared with predefined thresholds and each other to select an interpolation method. For example, if one or more of the classifier values are greater than a predefined threshold, the missing color value is interpolated from both neighboring values of the same color as the missing color value and neighboring values of the color of the pixel location. The missing color value may be interpolated from horizontal neighboring values, vertical neighboring values or both horizontal and vertical neighboring values depending on which classifier values exceed the predefined threshold. The Adams-Hamilton algorithm does preserve detail and reduce the appearance of the “zipper” effect. However, with the Adams-Hamilton algorithm, some “zippering” is still visible.
The Kuno interpolation algorithm is based on the correlation of details assumption, expressed by Kodera et al. in “Method to display full-color image by using the correlation of color,” IIEEJ Annual Convention, Vol. 16(2), pp. 86–88 (1988), which is hereby incorporated by reference. The correlation of details assumption presumes that in a local region of an image, there is a high correlation amongst the colors. For example, using an image sensor fitted with a Bayer CFA, the correlation of details assumption predicts that the red, blue and green color values within a local region of an image will be relatively similar (e.g., if the red value of a red pixel location is 10, the correlation of details assumption predicts that the neighboring green and blue pixel locations will produce respective green and blue color values near 10).
The Kuno algorithm further postulates that even in regions with sharp color changes, a color correlation exists in one direction (i.e., either horizontal or vertical). Therefore, the Kuno algorithm uses a vertical interpolation orientation where only a low correlation in color values exists in the horizontal direction, and a horizontal interpolation orientation where only a low correlation in color values exists in the vertical direction. Specifically, the Kuno algorithm computes the horizontal and vertical gradients of the color plane associated with the missing color value and compares the horizontal and vertical gradients to a predefined threshold to determine the direction of interpolation. For example, if both the horizontal and vertical gradients are less than the predefined threshold, interpolation is performed both horizontally and vertically. However, if either of the gradients is greater than the predefined threshold, the direction of interpolation is in the smaller of the two gradients.
Once the direction of interpolation is determined, the Kuno algorithm uses a division operation to interpolate the missing color value. As with the Adams-Hamilton algorithm, the Kuno algorithm does reduce the “zipper” effect and improve color resolution as compared with previous demosaicing methods, such as pixel replication, bilinear interpolation and median interpolation. However, with the Kuno algorithm, some “zippering” is still visible. In addition, the Kuno algorithm requires a division operation to be carried out at every pixel location, which is expensive to implement. Therefore, what is needed is a demosaicing algorithm that further reduces the visibility of the “zipper” effect, as compared with the Adams-Hamilton algorithm and Kuno algorithm, and that can be implemented without the hardware complexity necessitated by the Kuno algorithm.
In the course of the present invention, an analysis was conducted of the reasons for the appearance of the “zipper effect” in images demosaiced using the Adams-Hamilton algorithm and Kuno algorithm. As a result of the analysis, a determination was made that the “zipper effect” was still visible in images demosaiced using the Adams-Hamilton algorithm and Kuno algorithm because neither algorithm separately considered the gradient in at least two of the color planes and neither algorithm applied the decisions made at neighboring pixels when interpolating a given pixel.
The present invention provides an adaptive demosaicing method that interpolates each pixel location by separately considering the degree of change (e.g., the gradient, the Laplacian or other measure of the degree of change) in both the horizontal and vertical directions in at least two of the color planes. The adaptive demosaicing algorithm uses a voting scheme to determine the direction of interpolation at each pixel location. Each color plane votes either horizontal or vertical based on a comparison between the vertical and horizontal components of the degree of change in that color plane. In some embodiments, votes are counted from the neighborhood pixels as well as from measurements taken at the pixel location itself In one embodiment, the direction of interpolation is applied only to the luminance color plane. Once the luminance plane is fully interpolated, the chrominance planes are filled in by a simple bilinear or median interpolation of difference chrominance values. Enhancements to the adaptive demosaicing algorithm permit adaptive smoothing and sharpening. For example the adaptive demosaicing algorithm is capable of adapting to low-light level (i.e., noisy) images, and reducing the imbalance between luminance pixels.
