The present invention relates to digital microfluidics, and, in particular, in one aspect to a circuit and method for manipulating conductive and non-conductive fluid droplets by Di electrowetting, and in another aspect to an anti-biofouling electrode for use in digital microfluidic systems.
A lab-on-a-chip (LOC), also often referred to as a Micro Total Analysis System (μTAS), is a device that integrates a number of laboratory functions on a single, relatively small (only millimeters to a few square centimeters) chip. LOCs allow for the handling of extremely small fluid volumes (e.g., down to less than pico-liters).
Fluid control is a fundamental aspect of LOCs. Fluid control in the context of LOCs is often referred to as microfluidics. Currently, there are two main branches of microfluidics that are employed in LOCs.
The first branch, known as continuous-flow microfluidics (and also continuous fluid regulation), is based on the manipulation of continuous liquid flow through closed microfabricated channels known as microchannels. Actuation of fluid flow is implemented either by external pressure sources, external mechanical pumps, integrated mechanical micropumps, or by combinations of capillary forces and electrokinetic mechanisms. Continuous-flow microfluidics using closed microchannels is widely exploited in microfluidics for, among other things, emulsion generating, gas exchange, plasma separation and fluid mixing. Traditionally, conventional soft lithography techniques using polydimethylsiloxane (PDMS) have been used to form the closed microchannels. Recently, new, alternative methods have been developed to fabricate such microchannels. There are, however, several disadvantages to using such closed microchannel structures. For example, the functionality is unchangeable after design and fabrication, limiting the further applications of the system. Also, post operations, like cleaning, are often difficult for small features in a closed environment. In addition, mechanical components, such as pumps, tubes (including connectors) and valves, are required for most cases, increasing the complexity of such systems.
The second technique is known as digital microfluidics. In digital microfluidics, digital circuitry is used to manipulate discrete fluid droplets on a substrate, most commonly using electrowetting.
For industry, it is highly desirable for microfluidic devices to be able to be controlled automatically using a personal computer or other platform. Digital microfluidic devices, which enable individual droplet manipulations, provide an ideal platform for such automatic control.
One known digital microfluidic circuit is based on a technology known as electrowetting-on-dielectric (EWOD). In an EWOD digital microfluidic circuit, aqueous droplets are generally sandwiched and operated between two plates. One plate has an array of electrodes (typically, square or rectangular solid shape) and the other plate has a solid ground electrode covering the entire area of the plate. A thin dielectric and hydrophobic layer covers the array of electrodes and a hydrophobic layer covers the ground electrode. When an electric potential is applied to the electrodes, free charges screen the solid-liquid interface, and an electrohydro-force near the tree-phase contact line in the droplet is generated, which changes the contact angle and actuates the droplet. Water droplet creating, cutting, transporting and merging may be achieved using an EWOD device. EWOD, however, generally and reliably works with conductive fluids.
Parallel-plate-channel digital microfluidic designs have also been developed to control dielectric droplets that are positioned between two parallel plates. Such designs rely on forces exerted on the droplet originating from a phenomenon known as liquid dielectrophoresis (L-DEP). In particular, due to the existence of the dielectric liquid between the parallel plates, a non-uniform electric field is induced when power is applied to the plates. As a result, a dipole in the droplet is subjected to an unbalanced force towards the direction where the field intensity gradient is stronger, which in turn attracts the droplet and causes it to move. The L-DEP force is a body force, differing from that in EWOD.
In addition to the parallel-plate channel designs just described, additional efforts have been made to investigate the nature of L-DEP, as well as the distinction between it and electrowetting. One application utilizes the L-DEP effect on dielectric droplets on a single plate that includes interdigitated electrodes. The interdigitated electrodes generate a non-uniform electric field that penetrates into the liquid, making it possible to change the contact angle of the liquid. This technique has been called dielectrowetting. However, this actuation has only been applied to spread a single sessile droplet.
Furthermore, so called biofouling is a problem commonly encountered by many current digital (droplet-based) microfluidic systems. Bifouling occurs when biomolecules (e.g., proteins) are adsorbed to the normally hydrophobic film surfaces that are used to transport the droplets in digital microfluidic systems. This biomolecule adsorption is undesirable as it changes the properties of the surface to a hydrophilic state, thereby paralyzing reversible droplet operations. Also, cross-contaminations between different proteins can occur under such conditions.
