The present invention relates to an on-chip voltage regulator and, more particularly, to a System on Chip (SoC) having on-chip voltage regulation and a digital logic controller for regulating the voltage of a SoC.
Conventionally, SoCs are designed to cater for worst-case timing performance. Generally speaking, a SoC works faster during higher voltage and lower ambient temperature conditions. Lower voltage and/or higher temperature necessarily results in a slower operation of the SoC. This means that the SoC must be designed to ensure that the timing of the critical paths must be met at reduced voltage and/or increased temperature conditions to ensure adequate operation of the SoC. The SoC designer must take due consideration of the PVT (process, voltage, temperature) corners; process variations must also be considered because due to small variations during manufacturing, two chips can have slightly different characteristics, meaning that they operate at slightly different speeds when compared with one another under the same conditions for voltage and temperature.
However, during the majority of the operational time of the SoC, the SoC operates in better than the worst-case conditions in terms of the three parameters: process, voltage and temperature. Therefore, in such conditions the critical path of the SoC will have sufficient positive slack, meaning that the SoC is running in excess of its worst-case performance requirement. In such circumstances, SoC voltage is higher than necessary and the excess performance can be considered to correspond to excess consumed power. This is particularly wasteful given that the dynamic power is proportional to voltage, more precisely to the square of the voltage.
For instance, a specific application for the SoC, e.g., an automotive application, might require a worst-case operating scenario where the SoC must operate at a target frequency of 200 MHz. However, the prevailing environmental conditions are usually better, perhaps much better, than the worst-case scenario. In these circumstances, the SoC is capable of operating at a higher frequency if operating at a higher voltage and/or a lower ambient temperature or manufactured in a faster process corner. However, since the minimum guaranteed operating frequency is only 200 MHz (which must be met at all times), capacity is wasted.
Dynamic Voltage Scaling (DVS) is a voltage regulation feedback system used to control supply voltage dynamically according to performance requirements. DVS is particularly beneficial in mobile applications where electrical and electronic components are powered by a battery, across a broad range of technologies from mobile computing (including mobile communications devices) to, for example, automotive applications. By exploiting the variations associated with different computational requirements for a device such as a SoC at different times in its operational cycle, the average energy of the device can be reduced while maintaining acceptable processing capacity. It therefore follows that the battery life can be extended and/or the physical size of the battery can be reduced.
In one known system a hybrid open-loop/closed-loop voltage regulation circuit is implemented. A temperature-insensitive value of a ring oscillator is used to index a lookup table (LUT). From this, the particular state or mode of operation of the system is identified and the required target frequency is derived, also from the LUT. The target supply voltage for the system is set according to the target frequency for the identified process. Once the voltage settles at the target voltage, the voltage regulation system switches to a closed-loop configuration in which the target frequency is compared to a frequency of a critical path of the system for voltage fine tuning. That is, in the closed-loop configuration fine-tuning is effected to maintain the voltage at the level identified from the LUT.
However, this requires the implementation of LUTs, which is a significant drawback considering the effort required in the compilation of the look up tables, characterization of the electronic device across a broad range of operating conditions, and a wide range of device samples that can easily run into the millions.
Implementation of DVS techniques may be further complicated in zero-defect engineering applications, such as in the automotive industry. This is because automotive customers require close to 0 PPM failure rate. One must have close controllability of voltages and implement hard thresholds for voltage conditions that are required for correct functioning.
Thus, it would be advantageous to develop one or more new techniques that alleviate the aforementioned problems.
The present invention is illustrated by way of example and is not limited by the accompanying figures, in which like references indicate similar elements. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.
In one embodiment of the invention there is provided a digital logic controller for regulating a voltage of a system on chip, the digital logic controller comprising: a first input for receiving a first signal, the first signal being a reference signal and having a first property which is at least substantially constant over a range of operating conditions of the system on chip; a second input for receiving a second signal, the second signal having a second property which is indicative of an operating condition of the system on chip, the second property being variable over the range of operating conditions (for example, PVT) of the system on chip; an output; and a comparator for comparing the first property of the first signal and the second property of the second signal; wherein in dependence of the comparison, the digital logic controller is configured to output to a voltage regulator, via the output, a regulation signal for regulating the voltage of the system on chip at or near a target voltage a predetermined amount higher than a minimum operating voltage of the system on chip.
