The present invention, in some embodiments thereof, relates to a digital printing apparatus and method for printing designs, patterns logos and the like on shaped surfaces and items and, more particularly, but not exclusively, to a digital printing apparatus that can print over a surface contoured in three dimensions.
In digital printing, droplets are emitted from nozzles onto the media surface, and a fixed distance, albeit with some tolerance, is needed between the media surface and the print head. Such a distance is necessary because otherwise the ink jet is impeded from exiting the print nozzle. The ink dries quickly and thus the nozzle may easily become blocked.
Maintenance of such a fixed distance is easy when the media is flat and has a smooth surface, such as on paper. The fixed distance is more difficult to maintain when printing on textiles, since textiles do not necessarily have smooth surfaces but a range solutions are available. In 3D printing, in which the printer deposits layers to form a 3D product, maintaining the requisite distance is carried out using the same computer aided design which defines the shape of the product being created. That is to say the printer knows at all times where the surface of the 3D product because it is creating that surface. The printing head is thus able to move correctly around the product being printed without the nozzles coming into contact with the surface and becoming blocked or contaminated.
However, printing a design, image, pattern, logo or other surface decoration onto a pre-existing three-dimensional object is more of a challenge. It is possible to pre-program a print path for a print head on the assumption that it is printing a series of objects that are identical, but if say a sequence of objects is not exactly the same, say there is a sequence of shoes of different sizes, then the program would have to be reformulated for every different shoe size.
Furthermore, if the object to be printed is of varying shape then a print head that moves has to be designed so that ink pressures and spray effectiveness do not change over any of the positions that the print head is likely to find itself in.
Embodiments of the invention may provide a printing apparatus and method in which an object to be printed is held and gripped. The object is then moved and rotated in the holder in three dimensions around a printer which is generally stationary or possibly moves in one dimension only.
The movement of the object and the holder may be controlled mechanically by a runner moving over a dummy object having a shape which is identical to the object being printed. Alternatively, a 3D profile of the object may be obtained, say from a Lidar scan of the object, and inserted into a computer aided design program, or an existing CAD profile may be used directly, and a movement sequence may be obtained to print the object.
According to an aspect of some embodiments of the present invention there is provided a printing apparatus for printing onto a surface of a previously made three-dimensional article, the apparatus comprising:
a printing head which is stationary in at least two dimensions;
a controllably movable holder configured to cause the article to be gripped and to move the article around the printing head to present parts of the surface in an order to the printing head while the printing head prints onto the surface.
In an embodiment, the printing head is an ink-jet printing head.
In an embodiment, the printing head is mobile in a depth direction towards and away from the article.
In an embodiment, the printing head is stationary in three dimensions.
In an embodiment, the apparatus further comprises a loading magazine comprising a plurality of the articles in a sequence.
In an embodiment, the loading magazine comprises pallets, each article of the sequence being mounted on a pallet and the holder being configured to pick a front pallet from the loader magazine.
In an embodiment, the moving holder is controlled by a runner that runs over a dummy article.
In an embodiment, the moving holder is controlled using a computer aided design (CAD) profile.
In an embodiment, the moving holder is controlled using a Lidar scan.
In an embodiment, succeeding articles are of different shapes and the holder is controlled to move differently with each article.
According to a second aspect of the present invention there is provided a method of printing onto a surface of a previously made three-dimensional article, the surface having a three-dimensional shape, the method comprising:
causing the previously made three-dimensional article to be gripped;
moving the article around the printing head to present parts of the surface having the three dimensional shape in an order to a printing head; and
operating the printing head to print over the surface during the moving.
The method may comprise printing using a print file made for the three-dimensional shape.
The method may comprise printing using a print head which is mobile in a depth direction towards and away from the article.
The method may comprise printing using a print head which is stationary in three dimensions.
The method may comprise loading a plurality of the articles in a sequence for printing.
In an embodiment each article of the sequence is mounted on a pallet, and the method comprises picking a front pallet for printing.
The method may comprise controlling the moving using a runner that runs over a dummy article.
The method may comprise controlling the moving using a computer aided design (CAD) profile.
The method may comprise controlling the moving using a Lidar scan.
In embodiments, succeeding articles are of different shapes, and the motion is different for each article.
The method may comprise moving the article to present the surface to the print head in rows.
The method may comprise moving the article to keep the article at a preset printing distance from nozzles of the printing head.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
Implementation of the method and/or system of embodiments of the invention, in particular relating to control of the digital printer, and motion of the object during printing, can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
The present invention, in some embodiments thereof, relates to a digital printing apparatus and method for irregular shaped items and, more particularly, but not exclusively, to a digital printing apparatus that can print over a surface contoured in three dimensions.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
Referring now to the drawings,
Printing head 10 is stationary in at least two dimensions, and in some embodiments is altogether stationary. Rather holder 12 moves in three dimensions to orientate each part of the surface of the article 14 towards the print head and then to pass the article at a constant distance from the print head.
In order to move the article in three dimensions the holder includes grips 16 which either grip the article directly or hold a pallet 18 that carries the article. The holder may include a joint 20, which is controlled by an actuator 22. The joint supports pallet 18 using telescoping arms 24, 26, 28 and 30, which may also be operated by actuators. Although four such arms are shown, embodiments may use three arms, or more than four arms, dependent on the movement precision required. The four arms are operated differentially to set the orientation of the pallet and therefore of the article. The system of joints is shown in greater detail in
By suitable control of the joints, the holder may move the article around the printing head in such a way as to present parts of the article surface to the printing head so that surface regions pass the printing head in a defined order to allow printing according to a print file. For example the article may pass the print head so that the print head sees the article in a sequence of rows. In order to do this the article may have to be rotated considerably so that the entire length of the row passes the print head substantially perpendicularly and at a preset distance, say 2 mm.
Printing is typically digital printing and may use an ink-jet printing head.
In some embodiments the print head is entirely stationary in all dimensions. In other embodiments the print head is able to move say towards and away from the article or able to move between articles that are at different printing positions. Thus a particular printing device may have several printing positions so that an item is always in position for printing and there is no downtime for loading.
Reference is now made to
Reference is now made to
Reference is now made to
As an alternative, the moving holder 52 may be controlled using a computer aided design (CAD) profile, or using a Lidar scan or any other suitable method. Succeeding articles may be of different shapes and sizes so that the holder may be controlled to move differently with each article. For example, in the case of shoes, there may be different sizes of the same design of shoe.
Reference is now made to
In order to enable printing according to a print file the surface parts may be presented to the print head in a preset order, typically as rows along the surface, and the print file may be constructed for the given three-dimensional shape and the intended path of the surface past the printer.
It is expected that during the life of a patent maturing from this application many relevant digital printing technologies and movement replication technologies will be developed and the scopes of the corresponding terms are intended to include all such new technologies a priori.
The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.
The term “consisting of” means “including and limited to”.
As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.
This application claims the benefit of priority under 35 USC § 119(e) of U.S. Provisional Patent Application No. 62/591,828 filed Nov. 29, 2017, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
9688078 | Irizarry | Jun 2017 | B1 |
20160236483 | Till | Aug 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190160832 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62591828 | Nov 2017 | US |