In one embodiment, a digital microfluidic system is provided that includes a substrate, a plurality of electrode sets provided on the substrate, wherein each of the electrode sets includes two co-planar interdigitated finger electrodes, and a driving circuit including a voltage source and a controller. Each of the electrode sets is individually addressable by the driving circuit under control of the controller such that a voltage generated by the voltage source may be selectively provided to one or more of the electrode sets.
In another embodiment, a method of driving a number of fluid droplets in a digital microfluidic system that includes a plurality of electrode sets provided on a substrate is provided, wherein each of the electrode sets includes two co-planar interdigitated finger electrodes. The method includes individually addressing one or more of the electrode sets, and selectively providing a voltage to the individually addressed one or more of the electrode sets.
In still another embodiment, an anti-biofouling electrode for a digital microfluidic system is provided that includes an electrode layer, and a slippery liquid infused porous surface structure provided on the electrode layer.
As used herein, the singular form of “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. As used herein, the statement that two or more parts or components are “coupled” shall mean that the parts are joined or operate together either directly or indirectly, i.e., through one or more intermediate parts or components, so long as a link occurs.
As used herein, “directly coupled” means that two elements are directly in contact with each other.
As used herein, the term “number” shall mean one or an integer greater than one (i.e., a plurality).
As used herein, the term “controller” shall mean a programmable analog and/or digital device (including an associated memory part or portion) that can store, retrieve, execute and process data (e.g., software routines and/or information used by such routines), including, without limitation, a field programmable gate array (FPGA), a complex programmable logic device (CPLD), a programmable system on a chip (PSOC), an application specific integrated circuit (ASIC), a microprocessor, a microcontroller, a programmable logic controller, or any other suitable processing device or apparatus. The memory portion can be any one or more of a variety of types of internal and/or external storage media such as, without limitation, RAM, ROM, EPROM(s), EEPROM(s), FLASH, and the like that provide a storage register, i.e., a non-transitory machine readable medium, for data and program code storage such as in the fashion of an internal storage area of a computer, and can be volatile memory or nonvolatile memory.
As used herein, the term “slippery liquid infused porous surface structure” shall mean a thin film structure having (i) a porous layer made of a material that includes a plurality of nanopores therein (which porous layer may be periodically ordered or random), and (ii) a lubricant liquid that is infused into the nanopores of the porous layer and/or held on the surface of the porous layer by capillarity. Non-limiting exemplary slippery liquid infused porous surface structures are described in U.S. Pat. Nos. 9,121,306, 9,121,307, and 9,353,646, each entitled “Slippery Surfaces With High Pressure Stability, Optical Transparency, and Self-Healing Characteristics”, the disclosures of which are incorporated herein by reference.
As used herein, the term “nanopore” shall mean a void having a maximum size parameter (e.g., characteristic diameter) that is less than 1000 nm.
As used herein, the term “lubricant liquid” shall mean a friction reducing liquid that is immiscible to aqueous and hydrocarbon liquids. For example, and without limitation, in one embodiment, the lubricant liquid as described herein may be a perfluorinated liquid. In another embodiment, the lubricant liquid as described herein may also be a non-volatile, chemically inert liquid, and may have a surface tension of 25 mN m−1 or less, 20 mN m−1 or less, or 18 mN m−1 or less.
As used herein, the term “provided on” shall mean that a layer is provided directly on top of another layer or indirectly on top of another layer with one or more intervening layers in between.
Directional phrases used herein, such as, for example and without limitation, top, bottom, left, right, upper, lower, front, back, and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the claims unless expressly recited therein.
The disclosed concept will now be described, for purposes of explanation, in connection with numerous specific details in order to provide a thorough understanding of the subject invention. It will be evident, however, that the present invention can be practiced without these specific details without departing from the spirit and scope of this innovation.
Four droplet operations, specifically creating, transporting, splitting and merging, are fundamental to digital microfluidics. These droplet operations correspond to the dispensing, pumping, volume controlling and mixing operations in counterpart continuous-flow microfluidics devices. While these droplet operations have been well demonstrated in digital microfluidics devices, all such devices were based on electrowetting (or electrowetting on dielectric, EWOD), which is generally effective with conductive fluids that are commonly squeezed between two plates.