In another embodiment of the invention there is provided a system on chip comprising: a first signal generator for generating a first signal, the first signal being a reference signal and having a first property which is at least substantially constant over a range of operating conditions of the system on chip; a second signal generator for generating a second signal having a second property which is indicative of an operating condition of the system on chip, the second property being variable over the range of operating conditions of the system on chip; a voltage regulator; and a digital logic controller comprising: a first input for receiving the first signal; a second input for receiving the second signal; an output; and a comparator for comparing the first property of the first signal and the second property of the second signal; wherein in dependence of the comparison, the digital logic controller is configured to output to the voltage regulator, via the output, a regulation signal for regulating the voltage of the system on chip at or near a target voltage a predetermined amount higher than a minimum operating voltage of the system on chip.
In another embodiment of the invention there is provided a method for regulating a voltage of a system on chip, the method comprising: providing a digital logic controller comprising: a first input; a second input; an output; and a comparator; receiving, at the first input of the digital logic controller, a first signal generated by a first signal generator, the first signal being a reference signal and having a first property which is at least substantially constant over a range of operating conditions of the system on chip; receiving, at the second input of the digital logic controller, a second signal generated by a second signal generator, the second signal having a second property which is indicative of an operating condition of the system on chip, the second property being variable over the range of operating conditions of the system on chip; comparing, using the comparator, the first property of the first signal and the second property of the second signal; and in dependence of the comparison, regulating the voltage of the system on chip at or near a target voltage a predetermined amount higher than a minimum operating voltage of the system on chip by outputting, via the output of the digital logic controller, a regulation signal to a voltage regulator.
Implementation of embodiments of the invention may provide significant technical benefits in comparison with conventional techniques. For instance, implementation of an on-chip voltage regulation technique in which a digital logic controller outputs to a voltage regulator a regulation signal for regulating the voltage of the system on chip, for example, a supply voltage of the system on chip, at or near a target voltage a predetermined amount higher than the minimum operating voltage of the system on chip may obviate the requirement for look up tables and the attendant costs associated therewith. As the voltage of the SoC is regulated dynamically responsive to changing operating conditions, this may dispense with the necessity for the reference settings derived and then stored in the lookup table. Such an on-chip dynamic voltage regulator trim algorithm helps to achieve optimal operating voltage and current consumption “on-the-fly” also leading to a simplified, yet robust, architecture. The switching current of a transistor is proportional to supply voltage. If voltage is reduced, the current consumption of the SoC will also decrease, in an approximately linear relationship to the voltage reduction. Therefore, in the best case, embodiments of the invention may expect a reduction of 20% of the Run mode power (Voltage*Current) if operating voltage reduces by 10%. Further, the invention has particular application for zero-defect engineering environments such as in the automotive industry. The invention is also particularly beneficial in automotive applications because microcontroller units have strict run current requirements due to environmental requirements.
Significant power savings may be realized in embodiments of the invention where the digital logic controller reduces the voltage of the SoC in dependence of determining from the comparison that the SoC is operating in a condition that is better than the poorest acceptable operating condition. In such circumstances, the SoC may be operating at above minimum operating voltage or below maximum operating ambient temperature. As such, the SoC may be operating at a higher frequency than required by the critical path and this excess performance can be traded-off for voltage and power reduction.
In embodiments of the invention where the second signal generator is a ring oscillator, this provides an acceptable approximation of the SoC critical path, especially when implementing the ring oscillator using “building blocks” of the critical path such as NOR and digital logic gates. Therefore, such a ring oscillator provides an acceptable approximation of the actual operation condition of the system on chip, the critical timing path of the design and the maximum speed at which it can operate.
In embodiments of the invention where the digital logic controller is provided with a voltage regulation memory, such as a memory register provided to store a “last value” of the regulation signal (e.g. a last trimming value applied to the voltage regulator, described in further detail below) this allows for particularly efficient operation of the voltage regulation scheme by quickly reaching the optimal point of operation in every subsequent start of algorithm.
The terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles.