Since the adaptive demosaicing algorithm requires only additions, subtractions, shifts and comparisons, all of which are easy to implement in hardware, the adaptive demosaicing algorithm reduces the hardware complexity present in previous demosaicing methods. In addition, the adaptive demosaicing algorithm further reduces the appearance of the “zipper effect” in demosaiced images as compared with previous demosaicing methods. Furthermore, the invention provides embodiments with other features and advantages in addition to or in lieu of those discussed above. Many of these features and advantages are apparent from the description below with reference to the following drawings.
The disclosed invention will be described with reference to the accompanying drawings, which show important sample embodiments of the invention and which are incorporated in the specification hereof by reference, wherein:
The numerous innovative teachings of the present application will be described with particular reference to the exemplary embodiments. However, it should be understood that these embodiments provide only a few examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification do not necessarily delimit any of the various claimed inventions. Moreover, some statements may apply to some inventive features, but not to others.
The digital image system 10 includes a digital image sensor 20, such as a CMOS sensor chip or a CCD sensor chip, which includes a two-dimensional array of pixels arranged in rows and columns. The digital image sensor may be covered by a color filter array (CFA), such that each pixel senses only one color. For example, the CFA may be the Bayer CFA described above, in which chrominance colors (red and blue) are interspersed amongst a checkerboard pattern of luminance colors (green). It should be understood that other CFA's may be used instead of the Bayer CFA described herein.
The digital image sensor 20 provides raw data 25 containing the original red, blue and green pixel values to a digital signal processor 40, which applies the adaptive demosaicing algorithm of the present invention to the raw data 25 in order to interpolate the pixel values to obtain red, green and blue values at each pixel location. The raw data 25 is provided to the digital signal processor 40 blocks at a time. Thus, the raw data 25 is stored in a buffer 30 until the requisite amount of raw data 25 is present to begin processing.
The number of raw data values 25 needed to begin processing depends on the type of processing. For example, the pixel values corresponding to the raw data 25 are typically read off the sensor 20 one row at a time. For a neighborhood interpolation of a given pixel to begin, at least one horizontal pixel neighbor, and preferably, one vertical pixel neighbor are stored within the buffer 30. In addition, since most digital cameras take multiple images to ensure the exposure is correct before selecting the image to permanently store, one or more images may be stored in the buffer 30 at a time.
The result of demosaicing is three interpolated color planes 35 (i.e., R, G and B), each containing the original values and the interpolated values. It should also be understood that other color spaces, such as yellow, cyan and magenta, can be used instead of the red, blue and green color space discussed herein. The interpolated red, green and blue color planes 35 are stored in a memory 50 until displayed or processed. It should be noted that the color planes 35 may be compressed using a compression method (not shown), such as the JPEG standard, prior to being stored in the memory 50. To display or process the compressed image on an output device 60 (e.g., a video screen, computer screen or printer), the compressed image is first decompressed, and the decompressed image is output to the output device 60.
The digital signal processor 40 interpolates each image stored in the buffer 30 according to the adaptive demosaicing algorithm shown in
In one embodiment, both edge detection and edge orientation estimation may be attempted by using a single color plane, for example, green. However, relying on a single color plane may lead to errors in regions of the image where the color relied upon is not present, or alternatively, at colored edges where the color relied upon is fixed. In other embodiments, edge detection and edge orientation estimation may be pooled from two or three color planes. The pooling of results from all three color planes typically provides better results. Therefore, the PVM algorithm shown in
When the raw data 25 arrives at the digital signal processor 40, the raw data 25 is separated into three raw data color planes 25a, 25b and 25c, each having missing elements. The digital signal processor 40 applies adaptive interpolation logic 42 to the luminance raw data color plane 25b (i.e., green) in order to determine the missing luminance values at each location. For example, the adaptive interpolation logic 42 interpolates the green value at each red or blue pixel, using either horizontal interpolation, vertical interpolation or a combination of horizontal and vertical interpolation, based on a voting mechanism, which will be described in more detail below with reference to
Once the missing green values are determined, the missing red and blue values are interpolated. Initially, subtraction logic 44a and 44b computes the difference between the missing green value at each red or blue pixel location and the corresponding original red or blue pixel value. For example, taking the blue value B in the lower left-hand corner of the blue raw data color plane 25c, subtraction logic 44b subtracts the interpolated green value g in the lower left-hand corner of the interpolated green color plane 35b from the blue value B in the lower left-hand corner of the blue raw data color plane 25c.
