Digital printing system with flexible intermediate transfer member

Information

  • Patent Grant
  • 10994528
  • Patent Number
    10,994,528
  • Date Filed
    Tuesday, July 16, 2019
    5 years ago
  • Date Issued
    Tuesday, May 4, 2021
    3 years ago
Abstract
Methods for printing using printing systems comprising a flexible intermediate transfer member (ITM) disposed around a plurality of guide rollers at which encoders are installed, and an image-forming station at which ink images are formed by droplet deposition by print bars onto the ITM, can include measuring a local velocity of the ITM under one of the print bars, determining a stretch factor for a portion of the ITM based on a relationship between an estimated stretched length fixed physical distance between print bars, controlling an ink deposition parameter according to the stretch factor so as to compensate for stretching of the reference portion of the ITM.
Description
FIELD OF THE INVENTION

The present invention relates to systems and methods for controlling various aspects of a digital printing system that uses an intermediate transfer member. In particular, the present invention is suitable for printing systems in which images are formed by the deposition of ink droplets by multiple print bars, and in which it is desirable to adjust the spacing between ink droplets, in response to longitudinal stretching of the intermediate transfer member.


BACKGROUND

Various printing devices use an inkjet printing process, in which an ink is jetted to form an image onto the surface of an intermediate transfer member (ITM), which is then used to transfer the image onto a substrate. The ITM may be a flexible belt guided over rollers. The flexibility of the belt can cause a portion of the belt to become stretched longitudinally, and especially in the area of an image forming station wherein a drive roller that is downstream of the image-forming station can impart a higher velocity to the belt than an upstream drive roller, i.e., a drive roller that is upstream of the image-forming station. This difference in velocity at the drive rollers keeps a portion of the belt taut as it passes the print bars of the image-forming station. In some cases the tautness-making can lead to the aforementioned stretching. The terms ‘longitudinally’, ‘upstream’ and ‘downstream’ are used herein relative to the print direction, i.e., the travel direction of ink images formed upon the belt.


The portion of the belt that was stretched between the upstream and downstream drive rollers may become unstretched after passing the downstream drive roller, or stretched to a lesser degree, and when images are transferred from the belt to substrate at an impression station, inter-droplet spacing of an image may be different than it was at the time that the image was formed at the image-forming station. In other words, a stretch factor characterizing an extent of stretching at the impression station will often be different from a stretch factor characterizing an extent of stretching at the image-forming station. It is, therefore, necessary to compensate for the different stretching factors.


The following co-pending patent publications provide background material, and are all incorporated herein by reference in their entirety: WO/2017/009722 (publication of PCT/IB2016/053049 filed May 25, 2016), WO/2016/166690 (publication of PCT/IB2016/052120 filed Apr. 4, 2016), WO/2016/151462 (publication of PCT/IB2016/051560 filed Mar. 20, 2016), WO/2016/113698 (publication of PCT/IB2016/050170 filed Jan. 14, 2016), WO/2015/110988 (publication of PCT/IB2015/050501 filed Jan. 22, 2015), WO/2015/036812 (publication of PCT/IB2013/002571 filed Sep. 12, 2013), WO/2015/036864 (publication of PCT/IB2014/002366 filed Sep. 11, 2014), WO/2015/036865 (publication of PCT/IB2014/002395 filed Sep. 11, 2014), WO/2015/036906 (publication of PCT/IB2014/064277 filed Sep. 12, 2014), WO/2013/136220 (publication of PCT/IB2013/051719 filed Mar. 5, 2013), WO/2013/132419 (publication of PCT/IB2013/051717 filed Mar. 5, 2013), WO/2013/132424 (publication of PCT/IB2013/051727 filed Mar. 5, 2013), WO/2013/132420 (publication of PCT/IB2013/051718 filed Mar. 5, 2013), WO/2013/132439 (publication of PCT/IB2013/051755 filed Mar. 5, 2013), WO/2013/132438 (publication of PCT/IB2013/051751 filed Mar. 5, 2013), WO/2013/132418 (publication of PCT/IB2013/051716 filed Mar. 5, 2013), WO/2013/132356 (publication of PCT/IB2013/050245 filed Jan. 10, 2013), WO/2013/132345 (publication of PCT/IB2013/000840 filed Mar. 5, 2013), WO/2013/132339 (publication of PCT/IB2013/000757 filed Mar. 5, 2013), WO/2013/132343 (publication of PCT/IB2013/000822 filed Mar. 5, 2013), WO/2013/132340 (publication of PCT/IB2013/000782 filed Mar. 5, 2013), and WO/2013/132432 (publication of PCT/IB2013/051743 filed Mar. 5, 2013).