Unless stated otherwise, terms such as “first” and “second” are used to distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements.
Because the apparatus implementing the present invention is, for the most part, composed of digital and analog circuit components known to those skilled in the art, full details of those components will not be explained in any greater extent than that considered necessary for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.
Some of the embodiments may be implemented using a variety of different core components. For example, although embodiments of the invention described herein implement a digital logic controller, the necessary control logic could otherwise be implemented using other computing device components. For instance, the disclosed voltage regulation techniques could be implemented under control of a computer processor operating in conjunction with a memory such as a random access memory, the processor being configured to execute instructions stored in the memory to effect the control functionality. Indeed, such an implementation may make convenient use of components found on the system on chip, including the processor and memory components thereon. As a further alternative, a processor and memory separate from the system on chip could also be used.
Of course, the description of the voltage regulation techniques have been simplified for purposes of discussion, and it is just one of many different types of appropriate hardware implementing voltage regulation algorithms that may be used in accordance with the invention. Those skilled in the art will recognize that the exemplary embodiments are merely illustrative. Moreover, alternative embodiments may include multiple instances of a particular operation, and the order of operations may be altered in various other embodiments.
Referring now to
In the embodiment of
In some embodiments, digital logic controller 102 has a voltage regulation memory 117, such as a memory register, which will also be described in detail below.
Digital logic controller 102 has a number of inputs and outputs for receiving and outputting electrical signals. First input 118 of digital logic controller receives an output signal 120 from first signal generator 104. Second input 122 of digital logic controller 102 receives an output signal 124 from second signal generator 106. Further, digital logic controller 102 has a third input 126 for receiving a low voltage warning signal 128 from an analog circuit (not shown) which compares the output of the voltage driver to a predetermined threshold, and generates the signal to indicate a low voltage warning.
Output 130 of digital logic controller 102 outputs a regulation signal 132 to control input 134 of voltage regulator 108. In at least one embodiment, this regulation signal takes the form of a word signal, for applying the trim settings of the voltage regulator 108, as described in more detail below with reference to
voltage regulator 108 also has input/output terminals 136, 138 for generating the feedback voltage for the comparator 110. In the embodiment of
Terminal 138 of voltage regulator 108 is connected to the non-inverting input 140 of comparator/error amplifier 110. The signal on the inverting input 142 is received from reference generator 111. Comparator 110 provides an output signal, the amplified difference between the input signals on terminals 140, 142, on output terminal 144 which is connected to the gate terminal 146 of voltage driver 112. The source terminal 148 of MOSFET 112 is connected to the input supply voltage Vdd and the voltage supplied on drain terminal 150 is the voltage of the SoC which is regulated by the voltage driver 112.
The regulated voltage 152 is the power supply of components of the SoC, such as the sea of gates thereon (not illustrated).
In the embodiment of
The inventors of the invention have found that although oscillation frequencies of the crystal oscillator 104 between 32 kHz and 40 MHz are particularly useful, but other frequencies are contemplated.
In embodiments of the invention, one or more ring oscillators 106 are positioned on the SoC 100 at or near critical circuits thereon, such as the CPU (central processing unit) or the cache memory (neither of which are illustrated for the sake of clarity).
In the embodiment of
In some embodiments of the invention, a ring oscillator is selected with an oscillation frequency of around 1 GHz. This signal may be subjected to frequency scaling so that it is of a similar order of the oscillation frequency of the crystal oscillator 104. Such an arrangement facilitates a comparison between the two signals. Alternatively, the signal is supplied to digital logic controller 102 unconditioned for the digital logic controller to, if necessary, conditioning (such as by frequency scaling) and processing by comparator 116.
Thus, signal 124 output by second signal generator 106 is derived from a clock signal of a ring oscillator.
Signal 120 is derived from the first clock signal of crystal oscillator 104. That is, signal 120 may be output by first signal generator 104 without further conditioning or it may be conditioned by the digital logic controller or another component of SoC 100.
