Not Applicable.
Not Applicable.
The present invention relates to multi-band digital predistortion linearization.
Power-efficient, low-complex, and reconfigurable radio system requires the design of energy-efficient transmitter and receiver architectures. At the transmitter side, the power consumption is mainly dominated by the RF power amplification (PA) unit. Generally, PAs are the most power consuming and the least power efficient components of the RF chain. Moreover, their nonlinear behavior and non-flat frequency response introduce unwanted intermodulation distortions into the system, which could significantly degrade the output signal quality.
An efficient and proper approach to linearize the transmitter nonlinearities, including the frequency up-conversion and power amplification units, is digital predistortion (DPD) linearization technique. The DPD technique is based on developing a reverse model of the nonlinear behavior and predistorted the input signals accordingly in order to compensate for the distortions and nonlinearities introduced by the transmitter.
In dual-band system, the nonlinear behavior of the device will introduce intermodulation, cross modulation, and harmonic products caused by the two fundamental signals. This can be extended to multi-band systems where more than two active signals are transmitted simultaneously.
The linearization of multi-band transmitter is based on the digital predistortion linearization. The DPD technique compensates for the transmitter nonlinearity while operating in the high efficiency and nonlinear region. As an example presented here in this patent, two signal processing blocks are employed to deal and compensate for the unwanted distortions and intermodulation products of the dual-band transmitter. In the scenario of multi-band transmitter (dual-band or more) this processing architecture can be expanded to multiple processing block for linearization and distortion compensation of multi-band transmitter.
In order to obtain samples of the signal from the output of the multi-band system, multi-branch or multi-band down converter is required in the feedback loop. This feedback loop can be developed using multi-band down conversion unit, multi-branch down conversion unit, or using subsampling based down conversion unit.
In one case, an energy-efficient and low-complex subsampling receiver is adopted in the feedback loop of the multi-band linearization architecture. The subsampling receiver architecture is designed to concurrently down-convert the multiple RF signals through single receiver chain. Using subsampling technique simplifies the feedback loop topology, requires fewer number of RF components, and reduces the power consumption.
Substituting the multi-band or multi-branch receiver feedback loop of the linearization topology with subsampling receiver architecture reduces the complexity of the system. The subsampling down conversion is not very common as receivers because of its insufficient performance in the presence of uncontrolled interfering signals. However, in the case of a DPD feedback loop, the problem is different and the interfering signals can be controlled such that they will not affect the signal quality. The different intermodulation, cross modulation and harmonic products make choosing the sampling frequency a complex task in order to avoid any overlap between the down-converted desired signals and their intermodulation and cross modulation products. Therefore, it is imperative to develop an algorithm to select the sampling frequency so that it takes into account all the possible frequencies such that the target signals will not be interfered with the undesired product terms.
In one aspect of the present invention, a concurrent digital multi-band linearizer compromises a baseband signal preprocessing block, the baseband signal processing block including a digital predistortion unit; a signal up-conversion block, an RF power amplification block, the RF power amplification block including the concurrent multi-band power amplifier; and an RF power combining network.
In the description of the invention, a concurrent dual-band amplifier will be used. It is noted that a concurrent dual-band power amplifier which includes one amplification unit for two frequency bands may be considered in one sense a simple and special case of multi-band power amplifiers.
In one aspect of the present invention, the feedback loop of the digital predistortion consists of multiple RF down-conversion units associated with each of the frequency band of operation.
In another aspect of the present invention, a single feedback loop based on subsampling receiver technique is used to down-convert and extract the RF signals form all the frequency band at the same time.
Further areas of applicability of the present invention will become apparent with reference to the following drawings, description and claims. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Broadly, an embodiment of the present invention provides multiple branch digital predistortion linearization architecture and digital signal processing algorithms for impairments-free operation and linearized multi-band transmitter.
Referring to
For digital predistortion linearization and identify the inverse model, the sample of the RF signal are captured using dual-band coupler 140. Then the RF signals are bandpass filtered 145, frequency down converted 150, digitized using analog-to-digital converters 155. The digital output samples 160, the input signals 105 and predistorted signals 115 are used in the analyzing stage 165 for nonlinear model identification and reverse modeling.
The feedback path of the dual-band linearizer requires the use of two down-conversion stages 150, as well as bandpass fitters 145 to remove most of the imperfections caused by the power amplifier. The predistorted inputs, xpd1 and x Xpd2, 115 as well as the output of each band of the PA, y1 and y2, 160 are used to generate the predistorter signal processing model 110. The processing model equations of the linearization processing algorithm 165 for prediction and compensation of the distortions and intermodulations is as follows:
Where x1(n) and x2(n) are the input signals, xpd1(n) and xpd2(n) are the predistorted signals to the input of the dual-band transmitter, c1,j,k,m and c2,j,k,m are the identified model's coefficients, and finally M is the order of the memory effect and K is the order of nonlinearity.
Concurrent multi-band receiver architectures require a bandpass filter 145, down-conversion stage 150, and ADC 155 for the translation of each RF frequency bands to baseband. Using subsampling with a high speed ADC allows the elimination of all these components; however, the user needs to make sure that the signals don't overlap in the subsampled spectral domain.
Sampling multi-bands at the same time also eliminates the time delay taken between different band paths caused by the filters.
Sampling the band-limited RF signal at frequency rates much lower than the carrier frequency, but higher than signal bandwidth folds the RF signal to the lower frequencies, where these replicates of the RF signal at baseband or intermediate frequencies can be used to reconstruct the baseband signal. To make sure that there is no aliasing between the replicas, the subsampling rate should be chosen in the following range:
where fL and fU are the lower and upper frequencies of the band-limited RF signal, B=fU−fL is the signal bandwidth, and n is an integer value.
In dual-band operation transmitter with nonlinearity, the first and second bands will produce intermodulation, cross modulation and harmonic products.
Now considering two RF signals at carrier frequencies of ω2 and ω2, with their respective bandwidths B1 and B2 as shown in
The, out-of-band intermodulation-modulation, and harmonics generated by the fundamental signals are not required for the predistortion application; therefore, an iterative subsampling algorithm has been developed to subsample the RF signals without any overlap with the other unwanted RF signals.
Referring to
Referring to
As an example for the application of this invention,
Referring to
This application is a Continuation of U.S. Ser. No. 14/467,642 filed Aug. 25, 2014 which is a Continuation of U.S. Ser. No. 13/274,290 filed Oct. 14, 2011, all of which are in their entirety incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
8294516 | Young | Oct 2012 | B2 |
8380144 | Bai | Feb 2013 | B1 |
8391809 | Fuller | Mar 2013 | B1 |
8606197 | Bai | Dec 2013 | B2 |
20050162225 | Suzuki | Jul 2005 | A1 |
20050168283 | Suzuki | Aug 2005 | A1 |
20060276147 | Suzuki | Dec 2006 | A1 |
20110156815 | Kim | Jun 2011 | A1 |
20120069880 | Lemson | Mar 2012 | A1 |
20120069931 | Gandhi | Mar 2012 | A1 |
20120154038 | Kim | Jun 2012 | A1 |
20130064325 | Kilambi | Mar 2013 | A1 |
20130183915 | Bai | Jul 2013 | A1 |
20150049841 | Laporte | Feb 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20180054225 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14467642 | Aug 2014 | US |
Child | 15583343 | US | |
Parent | 13274290 | Oct 2011 | US |
Child | 14467642 | US |