SUMMARY

A method of printing is disclosed according to embodiments. The method uses a printing system that comprises (i) a flexible intermediate transfer member (ITM) disposed around a plurality of guide rollers including an upstream guide roller and a downstream guide roller, at which respective upstream and downstream encoders are installed, and (ii) an image-forming station at which ink images are formed by droplet deposition, the image-forming station comprising an upstream print bar and a downstream print bar, the upstream and downstream print bars being disposed over the ITM and respectively aligned with the upstream and downstream guide rollers, the upstream and downstream print bars defining a reference portion RF of the ITM. The method comprises (a) measuring a local velocity V of the ITM under at least one of the upstream and downstream print bars at least once during each time interval TIi, each time interval TIi being one of M consecutive preset divisions of a predetermined time period TT, where M is a positive integer; (b) determining a respective time-interval-specific stretch factor SF(TIi) for the reference portion RF, based on a mathematical relationship between a time-interval-specific stretched length XEST(TIi) and a fixed physical distance XFIX between the upstream and downstream print bars; and (c) controlling an ink deposition parameter of the downstream print bar according to the determined time-interval-specific stretch factor SF(TIi), so as to compensate for stretching of the reference portion of the ITM.


In some embodiments, the time-interval-specific stretched length XEST(TIi) can be obtained by summing, for the immediately preceding M time intervals TIi, respective segment-lengths XSEG(TIi) calculated from the local velocities V measured during each time interval TIi, wherein the calculating includes the use of at least one of a summation, a product, and an integral.


In some embodiments, the ink deposition parameter can be a spacing between respective ink droplets deposited by upstream and downstream print bars onto the ITM.


In some embodiments, it can be that every time interval TIi is one Mth of the predetermined time period TT. In some embodiments, the predetermined time period TT can be a measured travel time of a portion of the ITM from the upstream print bar to the downstream print bar. The portion of the ITM can be the reference portion RF of the ITM.


In some embodiments, M can equal 1. In some embodiments, M can be greater than 1 and not greater than 10. In some embodiments, M can be greater than 10 and not greater than 1,000.


A method of printing is disclosed, according to embodiments. The method uses a printing system that comprises (i) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM), and (ii) an impression station downstream of the image-forming station at which the ink images are transferred to substrate. The method comprises (a) tracking a stretch-factor ratio between a first measured or estimated local stretch factor of the ITM at the image-forming station and a second measured or estimated local stretch factor of the ITM at the impression station; and (b) in response to and in accordance with detected changes in the tracked stretch factor ratio, controlling deposition of droplets onto the ITM at the imaging station so as to modify a spacing between ink droplets in ink images formed on the ITM at the imaging station.


In some embodiments, the method can additionally comprise the steps of (a) transporting the ink images formed on the ITM at the imaging station to the impression station; and (b) transferring the ink images to substrate at the impression station, such that a spacing between ink droplets in ink images when transferred to substrate at the impression station is different than the spacing between the respective ink droplets when the ink images were formed at the image-forming station. The spacing between ink droplets in ink images when transferred to substrate at the impression station can be smaller than the spacing between the respective ink droplets when the ink images were formed at the image-forming station.


In some embodiments, it can be that (i) the image-forming station of the printing system comprises a plurality of print bars, and (ii) the tracking a stretch-factor ratio between a measured or estimated local stretch factor of the ITM at the image-forming station and a measured or estimated local stretch factor of the ITM at the impression station includes tracking a respective stretch-factor ratio between a measured or estimated local stretch factor of the ITM at each print bar of the image-forming station and a measured or estimated local stretch factor of the ITM at the impression station.


A method of printing is disclosed, according to embodiments. The method uses a printing system that comprises (i) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM), and (ii) an impression station downstream of the image-forming station at which the ink images are transferred to substrate. The method comprises (a) tracking a first ITM stretch factor at the image-forming station and a second ITM stretch factor at the impression station, the second ITM stretch factor being different than the first ITM stretch factor; (b) forming the ink images at the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor; and (c) transferring the ink images to substrate at the impression station with a droplet-to-droplet spacing according to the second ITM stretch factor.


In some embodiments, the second stretch factor can be smaller than the first ITM stretch factor.


In some embodiments, it can be that (i) the image-forming station of the printing system comprises a plurality of print bars, (ii) tracking a first ITM stretch factor at the image-forming station includes tracking a respective first ITM stretch factor at each print bar of the image-forming station, and (iii) forming the ink images at the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor includes forming the ink images at each print bar of the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor corresponding to the respective print bar.