Signals 120, 124 are input to digital logic controller 102, respectively, on inputs 118, 122 as noted above. Digital comparator 116 effects a comparison of signals 120, 124, or, more particularly, properties of signals 120, 124. In the embodiment of
Based on the result of the comparison, digital logic controller 102 determines whether or not to change the SoC voltage. If the voltage is to be changed, finite state machine 114 (or, to be more particular, the digital logic represented thereby) outputs from output 130 the regulation trim word signal 132 to input 134 of voltage regulator 108. Signal 132 controls the voltage regulator to generate the closed-loop feedback voltage to error amplifier 110 to regulate the voltage of the system on chip, such as the supply voltage Vdd, thereby to vary the voltage 152 supplying components on the SoC. The operation of voltage regulator 108, and the variation of the control signal 132 for that purpose, is described in more detail with reference to
Thus it will be appreciated that
It will also be appreciated that
Thus, implementation of these voltage regulation techniques allows realization of significant power savings by regulating the voltage of the SoC at an optimal operating voltage, for example above a minimum operating voltage. Thus, the voltage of the SoC can be reduced as low as possible in a dynamic fashion, i.e. “on-the-fly” while maintaining a safe margin above the minimum operating voltage of the SoC at which component error may occur thereby allowing the SoC to maintain critical path timing and achieve zero defect operation.
Referring now to
When the voltage of SoC 100 is maintained at or near the low voltage warning level, this means that it is maintained precisely at the low voltage warning level or within an acceptable tolerance thereof. For instance, and as will be described in greater detail with reference to
As will also be described in more detail with reference to, in particular,
Thus, in this embodiment, the target voltage is set at a predetermined amount higher than the minimum operating voltage of the SoC.
The predetermined target voltage, the low voltage warning alarm point (LVW) should be chosen carefully. If the alarm point is set too high, this will reduce the benefits of power consumption reduction which the techniques disclosed herein may provide. On the other hand, setting the low voltage warning alarm point too low will increase the risk of the SoC voltage dropping to the minimum operating voltage level 210, which may cause functional failure from the voltage going too low.
In one implementation, the low voltage warning level 208 may be determined as being the minimum operating voltage 210 level plus the worst case voltage drop in the SoC due to peak current consumption, plus a level corresponding to one step in the voltage regulation change from the voltage regulator 108. For example, if the minimum operating voltage is 1.1 V, the worst case voltage drop in the SoC arising from peak current consumption is 50 mV and the voltage step change of the voltage regulator 108 is 10 mV, then the target voltage, the low voltage warning alarm level 208, should be set at 1.16 V to ensure that even if the voltage dips momentarily below the low voltage warning level 208, SoC operation is always maintained above the minimum operating voltage.
If digital logic controller 102 determines at step 408 that the count of the ring oscillator has not expired at the first count expiry time, digital logic controller 102 determines that the system on chip 100 is running slow and that critical path timing may not be met safely. That is, SoC 100 is not operating in a condition which is better than a poorest-acceptable operating condition and, thus, digital logic controller 102 must increase, i.e. trim up, the voltage level. Or to put it another way, digital logic controller 102 outputs the regulation trim word signal 132 to increase the voltage of the SoC if, at the first count expiry time, the second count has not expired. The DVS algorithm limits the voltage reduction to a predetermined voltage level or LVW at or near which voltage is kept constant. Also, when the operating conditions are poorer, the DVS algorithm can trim up the voltage until the digital comparator indicates the desired voltage level is reached.
Advantageously, the digital logic controller may also implement a high voltage warning so that the SoC voltage may not be trimmed up above a certain voltage level, such as the conventional factory trimming level 204. The upper operating voltage limit can be defined as HVW (High Voltage Warning) above which the trimming algorithm will stall. This is to protect the semiconductor devices from being subjected to voltage overstress and also to avoid timing violations like Hold time issues at higher voltages which can make the component fail in field products.
If the SoC voltage has been reduced below the low voltage warning level, digital logic controller 102 receives this indication from a voltage regulator LVW circuit (not illustrated). Digital logic controller 102 is able to measure the system voltage by virtue of voltage signal 128 input to digital logic controller 102 on input 126. Digital logic controller 126 monitors signal 128 and flags when the voltage drops below the low voltage warning level. In embodiments of the invention, it is desirable not to reduce the voltage any further if the low voltage warning alarm has already been flagged, and the digital logic controller 102 checks for this at step 412. If the voltage has already been reduced to the low voltage warning level, the voltage should not be reduced further towards the minimum operating voltage 210 of SoC 100 and digital logic controller 102 detects at step 414 that the optimal voltage and processing speed of SoC 100 have been reached and no change is to be effected.