The resulting difference color planes 28a and 28b are interpolated by difference interpolated logic 46a and 46b, respectively, using any known method, such as median interpolation, bilinear interpolation or pixel replication.
DRG(x, y)=R(x, y)−{tilde over (G)}(x, y), (Equation 1)
DBG(x, y)=R(x, y)−{tilde over (G)}(x, y), (Equation 2)
This gives two difference images, DRG and DBG, whose values are respectively known only on the red or blue pixel locations.
Thereafter, the DSP interpolates the difference chrominance color planes using the difference chrominance values (step 340). As mentioned above, the difference chrominance color planes can be interpolated using any known method, such as median interpolation, bilinear interpolation or pixel replication.
The simplest form of chrominance interpolation is pixel replication. For example, in pixel replication, each missing value is taken from the neighbor to the left, above, or diagonally above and left, whichever is nearest. Since the human visual system has a lower acuity in the chrominance colors than in the luminance colors, pixel replication provides good results in most situations.
Bilinear interpolation offers some improvement over pixel replication with a moderate increase in complexity. In the bilinear interpolation method, the difference red or blue values are convolved with the following 3×3 filter:
It should be noted that in the above filter, the multiplications and divisions are by powers of two, and hence can be accomplished with shifts.
Median interpolation, which is a nonlinear interpolation method, offers the best results, especially when there are defective pixels, but has the maximum complexity. Median interpolation has two steps. First, missing values having four diagonal neighbors are interpolated using the median of those four values. Second, the remaining missing pixels are interpolated by the median of north, south, east, and west neighbors.
As an example, assume that in a neighborhood of pixel values, the difference image DRG has the following values:
After the first step, the missing values having four diagonal neighbors are interpolated by the median of those neighbors. The result of the first step is:
The locations marked * are also interpolated, but their values are not indicated because they depend on neighboring values lying outside of 5×5 region shown. The second step fills in the remaining missing values using the median of four north, south, east and west neighbors as follows:
Once the interpolated difference images, denoted {tilde over (D)}RG and {tilde over (D)}BG, are obtained, the final interpolated red and blue values can be determined by addition with the original and interpolated green values (step 350) as follows:
{tilde over (R)}(x, y)={tilde over (D)}RG(x, y)+G(x, y), (Equation 4)
{tilde over (B)}(x, y)={tilde over (D)}BG(x, y)+G(x, y). (Equation 5)
These interpolated luminance (green) and chrominance (red and blue) color planes are output to the memory (step 360).
The adaptive interpolation logic 42 will now be described in greater detail with reference to
Since a color image is a mapping from a 2-dimensional (2-D) domain to a 3-dimensional (3-D) space, i.e., the color space, each component of the color image may be viewed as a function defined on the (x, y) domain, i.e., (R(x, y), G(x, y), B(x, y). As described in B. Jahne and H. Haussecker, eds., Computer vision and applications: a guide for students and practitioners, San Diego: Academic Press, 2000, pp. 334–335, which is hereby incorporated by reference, a method for measuring the local orientation in color images starts by constructing the Jacobian (J) of the map from the 2-D plane to 3-D color space:
where ∇ denotes the gradient (i.e., the direction of steepest increase). The Jacobian captures the local first-order variation of the color image in the horizontal (x) and vertical (y) directions.
For example, assume the following raw data is supplied to the adaptive interpolation logic 42:
To determine the green gradient of pixel location R1, the horizontal green derivative and vertical green derivative of pixel R1 must be calculated. The horizontal green derivative would be (Gx1−Gx2), and the vertical green derivative would be (Gy1−Gy2). The red gradients and blue gradients at pixel location R1 are calculated in a similar manner. For example, the blue horizontal blue derivative would be ((B1+B3)/2−(B2+B4)/2), and the vertical blue derivative would be ((B1+B2)/2−(B3+B4)/2). The red derivatives would be calculated using horizontal and vertical red values that are not shown above.
The singular vale decomposition (SVD) of the Jacobian may be written as:
J=USVt=s1u1v1t+s2u2v2t. (Equation 7)
Here s1≧s2≧0 are the singular values, and uk, vk are respectively, the left and right k-th singular vectors. It is well known in the art that the best rank one approximation (in the sense of minimizing the sum of squared errors) to J is:
J≈s1u1v1t. (Equation 8)
Since the vector u1 provides the direction of largest variation for the color image, the vector u1 is the principal vector of the Jacobian, or simply the “principal vector.”
