Orthogonal frequency division multiplexing (OFDM) has become the modulation of choice for higher data rate wireless communication links for personal area networks (PAN), local area networks (LAN) and metropolitan area networks (MAN) networks. OFDM waveforms have both amplitude and phase information requiring linear amplifiers generally having lower efficiency in the transmitter power amplifier (PA). The significant peak to average power ratios, typically 10 dB to 15 dB, further reduces the average efficiency of such OFDM transmitters. Power control on mobile units may further result in an average transmit power that is typically 30 dB to 50 dB lower than the peak power, and a corresponding reduction in efficiency. In mobile and handheld applications, such lower power efficiency in transmit mode may severely affect reliability, for example due to thermal issues, as well as limiting battery life of the hand held device. Switching power amplifiers, commonly utilized with pure frequency/phase modulation schemes, are capable of achieving a higher efficiency, however the application of switching power amplifiers to OFDM systems is not straightforward.
Furthermore, conventional radio transmitters comprise analog circuits which are sensitive to process, voltage and/or temperature, typically utilize inductors that occupy a larger die area, and/or that are not compatible with scaled lower voltage complementary metal-oxide semiconductor (CMOS) processes such as headroom/linearity, gain and/or matching constraints. The increasing speed of the lower voltage transistor can be exploited to replace lower speed, higher resolution analog circuits with higher speed, lower resolution circuits.
Claimed subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. However, such subject matter may be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and/or clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, if considered appropriate, reference numerals have been repeated among the figures to indicate corresponding and/or analogous elements.
In the following detailed description, numerous specific details are set forth to provide a thorough understanding of claimed subject matter. However, it will be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, well-known methods, procedures, components and/or circuits have not been described in detail.
In the following description and/or claims, the terms coupled and/or connected, along with their derivatives, may be used. In particular embodiments, connected may be used to indicate that two or more elements are in direct physical and/or electrical contact with each other. Coupled may mean that two or more elements are in direct physical and/or electrical contact. However, coupled may also mean that two or more elements may not be in direct contact with each other, but yet may still cooperate and/or interact with each other. For example, “coupled” may mean that two or more elements do not contact each other but are indirectly joined together via another element or intermediate elements. Finally, the terms “on,” “overlying,” and “over” may be used in the following description and claims. “On,” “overlying,” and “over” may be used to indicate that two or more elements are in direct physical contact with each other. However, “over” may also mean that two or more elements are not in direct contact with each other. For example, “over” may mean that one element is above another element but not contact each other and may have another element or elements in between the two elements. Furthermore, the term “and/or” may mean “and”, it may mean “or”, it may mean “exclusive-or”, it may mean “one”, it may mean “some, but not all”, it may mean “neither”, and/or it may mean “both”, although the scope of claimed subject matter is not limited in this respect. In the following description and/or claims, the terms “comprise” and “include,” along with their derivatives, may be used and are intended as synonyms for each other.
Referring now to
Network 100 may further comprise a visited connectivity service network (CSN) 124 capable of providing one or more network functions including but not limited to proxy and/or relay type functions, for example authentication, authorization and accounting (AAA) functions, dynamic host configuration protocol (DHCP) functions, or domain name service controls or the like, domain gateways such as public switched telephone network (PSTN) gateways or voice over internet protocol (VOIP) gateways, and/or internet protocol (IP) type server functions, or the like. However, these are merely example of the types of functions that are capable of being provided by visited CSN or home CSN 126, and the scope of the claimed subject matter is not limited in these respects. Visited CSN 124 may be referred to as a visited CSN in the case for example where visited CSN 124 is not part of the regular service provider of subscriber station 116, for example where subscriber station 116 is roaming away from its home CSN such as home CSN 126, or for example where network 100 is part of the regular service provider of subscriber station but where network 100 may be in another location or state that is not the main or home location of subscriber station 116. In a fixed wireless arrangement, WiMAX type customer premises equipment (CPE) 122 may be located in a home or business to provide home or business customer broadband access to internet 110 via base station 120, ASN 118, and home CSN 126 in a manner similar to access by subscriber station 116 via base station 114, ASN 112, and visited CSN 124, a difference being that WiMAX CPE 122 is generally disposed in a stationary location, although it may be moved to different locations as needed, whereas subscriber station may be utilized at one or more locations if subscriber station 116 is within range of base station 114 for example. In accordance with one or more embodiments, operation support system (OSS) 128 may be part of network 100 to provide management functions for network 100 and to provide interfaces between functional entities of network 100. Network 100 of
Although network 100 as shown in
Referring now to
In the above equations, the desired RF signal is converted from an amplitude modulated (AM) signal having two quadrature components, I and Q, into four quadrature components +θI, −θI, +θQ, and −θQ which are used to modulate the LO signals provided to the inputs of phase modulators 216 as the control signals. The outputs of phase modulators 216 produced by the four paths in such an arrangement at outputs 230, 232, 234, and 236 are:
p
1(t)=A cos(ωt+θI)
p
2(t)=A cos(ωt−θI)
p
3(t)=A sin(ωt+θQ)
p
4(t)=A sin(ωt−θQ)
The resulting four phase modulated signals, ρ1(t), ρ2(t), ρ3(t), and ρ4(t), in the above equations represent the respective outputs 230, 232, 234, and 236 of phase modulators 216. It should be noted that although transmitter 200 of
In a general embodiment of transmitter 200, the four phase modulated signals provided by phase modulators 216 at outputs 230, 232, 234, and 236 are combined via combiner 218 to produce a pulse position and width modulated output at differential outputs 220 and 222 of combiner 218. In one or more embodiments, such an output of combiner 218 may have a constant, or nearly constant amplitude, and the information to be transmitted is related to the position of a pulse and/or the width of a pulse. This differential signal at differential outputs 220 and 222 is utilized to drive one or more switching power amplifiers (PA) 224. The output of the one or more power amplifiers 224 is provided to an impedance matching network 226 and antenna 228, which may comprise for example an omnidirectional antenna, for transmission as a radio-frequency (RF) signal. Any mismatches between the paths at outputs 220 and 222 may be calibrated digitally via correction to θI and/or θQ.
