In the detailed description of the preferred embodiments of the invention presented below, reference is made to the accompanying drawings, in which:
Referring now to the accompanying drawings,
The ink differs from normal ink jet inks in that normally, ink jet inks include pigments or dyes in a colloidal suspension or solution. The ink used in this invention includes particles where the particles may be marking particles having a colorant such as a dye or pigment in a binder such as a polymer. Suitable polymers include, for example, polyesters, polystyrenes, or polyester acrylates, as are commonly used in electrophotographic toners. The ink may also include suitable charge agents capable of charging the marking particles in a desired manner. The ink would also include a solvent. While water is a suitable solvent in some of the modes of operation of this invention, it is preferable that the solvent be a dielectric liquid such as an organic solvent. A preferred solvent would be Isopar L, although other organic dielectric solvents would also be suitable. It is preferable that the marking particles not be soluble in the solvent. Nonorganic dielectric solvents such as silicone or mineral oils, various alcohols, etc. may also be used.
The particles in the ink need not be marking particles. Rather, they can be identical to the marking particles except that they lack colorant. Such particles can be useful to apply a uniform gloss to the image, protect the image from abrasion, bricking (i.e. having the individual imaged sheets adhere to each other under the influence of heat and/or pressure), or reduce cracking for example. The ink may or may not have a coagulating agent. Alternatively, a coagulating agent may be applied separately if desired through, for example, another ink jet head (not shown). However, coagulation is not a requirement of this invention.
While it is preferable to use as high a concentration of marking particles as possible, current ink jet head technology limits the concentration to less than approximately 10% by weight. The ability to produce a stable colloid would also limit the particle concentration to about this concentration. Reducing the concentration of the marking particles too far may adversely affect the ability to obtain necessary high image densities and can require too much solvent to be applied. The marking particle concentration should not be less than 1% by weight. It is preferable that the marking particle concentration be between 2% and 7% by weight for the jetable ink. The ability to jet the ink also limits the size of the marking particles to less than 3 μm in diameter, and preferably to less than 1 μm in diameter, and more preferably to less than 0.5 μm in diameter. The marking particles can be made by known techniques such as grinding and classifying. However, it is preferable to produce the particles by chemical means, such as emulsion polymerization, evaporative limited coalescence, limited coalescence, or spray drying, for example.
The ink deposited image-wise on the imaging roller 14 is concentrated by fractionating the marking particles from the excess solvent. In the preferred mode of operation, as shown in
In the preferred mode of operation, the ink image (after fractionation) is transferred to a transfer intermediate roller 20. This is done by establishing an electrical bias between the imaging roller 14 and the intermediate roller 20, so as to urge the marking particles to transfer to the intermediate transfer roller 20. After transfer, the imaging roller 14 is cleaned by any suitable cleaning mechanism 22, while the intermediate transfer roller 20 is rotated with a second doctor roller 24, which can, if desired or necessary, further concentrate the ink in the manner similar to that described above. If desired, that is if the effluent is sufficiently clean or can be cleaned to remove contamination, the effluent from doctor roller 24 can also be recycled through the recycler 18 to the ink reservoir of the inking head 12. If, on the other hand, the effluent has picked up contamination from the paper receiver, it can be discarded. As most of the effluent, in the preferred mode of operation, would be captured in the skiving process on the imaging roller 14, and that material should not be contaminated with debris, the second fractionation step may be optional.
The transferred ink image is thereafter transferred to a receiver 30 by passing the receiver 30 through the nip 20a formed by the intermediate transfer roller 20 and a transfer roller 26. The intermediate transfer roller 20 and the transfer roller 26 are electrically biased so as to urge the marking particles from the intermediate transfer roller 20 to the receiver 30. The intermediate transfer roller 20 is then sent through a cleaning mechanism 28, similar to cleaning mechanism 22, to remove residual ink and other contaminants.