The SVD of the Jacobian provides useful information about the edge structure of a color image. As shown in Equation 6, each of the three columns of J is the gradient in one of the R, G, B color planes. In the case that the gradients are parallel to one another, the edge can be said to be consistent in the three planes. In that case, the principal vector points in the same direction as the gradients, and the smaller singular value, s2, equals 0. In the case when the R, G, B gradients are not parallel, the “principal vector” provides the best “fit” to the three gradients. The degree to which the “principal vector” fits the gradients may be determined from the singular values. For example, the degree of fit may be measured by:
Since s1≧s2 and 0≦λ≦½, when λ=0, the “principal vector” provides a perfect (because the gradients are all parallel), whereas if λ=½, the fit is poorest. An example of a situation when λ=½ occurs is when two of the three gradients point in orthogonal directions, and the third gradient is zero.
As mentioned above, the “principal vector” u1 points in the direction of greatest change. However, adaptive demosaicing using the PVM algorithm actually interpolates from neighbors in the direction of least change to minimize the risk of blurring edges. Therefore, the vector u2, which is orthogonal to u1 and points in the direction of least change, is used as the interpolation direction. For example, assume that I1 is the result of interpolating along u1, and I2 is the result of interpolating along u2. Then, the total interpolation, denoted I, is a weighted combination of I1 and I2, where the weighting is based on the measure of fit λ as follows:
I=λI1+(1−λ)I2 (Equation 10)
This weighting guarantees that the total interpolation varies continuously between I2 (when λ=0, and therefore the principal vector perfectly fits the gradients) and I=(I1+I2)/2 (when λ=½, and the fit is poorest).
In order to compute I1 and I2 from the raw data 25a, 25b and 25c, which is rectangularly sampled, let Ih and Iv, respectively, denote the interpolants in the horizontal and vertical directions. Ih and Iv may be computed by forming simple linear combinations of pixel values along rows (for Ih) or, alternatively, along columns (for Iv). Next, let u1=[u1(1),u1(2)]t and u2=[u2(1),u2 (2)]t, and note that both u1and u2 are unit-length vectors. Then,
I1=u1(1)2Ih+u1(2)2Iv, and (Equation 11)
I2=u2(1)2Ih+u2(2)2Iv. (Equation 12)
By combining Equations 11 and 12 with Equation 10, I now becomes
I=αIh+(1−α)Iv, with α=λu1(1)2+(1−λ)u2(1)2. (Equation 13)
As can be seen, computing the value of I in Equation 13 requires three terms: Ih, Iv, and α. The first two terms, Ih and Iv, are straightforward to compute, since they involve only simple linear combinations of pixel values. However, the third term, α, is based on terms that are extracted from the SVD of J. Potentially, this requires computation of the SVD of J at every pixel, which is prohibitive.
However, in one embodiment, to simplify the computation, approximate values for α can be estimated. For example, in order to simplify the computation of α, the adaptive interpolation logic 42 can assume that the value of α can be quantized to three levels: α=0, 1, and ½. This means that the total interpolation I of Equation 13 is either purely horizontal, purely vertical, or an average of the two. The adaptive interpolation logic 42 can also assume that the direction of the principal vector u1 can be quantized to be one of only two possibilities: horizontal or vertical. Thus, if the inclination of u1 from the horizontal axis is less than ±45, u1 is horizontal, and otherwise u1 is vertical. Equivalently, u1 is horizontal if |u1(1)|≧|u1(2)|, and vertical otherwise.
The adaptive interpolation logic 42 can further assume that the decision whether the principal vector is horizontal or vertical can be made by applying a majority rule. The majority rule is as follows: if the majority of elements of the bottom row of the Jacobian 115 (which are vertical derivatives) exceed in absolute value the corresponding elements of the top row of the Jacobian 115 (which are horizontal derivatives), the principal vector is vertical. Otherwise, the principal vector is horizontal. For example, if the Jacobian 115 is
two of the elements of the top row exceed their counterparts in the bottom row in absolute value. Thus, the principal vector for the above Jacobian 115 is assumed to be horizontal.