Furthermore, it has been shown that dielectrowetting, which, as noted elsewhere herein, results from L-DEP, produces superspreading (significant change in contact angle) of fluid droplets and works for both conductive and non-conductive fluids. This dielectrowetting principle has not, however, been developed for the above fundamental droplet operations. As described in detail herein, the disclosed concept applies dielectrowetting to the four fundamental microfluidic droplet operations of creating, transporting, splitting and merging, to provide a system wherein both conductive and nonconductive fluid droplets on a single plate as well as between two plates can be automatically controlled.
In the illustrated embodiment, electrode sets 12 are of two different sizes. In particular, electrode set 12-1 is a “reservoir” for “dispensing” electrode set, and is larger than the remaining electrode sets 12-2 through 12-7, which are used for operating on individual fluid droplets created from the dispensing electrode set 12-1. In the example shown, electrode set 12-1 is 5.5 mm×5.5 mm (30.25 mm2) and electrode sets 12-2 through 12-7 are each 2 mm×2 mm (4 mm2). Also, both the width and spacing of electrode fingers is 50 μm. In addition, as seen in
Referring again to
As noted above, digital microfluidic system 2 is structured and configured to be able to perform each of the four basic droplet operations that are fundamental to digital microfluidics, namely creating, transporting, splitting and merging. In particular, controller 24 is provided with a number of software and/or firmware routines that enable digital microfluidic system 2 to perform each of the 4 basic droplet operations as described herein. An exemplary implementation of each of those operations is described below.
As described elsewhere herein, the exemplary dielectrowetting chip 4 configuration is an open environment on a single plate. It will be understood, however, that this is meant to be exemplary only, and that the disclosed concept as described herein may also be used to make a closed environment configuration including a top plate (not shown) positioned opposite the configuration shown in
Moreover, as noted elsewhere herein, biofouling is a problem commonly encountered by many current digital (droplet-based) microfluidic systems. Thus, according to a further aspect of the disclosed concept, an anti-biofouling mechanism for droplet manipulation in digital microfluidic systems is provided. Specifically, and as described in detail below, the disclosed concept includes a simple and versatile anti-biofouling droplet manipulation mechanism that may be provided on a single substrate using a slippery liquid infused porous surface structure integrated with a coplanar electrode array. This platform has been confirmed effective for both electrowetting-on-dielectric (EWOD) driving of conductive liquids (e.g., water and BSA protein solutions) and dielectrophoretic (DEP) driving of dielectric liquids (e.g., propylene carbonate and isopropyl alcohol or IPA) in an open environment. The slippery liquid infused porous surface structure described herein has been found to significantly reduce the biological adhesion because of the highly deformable nature of liquid. Biomolecules (e.g., proteins) can move easily on the slippery liquid infused porous surface structure. As a result, this property can help to overcome the burdensome biofouling problem that exists in digital microfluidics.
In the configuration just described, during use in a digital microfluidic system, slippery liquid infused porous surface structure 48 will separate biomolecules (e.g., proteins) from solid surfaces and eventually prevent biofouling due to the high mobility of liquid droplets 22. Anti-biofouling electrode 42 thus provides a significant improvement for digital microfluidics systems, and, as noted herein, may be used to drive both conductive liquids and dielectric liquids in such digital microfluidics systems.
In the exemplary embodiments just described in connection with
Moreover, in connection with a further alternative exemplary embodiment, the anti-biofouling aspects of the disclosed concept may be used in connection with the co-planar interdigitated finger electrodes 14A and 14B shown in
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word “comprising” or “including” does not exclude the presence of elements or steps other than those listed in a claim. In a device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. In any device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain elements are recited in mutually different dependent claims does not indicate that these elements cannot be used in combination.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
This divisional application claims priority under 35 U.S.C. § 119(e) to U.S. National Stage application Ser. No. 16/464,766, filed on May 29, 2019, entitled “DIGITAL MICROFLUIDIC SYSTEMS FOR MANIPULATING DROPLETS”, which is a 371 U.S. National Stage Application of International Application No. PCT/US2017/064804, filed on Dec. 6, 2017, entitled “DIGITAL MICROFLUIDIC SYSTEM FOR MANIPULATING DROPLETS”, which claims priority to U.S. Provisional Patent Application No. 62/431,497, filed on Dec. 8, 2016, entitled “DIGITAL MICROFLUIDIC SYSTEM FOR MANIPULATING DROPLETS BY DIELECTROWETTING”, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62431497 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16464766 | May 2019 | US |
Child | 18159284 | US |