In one or more embodiments, combiner 218 may comprise a pulse-width modulation (PWM) combiner that may be implemented using one or more logic gates, for example exclusive OR (XOR) gates, and one or more digital-to-analog converters (DAC). In one or more embodiments, power amplifier 224 may be implemented using one to four parallel switches to provide a switched power amplifier. In one or more embodiments, one or more of phase modulators 216 may be implemented using any of the following circuits: open loop delay lines, closed loop delay lines and delay-locked loops (DLL), a DLL controlled by a DAC, delay lines with sigma-delta phase selection in open loop or embedded in DLLs, integer-n phase-locked loop (PLL), fractional-n PLLs, offset loop PLLs, reference modulated PLLs, and/or direct digital synthesis. However, these are merely example implementations of phase modulators 216, and the scope of the claimed subject matter is not limited in these respects. In one or more embodiments, transmitter 200 is capable of being reconfigured for different standards, for example as a multi-mode radio achieved via switching in and out logic gates and/or varying the clock frequency, although the scope of the claimed subject matter is not limited in this respect.
Referring now to
Referring now to
In one or more embodiments of method 400, quadrature square wave local oscillator (LO) signals may be generated at block 410, for example via synthesizer 210, and separated into four paths, two in-phase (I) paths and two quadrature (Q) paths as shown for example in
Referring now to
Information handling system 500 may comprise one or more processors such as processor 510 and/or processor 512, which may comprise one or more processing cores. One or more of processor 510 and/or processor 512 may couple to one or more memories 516 and/or 518 via memory bridge 514, which may be disposed external to processors 510 and/or 512, or alternatively at least partially disposed within one or more of processors 510 and/or 512. Memory 516 and/or memory 518 may comprise various types of semiconductor based memory, for example volatile type memory and/or non-volatile type memory. Memory bridge 514 may couple to a graphics system 520 to drive a display device (not shown) coupled to information handling system 500.
Information handling system 500 may further comprise input/output (I/O) bridge 522 to couple to various types of I/O systems. I/O system 524 may comprise, for example, a universal serial bus (USB) type system, an IEEE 1394 type system, or the like, to couple one or more peripheral devices to information handling system 500. Bus system 526 may comprise one or more bus systems such as a peripheral component interconnect (PCI) express type bus or the like, to connect one or more peripheral devices to information handling system 500. A hard disk drive (HDD) controller system 528 may couple one or more hard disk drives or the like to information handling system, for example Serial ATA type drives or the like, or alternatively a semiconductor based drive comprising flash memory, phase change, and/or chalcogenide type memory or the like. Switch 530 may be utilized to couple one or more switched devices to I/O bridge 522, for example Gigabit Ethernet type devices or the like. Furthermore, as shown in
Referring now to
Mobile unit 610 may communicate with access point 622 via wireless communication link 632, where access point 622 may include at least one antenna 620, transceiver 624, processor 626, and memory 628. In one embodiment, access point 622 may be a base station of a cellular telephone network, and in an alternative embodiment, access point 622 may be a an access point or wireless router of a wireless local or personal area network, although the scope of the claimed subject matter is not limited in this respect. In an alternative embodiment, access point 622 and optionally mobile unit 610 may include two or more antennas, for example to provide a spatial division multiple access (SDMA) system or a multiple input, multiple output (MIMO) system, although the scope of the claimed subject matter is not limited in this respect. Access point 622 may couple with network 630 so that mobile unit 610 may communicate with network 630, including devices coupled to network 630, by communicating with access point 622 via wireless communication link 632. Network 630 may include a public network such as a telephone network or the Internet, or alternatively network 630 may include a private network such as an intranet, or a combination of a public and a private network, although the scope of the claimed subject matter is not limited in this respect. Communication between mobile unit 610 and access point 622 may be implemented via a wireless local area network (WLAN), for example a network compliant with a an Institute of Electrical and Electronics Engineers (IEEE) standard such as IEEE 802.11a, IEEE 802.11b, HiperLAN-II, and so on, although the scope of the claimed subject matter is not limited in this respect. In another embodiment, communication between mobile unit 610 and access point 622 may be at least partially implemented via a cellular communication network compliant with a Third Generation Partnership Project (3GPP or 3G) standard, although the scope of the claimed subject matter is not limited in this respect. In one or more embodiments, antenna 618 may be utilized in a wireless sensor network or a mesh network, although the scope of the claimed subject matter is not limited in this respect.
Although the claimed subject matter has been described with a certain degree of particularity, it should be recognized that elements thereof may be altered by persons skilled in the art without departing from the spirit and/or scope of claimed subject matter. It is believed that the subject matter pertaining to a digital integrated transmitter based on four-path phase modulation and/or many of its attendant utilities will be understood by the forgoing description, and it will be apparent that various changes may be made in the form, construction and/or arrangement of the components thereof without departing from the scope and/or spirit of the claimed subject matter or without sacrificing all of its material advantages, the form herein before described being merely an explanatory embodiment thereof, and/or further without providing substantial change thereto. It is the intention of the claims to encompass and/or include such changes.