Although the majority rule provides the direction of the principal vector, the majority rule does not by itself determine a among the possibilities {0, ½, 1}. As discussed before, the “principal vector” itself is not used as the interpolation direction. Rather, the interpolation direction is orthogonal to the direction of the “principal vector.” Therefore, when selecting the weighting factor α, the adaptive interpolation logic 42 considers the actual number of horizontal derivatives exceeding vertical derivatives (or vice-versa).
For example, if all of the horizontal derivatives exceed their counterpart vertical derivatives, α is set to 0 to force vertical interpolation (which is the direction orthogonal to the principal vector). Vertical interpolation is preferred for pixels that lie on a vertical edge within an image. Since there is a sharp change in intensity at horizontally adjacent pixels, interpolating horizontally for pixels that lie on a vertical edge will not provide an adequate interpolated value. The above technique for selecting the weighting factor α detects that a pixel is on a vertical edge because the first-order derivative for a vertical edge pixel is higher in the horizontal direction than in the vertical direction. If the weighting factor α corresponds to the pixel lying on a vertical edge, vertical interpolation is applied.
However, if none of the horizontal derivatives exceed their counterpart vertical derivatives, α is set to 1 to force horizontal interpolation. Horizontal interpolation is preferred for pixels that lie on a horizontal edge within an image for the same reasons as discussed above in connection with vertical edge pixels. However, if only one or two of the horizontal derivatives exceed their counterpart vertical derivatives, α would be set to ½ to include both horizontal and vertical interpolation since the principal vector fit is poorest where the gradients are not parallel. The fit is usually poorest when a pixel does not lie on an edge, and therefore, both horizontal and vertical interpolation are preferred.
As shown in
This voting scheme may be further extended to accommodate neighborhood pixel votes as well as votes at each pixel. Thus, before determining the weighting factor α, the adaptive interpolation logic 42 can consider neighborhood vote data 140 in addition to the column votes 125. For example, at two neighboring pixels, if two or more columns of the Jacobian 115 of each neighboring pixel voted horizontal, the neighborhood vote data 140 would include two horizontal votes. It should be noted that although this extended voting scheme does not use the individual Jacobian 115 column votes at neighboring pixels, and only considers the result of the majority rule, in other embodiments, the extended voting scheme may include each column vote at neighboring pixels as well.
The neighborhood vote data 140 may be defined to be data from any subset of pixels preceding the current pixel in a raster scan of the image. For example, the neighborhood vote data 140 can include data from the adjacent pixels to the left and above the current pixel. This neighborhood is referred to as the neighborhood of distance one. However, it should be understood that other neighborhoods of different distances may also be chosen.
When the column vote logic 110 has determined the vote for each column of a particular pixel, the column vote logic 110 determines the majority vote 135 (i.e., either vertical or horizontal), and stores the majority vote 135 in a memory 130 (which could be the same memory 50 as shown in
Once all of the column votes 125 from the column vote logic 110 and the neighborhood vote data 140, which includes one or more majority votes 135, are collected, addition logic 150 adds the column votes 125 for the current pixel supplied by the column vote logic 110 to the neighborhood votes supplied by the neighborhood vote data 140. The result 155 of the addition of votes is passed to weight determining logic 160 to assign the weighting factor α. As an example, the votes may divided into three ranges. First, if the number of horizontal votes is less than a first threshold T1, α=0. Second, if the number of horizontal votes is between the first threshold T1 and a second threshold T2, α=0.5. Third, if the number of horizontal votes is greater than the second threshold T2, α=1.
The choice of T1 and T2 depends on the size of the neighborhood N. For example, if N has a distance of one, then in one embodiment T1=1 and T2=4. Thus, for a neighborhood with a distance of one, the maximum number of votes is five (i.e., three for the current pixel and one for each of the adjacent pixels). With T1 and T2 so chosen, if one or fewer votes for horizontal interpolation are received, then vertical interpolation is chosen with α=0. If either 4 or 5 votes for horizontal interpolation are obtained, then horizontal interpolation is chosen with α=1. In the middle ground where 2 or 3 votes are obtained, averaging of horizontal and vertical interpolation is applied with α=0.5. It should be understood that other thresholds may be used if a different neighborhood N is chosen. Once the weighting factor α is determined, interpolation logic 170 uses a to interpolate the missing green values, and output the interpolated green color plane 35b.