If at step 412 digital logic controller 102 detects that the voltage has not been reduced below the low voltage warning level, the digital logic controller then reduces the voltage at step 416 and outputs the regulation trim word signal 132 to voltage regulator 108 to reduce the voltage. Thus, digital logic controller 102 is configured, from the determination (that the SoC is operating in a condition which is better than a poorest-acceptable operating condition), to reduce the voltage of the system on chip if the digital logic controller has not detected the voltage has been reduced to the target value. Digital logic controller 102 is therefore configured to reduce the voltage of the SoC until it detects the voltage has been reduced to the target value. Perhaps more specifically, the digital logic controller 102 is configured to output the regulation trim word signal 132 to reduce the voltage of the system on chip 100 if, at the first count expiry time, the second count has expired and the digital logic controller 102 has not detected the voltage has been reduced to the target value 208 of the low voltage warning alarm level.
It is not specifically illustrated in
Thus, it will be appreciated that a method for regulating a voltage of a system on chip 100 has been described. The method comprises providing a digital logic controller 102 comprising: a first input 118; a second input 122; an output 130; and a digital comparator 116. The method further comprises receiving, at the first input 118 of digital logic controller 102 a first signal 120 generated by a first signal generator 104. The first signal is a reference signal and has a first property which is at least substantially constant over a range of operating conditions of the SoC. The method also comprises receiving, at the second input 122 of digital logic controller 102, a second signal 124 generated by a second signal generator 106. The second signal has a second property which is indicative of an operating condition of the system on chip 100. The second property is variable over the range of operating conditions of the system on chip. The method also comprises comparing, using the digital comparator 116, the first property of a first signal 120 and the second property of second signal 124. In dependence of the comparison, the method comprises trimming the voltage of the system on chip 100 at or near a target voltage 208 a predetermined amount higher than a minimum operating voltage of the system on chip by outputting, via the output 130 of digital logic controller 102, a regulation trim word signal 132 to a voltage regulator 108.
Voltage regulator 108 operates in conjunction with error amplifier/comparator 110 and the voltage driver 112 to regulate the supply voltage Vdd to provide a regulated voltage 152 for the system on chip. As noted above, the regulated voltage 152 may be used to power components of system on chip 100 such as the sea of gates (not illustrated), and other components such as the second signal generator (ring oscillator) 106. Voltage regulator (trim controller) 108 comprises a resistor ladder 502 composed of resistors 504. Resistors 504 are switched in and out of the resistor ladder under control of the switches 506 which have control inputs 508 derived from the outputs 510 of decoder 512. Resistor ladder 502 is a re-configurable voltage divider circuit, reconfigurable dependent upon the state of the switches 506. Decoder 512 receives, as its input, regulation trim word signal 132 from the digital logic controller 102 at input 134. In the embodiment of
Thus the voltage regulator/trim controller is a selectable resistor divider network. The resistor divider consists of multiple switches that select one of the tap points on the resistor ladder, which generates a fraction of the regulated voltage 152. (By changing the resistor ladder tap point, the SoC voltage 152 can be set to any desired level, within the range of operation of the error amplifier 110/voltage driver 112, subject to the size of the trim steps, and the digital logic controller 102 specifies which level in that range the voltage is to be set to.) The input voltage to this resistor ladder is the regulated output voltage 152 from the voltage driver 112, and the output (fraction of voltage, ratio being that of resistor divider network) voltage is fed back to the error amplifier 110. The error amplifier compares this with the reference signal generated by reference signal generator 111 and adjusts the regulated voltage output to make this error zero.
Thus, the desired regulated voltage is controlled via a closed-loop feedback circuit and terminal 138 of voltage regulator 108 is connected to the non-inverting input 140 of error amplifier 110 with the reference signal being output by reference signal generator 111 and received at the inverting input 142 of comparator 110. The error amplifier is a standard inverting amplifier configuration made out of operational amplifier circuits (which is a well known basic analog circuit, well documented in literature).