In an alternative embodiment, fractionation of the ink can be accomplished using a porous imaging roller 14a (see
In this alternate embodiment, the ink is drawn into a porous cylinder 40 of the imaging roller 14a by applying a vacuum V to the interior of the porous cylinder. The effluent is then recycled back into the inking reservoir for the inking head 12a, if desired. The pores of the porous cylinder 40 are sufficiently small so that the marking particles in the ink are not drawn through the pore structure along with the effluent, but, rather, remain on the surface. In another alternative embodiment, fractionation can be accomplished using an imaging roller 14b having an open cell foam structure 50 (see
Although ink jet inks are generally self-fixing, fixing of the ink particles on the receiver can be enhanced using appropriate thermal, solvent, or pressure fusing, as is well known in the art of electrophotography.
In order to produce documents with more one color of particle or, equivalently, if it is desired to use an ink, with clear (non-marking) particles, a printing apparatus is provided with a plurality of modules 10a-10d, such as shown in
In such a case, each module 10a-10d deposits a separate color or separation image of marking particles, or equivalently, non-marking particles on respective imaging rollers 14a-14d. Each separation is then transferred to the intermediate transfer roller 20a-20d within the respective module 10a-10d. Each separation is then transferred, in register, to a receiver 30′, by transporting the receiver 30′ from module to module along path P and subjecting the receiver to appropriate transfer conditions as previously described. The receiver 30′ can be transported using known techniques such as a vacuum or electrostatic web transport, or grippers for example. The modules 10a-10d are driven in synchronization to allow a registered image to be produced by known techniques, such as gearing the modules together, using a drive belt, particularly a toothed drive belt, a frictional drive mechanism, or an encoder and appropriate motor drives, for example. In this manner, a digital printing engine is provided that allows as many separate color or clear inks as desired to be used.
It is also possible to use a single module to print a custom spot color, rather than using a plurality of modules, providing an appropriate color ink that is produced by blending two or more color inks. Similarly, less saturated color inks can be produced by blending certain colors with nonmarking inks within a single station, thereby allowing the other stations to be used for different colors or applications, reducing the number of transfer operations, and improving image quality by reducing artifacts, such as errors in registration.
A particular advantage of this invention is that it enables images, to be created with higher color density than can normally be obtained with conventional ink jet technology. Specifically, conventional ink jet printing deposits approximately 95% by weight of water or other solvent on paper for every 5% by weight of dye or pigment. This high liquid content can saturate a receiver. Moreover, the presence of that much solvent can cause colors to run into one another, resulting in poor color quality, or result in loss of resolution, for example. By separating the marking particles from the solvent prior to deposition on the receiver, as described in this invention, such problems are substantially eliminated. Moreover, the elimination of the large amounts of solvent or water allows more marking particles to be deposited per unit area, thereby allowing higher image densities to be achieved.
Another advantage of this invention is that it enables application of a clear or protective layer over the image. Such layers are often applied in graphic arts to achieve uniform gloss, or protect the image for example. However, because the application of such a clear layer in a conventional ink jet process can cause the colors to run and saturate the receiver, it is not feasible to accomplish this end in conventional ink jet printing apparatus. The elimination of most of the solvent according to this invention allows uncolored marking particles to be deposited over the image, thereby allowing tough overcoats to be deposited. Also, the presence of the clear overcoats allows uniform, controllable gloss levels to be achieved.
In a preferred mode of practicing this invention, the marking (non-marking) particles soften slightly, but not to the point that they significantly dissolve, in the solvent. This facilitates the ability of the ink to be self fixing on the receiver. In another mode of practicing the invention, the marking particles can be permanently fixed by the application of heat and/or pressure, or upon exposure to the vapors of a solvent in which the particles are soluble.
In another preferred mode of practicing this invention, the image is glossed by subjecting the image-bearing receiver, either before or preferably after fusing, to heat and pressure by pressing the image-bearing side of the receiver against a smooth belt or web between a heated nip formed by two or more rollers. One of the rollers is heated to a temperature above the glass transition temperature of the particles. The belt bearing the image-bearing receiver is transported to a point where the image-bearing receiver has cooled to a temperature below the glass transition temperature of the particles, where the image-bearing receiver is separated from the smooth belt or web.
In the practice of this invention, it is preferred to recycle the effluent of the developer. Specifically, the effluent needs to be recycled back into a reservoir that holds the ink for the inking head (e.g. element 12 of
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.