Referring now to
Once the gradients at each pixel location are estimated, the Jacobian for each pixel location is known (step 510), as shown in Equation 6. Each column of Jacobian (i.e., each gradient) votes either horizontal or vertical (step 520). Each of the gradients (columns) supplies a respective vote, and the majority vote (i.e., either vertical or horizontal depending on which had the most votes) is stored in the memory (step 530).
Typically, the DSP processes the raw data row by row. Therefore, although the raw data for the adjacent pixels to the right and below the pixel location currently being processed may be known, the majority vote for these adjacent pixels is not yet known. So, typically when considering neighborhood votes (step 540), the only adjacent pixels that have completed voting and stored the majority vote in the memory are the adjacent pixels to the left and above the pixel location currently being processed. For example, again considering the pixel location R1 of the following Bayer pattern
the neighborhood vote data would include the majority vote from Gx1 and Gy1. It should be understood that the number of neighborhood votes can be increased to consider neighbors two or more pixels away from the currently processed pixel.
For the neighborhood of distance one, the majority vote from each of the adjacent pixels to the left and above the pixel location currently being processed are added to the column votes for the currently processed pixel location, resulting in five total votes (step 550). The weighting factor α is determined based on the total number of horizontal votes verses the total number of vertical votes, as described above (step 560). For example, again considering the pixel location R1 above, if the red gradient (column) voted horizontal, the blue gradient (column) voted vertical and the green gradient (column) voted horizontal, the majority vote of the pixel location R1 is horizontal. In addition, if the majority vote from the pixel location G was horizontal and the majority vote for the pixel location Gy1 was vertical, the total number of horizontal votes is 3 and the total number of vertical votes is 2.
As discussed above, one or more thresholds based on either the total number of horizontal votes or the total number of vertical votes can be set to determine the weighting factor α. In the example described above in connection with
Interpolation results are usually improved by applying a linear prediction. For a smooth function f(x), the linear prediction is
f(x)≈f(xo)+(x−xo)f′(xo) (Equation 14)
For example, expanding the line including R1 in the Bayer pattern above, the following pixels are in the horizontal neighborhood:
R2Gx1R1Gx2R3.
The linear prediction of the green value at R1 from Gx1 is, using the difference approximation f′(xo)=(R1−R2)/2, and setting x−xo=1:
This mixing of colors is based on an assumption of the strong local correlation between color planes, so that differences in the same direction should be similar.
Similarly, the linear prediction at R1 from Gx2 is, with x−xo=−1:
Hence, the horizontally interpolated green value at R1, denoted Ih in Equation 13, is the average of results in Equations 15 and 16:
In low-light level imaging situations, noise prevents the linear prediction from being useful. Whether or not an image is a low-light image is typically determined by looking at the pixel values. Pixel values usually range from 0–255. For example, if the majority of pixel values are below a low-light threshold, which can be determined by the operator or programmed into the digital imaging system, the image is considered to be a low-light image. Hence, it is advantageous to scale the linear interpolant by a factor γ, where 0≦γ≦1, which may be set according to the gains applied to the input pixels. Specifically, Equation 17 can be rewritten as:
For low-light levels, the gains are high, and consequently so is the noise, and γ would be equal to 0 or to a small positive value. For normally lit scenes, γ would be equal to 1.
A similar interpolation as shown in Equation 18 is used for horizontal interpolation for lines with blue and green, and also for vertical interpolation. To compute the interpolated luminance value at the pixel location R1, as described above, the average of horizontal and vertical interpolations are used.
Once the missing luminance values have been interpolated (step 570), the interpolated luminance color plane is output (step 580) by the adaptive interpolation logic shown in
The performance of PVM may be further improved by additional processing steps. One type of enhancement to the PVM demosaicing algorithm is shown in
The mismatch between G1 and G2 pixels may be corrected using two pre-processing steps applied prior to the PVM demosaicing algorithm. The first step, which is shown in
This mean balancing step may be applied prior to demosaicing using the PVM algorithm. As discussed above, digital cameras often take multiple images to ensure the exposure is correct before selecting the image to permanently store. Therefore, this mean balancing step may be performed on one of the images taken prior to the stored image.