Mathematically, assuming the resistor ladder has a ratio R, and the reference voltage is Vref, then the regulated output voltage, Vout 152 can be derived by equating the error to zero: Vout*R=Vref, or Vout=Vref/R
In the embodiment of
As noted above with reference to
First NOR gate 602 has first and second inputs 610, 612. First input 610 receives its input signal A while second input 612 is held at a logical zero. Output 614 of NOR gate 602 is a first input 616 of AND gate 604. Second input 618 of AND gate 604 is held at a logical 1. Therefore output 620 of AND gate 604 is the input 622 of NOT gate 606, and the signal level is a logic zero when input 610 is a logical 1. Output 624 of NOT gate 606 is, of course, the inverse of input 622 and is a first input 626 of NOR gate 608. The second input 628 of NOR gate 608 is held at a logical zero. Output 630 of NOR gate 608 is the output B of one “building block” 600 of the ring oscillator.
While the series 600 of digital logic gates provides an overall inverting logic as with a NOT gate of a conventional ring oscillator, the ring oscillator thus consists of a ring of components which are also used as the “building blocks” of the SoC (in its control logic), in contrast with a conventional ring oscillator which typically consists only of a ring of NOT gates. Each of the “building blocks” is made up of the combinational logic of the critical path of the SoC (the timing path with least positive slack), such that the transfer function of this building block is logical inversion. Thus, in embodiments of the invention which implement ring oscillators implementing the building blocks of the type as illustrated in
The “inverting building block” is connected (in an odd number of gates) serially to mimic the critical path of the SoC. The final output B gets fed back to the input A of the first stage to form an inverting closed loop, which results in a clock output from the ring oscillator.
Going back to
At SoC power up, the DVS algorithm will start from the “factory trim setting” level 204
In such embodiments, it will be appreciated that the digital logic controller 102 further comprises a voltage regulation memory 117 for storing a last value (setting) of regulation trim word signal 132 at a time when DVS algorithm of the system on chip 100 is suspended/terminated. Upon re-commencement of DVS algorithm, digital logic controller 102 retrieves the last value from the voltage regulation trim word memory 117 and sets the regulation trim word signal 132 to the last value.
By now it should be appreciated that there has been provided a novel method of regulating a voltage of a system on chip by trimming the voltage dependent upon a determination of an operating condition of the SoC. Although the techniques described above have particular implementation in mobile environments, e.g. where electronic components derive their power supply from a battery, and also in automotive environments requiring a robust DVS algorithm, the invention may be implemented into any SoC application which would benefit from reduced power consumption.
Beneficially, the voltage regulator always remains in closed-loop control, which helps to obviate the requirement of a lookup table, and the expenditure associated therewith.
Although the invention is described herein with reference to specific embodiments, various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention. Any benefits, advantages, or solutions to problems that are described herein with regard to specific embodiments are not intended to be construed as a critical, required, or essential feature or element of any or all the claims.
Number | Name | Date | Kind |
---|---|---|---|
4546326 | Van Uffelen et al. | Oct 1985 | A |
5300824 | Iyengar | Apr 1994 | A |
6762629 | Tam et al. | Jul 2004 | B2 |
7085943 | Chun | Aug 2006 | B2 |
7642764 | Burton | Jan 2010 | B2 |
7811917 | Marshall | Oct 2010 | B2 |
7890781 | Gunther et al. | Feb 2011 | B2 |
20050210346 | Comaschi | Sep 2005 | A1 |
20050218871 | Kang | Oct 2005 | A1 |
20070216376 | Ogawa | Sep 2007 | A1 |
20100165585 | Lin | Jul 2010 | A1 |
20130086396 | Liu | Apr 2013 | A1 |
Entry |
---|
“Chip Performance Regulator Using On Chip Voltage Controlled Oscillator”; Dec. 1, 1980; IBM Technical Disclosure Bulletin, vol. 23, Issue 7A, pp. 2631-2632. |
Number | Date | Country | |
---|---|---|---|
20130093505 A1 | Apr 2013 | US |