A method of printing an image is disclosed, according to embodiments. The method uses a printing system that comprises (i) an intermediate transfer member (ITM) comprising a flexible endless belt mounted over a plurality of guide rollers, (ii) an image-forming station comprising a print bar disposed over a surface of the ITM, the print bar configured to form ink images upon a surface of the ITM by droplet deposition, and (iii) a conveyer for driving rotation of the ITM in a print direction to transport the ink images towards an impression station where they are transferred to substrate. The method comprises (a) depositing ink droplets, by the print bar, so as to form an ink image on the ITM with at least a part of the ink image characterized by a first between-droplet spacing in the print direction; (b) transporting the ink image, by the ITM, to the impression station; and (c) transferring the ink image to substrate at the impression station with a second between-droplet spacing in the print direction, wherein the first between-droplet spacing in the print direction is in accordance with data associated with stretching of the ITM at the print bar.


In some embodiments, the second between-droplet spacing can be smaller than the first between-droplet spacing. In some embodiments the first between-droplet spacing in the print direction can change from time to time.


In embodiments, a printing system comprises (a) a flexible intermediate transfer member (ITM) disposed around a plurality of guide rollers including upstream and downstream guide rollers at which upstream and downstream encoders are respectively installed; (b) an image-forming station at which ink images are formed by droplet deposition, the image-forming station comprising an upstream print bar and a downstream print bar, the upstream and downstream print bars disposed over the ITM and respectively aligned with the upstream and downstream guide rollers, the upstream and downstream print bars (i) having a fixed physical distance XFIX therebetween and (ii) defining a reference portion RF of the ITM; and (c) electronic circuitry for controlling a spacing between respective ink droplets deposited by the upstream and downstream print bars onto the ITM and other ink droplets according to a calculated time-interval-specific stretch factor SF(TIi) so as to compensate for stretching of the reference portion RF of the ITM, wherein (i) a time-interval-specific stretch factor SF(TIi) for each time interval TIi is based on a mathematical relationship between an estimated time-interval-specific stretched length XEST(TIi) and fixed physical distance XFIX, the time-interval-specific stretched length XEST(TIi) being the sum of M segment-lengths XSEG(TIi) corresponding to local velocities V measured under at least one of the upstream and downstream print bars at least once during each respective time interval TIi, and (ii) each respective time interval TIi is one of M consecutive preset divisions of a predetermined time period TT, M being a positive integer.


In embodiments, a printing system comprises (a) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM); (b) an impression station downstream of the image-forming station, at which the ink images are transferred to substrate; and (c) electronic circuitry configured to track a stretch-factor ratio between a measured or estimated local stretch factor of the ITM at the image-forming station and a measured or estimated local stretch factor of the ITM at the impression station, and, in response to and in accordance with detected changes in the tracked stretch factor ratio, control deposition of droplets onto the ITM at the imaging station so as to modify a spacing between ink droplets in ink images formed on the ITM at the imaging station.


In some embodiments, the electronic circuitry can be configured such that modifying of a spacing between ink droplets in ink images formed on the ITM at the imaging station is such that the spacing between ink droplets in ink images formed on the ITM is larger than a spacing between the droplets in the ink images when transferred to substrate at the impression station.


In embodiments, a printing system comprises (a) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM); (b) electronic circuitry configured to track a first ITM stretch factor at the image-forming station and a second ITM stretch factor at an impression station downstream of the image-forming station at which the ink images are transferred to substrate, and to control deposition of droplets onto the ITM at the imaging station so as to modify a spacing between ink droplets in accordance with the first ITM stretch factor; and (c) the impression station, at which the ink images are transferred to substrate with a spacing between ink droplets in accordance with the second stretch factor.


In some embodiments, the second stretch factor can be smaller than the first ITM stretch factor.


In embodiments, a printing system comprises (a) an intermediate transfer member (ITM) comprising a flexible endless belt mounted over a plurality of guide rollers and rotating in a print direction; (b) an image-forming station comprising a print bar disposed over a surface of the ITM, the print bar configured to deposit droplets upon a surface of the ITM so as to form ink images characterized at least in part by a first between-droplet spacing in the print direction which is selected in accordance with in accordance with data associated with stretching of the ITM at the print bar; and (c) a conveyer for driving rotation of the ITM in a print direction to transport the ink images towards an impression station where they are transferred to substrate with a second between-droplet spacing in the print direction.


In some embodiments, the second between-droplet spacing can be smaller than the first between-droplet spacing.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described further, by way of example, with reference to the accompanying drawings, in which the dimensions of components and features shown in the figures are chosen for convenience and clarity of presentation and not necessarily to scale. In the drawings:



FIGS. 1 and 2 are schematic elevation-view illustrations of printing systems according to embodiments.



FIGS. 3A, 3B, 4A and 4B are schematic elevation-view illustrations of print bar and guide roller components of a printing system, according to embodiments.



FIGS. 5 and 6 are schematic elevation-view illustrations of print bar and guide roller components of a printing system, showing comparisons of physical and estimated or calculated length and distance variables, according to embodiments.