The second step is shown in
Once it is determined that the green pixel does not lie on an edge (step 670), smoothing may be accomplished by convolving the green value with a 3×3 filter (step 690) as follows:
The above filter in Equation 19 assumes a Bayer pattern similar to the following:
Here a G2 value is surrounded by four G1 values. To smooth the G2 value, the G2 value is multiplied by four and added to each of the surrounding G1 values. The total after addition is then divided by eight. The resulting value is used as the G2 value.
A further enhancement to the PVM demosaicing technique is shown in
The second order horizontal derivative of G33 can be estimated by: (2G33-G31-G35). Similarly, the second order vertical derivative of G33 can be estimated by: (2G33-G53-G13).
Preferably, the amount of sharpening is adjustable based on the user's preferences. For example, if ∇2 denotes the Laplacian, and κ is an adjustable parameter, with 0≦κ≦1, the sharpened image Î(x, y) can be obtained from the original image I(x, y) by the following equation:
Î(x, y)=I(x, y)+κ∇2I(x, y). (Equation 20)
Here, I is any of the fully-populated color planes, red, green, or blue, that are obtained after demosaicing.
As a first step, the user sets the adjustable parameter κ (step 700). The adjustable parameter κ is set to 0 when no sharpening is desired and 1 when the maximum amount of sharpening is desired. However, it should be understood that any value between 0 and 1 may be used for κ. If the adjustable parameter κ is set to 0 (step 710), no sharpening is performed (step 720). If the adjustable parameter κ is not set to 0 (step 710), the Laplacian is determined (step 730), multiplied by the adjustable parameter κ (step 740) and added back to the original pixel value (step 750).
In one embodiment, sharpening can be applied to the interpolated green image prior to difference image interpolation. For example, if {tilde over (G)}(x, y) is the interpolated green plane, then the sharpened green plane Ĝ(x, y) is as follows:
Ĝ(x, y)=G(x, y)+κ∇2G(x, y). (Equation 21)
By replacing {tilde over (G)}(x, y) in Equations 1 and 2 with Ĝ(x, y), sharpening can be achieved with minimal processing.
Another enhancement to the PVM demosaicing algorithm is shown in
Adaptive smoothing using the above filter for red and blue pixel values has the advantage of reducing noise without blurring edges.
As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a wide range of applications. Accordingly, the scope of patented subject matter should not be limited to any of the specific exemplary teachings discussed, but is instead defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4630307 | Cok | Dec 1986 | A |
5008739 | D'Luna et al. | Apr 1991 | A |
5365604 | Kwok et al. | Nov 1994 | A |
5652621 | Adams, Jr. et al. | Jul 1997 | A |
5751361 | Kim | May 1998 | A |
5808674 | Adams, Jr. et al. | Sep 1998 | A |
5832143 | Suga et al. | Nov 1998 | A |
6034724 | Nakamura | Mar 2000 | A |
6075889 | Hamilton et al. | Jun 2000 | A |
6091862 | Okisu | Jul 2000 | A |
6229578 | Acharya et al. | May 2001 | B1 |
6289137 | Sugiyama et al. | Sep 2001 | B1 |
6404918 | Hel-or et al. | Jun 2002 | B1 |
6507364 | Bishay et al. | Jan 2003 | B1 |
6528181 | Yamane et al. | Mar 2003 | B1 |
6563537 | Kawamura et al. | May 2003 | B1 |
6567192 | Toyomura et al. | May 2003 | B1 |
6570616 | Chen | May 2003 | B1 |
6781626 | Wang | Aug 2004 | B1 |
6791609 | Yamauchi et al. | Sep 2004 | B1 |
6803965 | Takegoshi et al. | Oct 2004 | B1 |
6819363 | Moro et al. | Nov 2004 | B1 |
6924839 | Eiho et al. | Aug 2005 | B1 |
6933970 | Koshiba et al. | Aug 2005 | B1 |
20010005429 | Ishiga et al. | Jun 2001 | A1 |
20020001409 | Chen et al. | Jan 2002 | A1 |
20020130957 | Gallagher et al. | Sep 2002 | A1 |
20030052981 | Kakarala et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
1 111 904 | Jun 2001 | EP |
11 215515 | Aug 1999 | JP |
11 275373 | Oct 1999 | JP |
WO 9939509 | Aug 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030052981 A1 | Mar 2003 | US |