FIG. 7 is a schematic diagram of the summation of estimated time-interval-specific segment lengths over a pre-determined time period TT, according to embodiments.



FIG. 8 shows a flowchart of a method of using a printing system, according to embodiments.



FIG. 9 is an elevation-view illustration of a bottom run of a printing system and the impression station thereof, according to embodiments.



FIG. 10 shows illustrations of various inter-droplet spacings at various locations in a printing system, according to embodiments.



FIGS. 11A, 11B, 12 and 13 show flowcharts of methods of using a printing system, according to various embodiments.



FIG. 14 is an elevation-view illustration of a printing system according to embodiments.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. Throughout the drawings, like-referenced characters are generally used to designate like elements. Subscripted reference numbers (e.g., 101) or letter-modified reference numbers (e.g., 100a) may be used to designate multiple separate appearances of elements in a single drawing, e.g. 101 is a single appearance (out of a plurality of appearances) of element 10, and likewise 100a is a single appearance (out of a plurality of appearances) of element 100.


For convenience, in the context of the description herein, various terms are presented here. To the extent that definitions are provided, explicitly or implicitly, here or elsewhere in this application, such definitions are understood to be consistent with the usage of the defined terms by those of skill in the pertinent art(s). Furthermore, such definitions are to be construed in the broadest possible sense consistent with such usage.


A “controller” or, alternately, “electronic circuitry”, as used herein is intended to describe any processor, or computer comprising one or more processors, configured to control one or more aspects of the operation of a printing system or of one or more printing system components according to program instructions that can include rules, machine-learned rules, algorithms and/or heuristics, the programming methods of which are not relevant to this invention. A controller can be a stand-alone controller with a single function as described, or alternatively can combine more than one control function according to the embodiments herein and/or one or more control functions not related to the present invention or not disclosed herein. For example, a single controller may be provided for controlling all aspects of the operation of a printing system, the control functions described herein being one aspect of the control functions of such a controller. Similarly, the functions disclosed herein with respect to a controller can be split or distributed among more than one computer or processor, in which case any such plurality of computers or processors are to be construed as being equivalent to a single computer or processor for the purposes of this definition. For purposes of clarity, some components associated with computer networks, such as, for example, communications equipment and data storage equipment, have been omitted in this specification but a skilled practitioner will understand that a controller as used herein can include any network gear or ancillary equipment necessary for carrying out the functions described herein.


In various embodiments, an ink image is first deposited on a surface of an intermediate transfer member (ITM), and transferred from the surface of the intermediate transfer member to a substrate (i.e. sheet substrate or web substrate). For the present disclosure, the terms “intermediate transfer member”, “image transfer member” and “ITM” are synonymous and may be used interchangeably. The location at which the ink is deposited on the ITM is referred to as the “image forming station”. In many embodiments, the ITM comprises a “belt” or “endless belt” or “blanket” and these terms may be used interchangeably with ITM. The area or region of the printing press at which the ink image is transferred to substrate is an “impression station”. It is appreciated that for some printing systems, there may be a plurality of impression stations.


The terms ‘longitudinally’ and ‘longitudinal’ refer to a direction that is parallel to the direction of travel of an intermediate transfer member (ITM) in a printing system.


Referring now to the figures, FIG. 1 is a schematic diagram of a printing system 100 according to embodiments of the present invention. The printing system 100 of FIG. 1 comprises an intermediate transfer member (ITM) 210 comprising a flexible endless belt mounted over a plurality of rollers 232 (2321 . . . 232N), 240, 260, 253, 255, 242. Some of the rollers may be drive rollers activated by an electric motor, and others may be passive guide rollers. FIG. 1 shows aspects of a specific configuration relevant to discussion of the invention, and the shown configuration is not limited to the presented number and disposition of the rollers, nor is it limited to the shape and relative dimensions, all of which are shown here for convenience of illustrating the system components in a clear manner.


In the example of FIG. 1, the ITM 210 rotates in the clockwise direction relative to the drawing. The direction of belt movement, which is also called the “print direction” as it's the direction of circumferential travel from an image-processing station 212 towards an impression station 216, defines upstream and downstream directions. The print direction is shown in FIG. 1 by arrow 2012, and in FIG. 2 by arrow 150. Regardless of whether a print direction is illustrated in any particular figure, the convention throughout all figures in this disclosure is that print direction is to be understood as being clockwise in any figure or portion thereof wherein an entire ITM or printing system is shown, as left-to-right wherever an upper run of an ITM or other printing system components are shown, and right-to-left where a bottom run of a printing system is shown. Obviously, this is just a convention to achieve a consistency that aids ease of understanding the disclosure, and even the same printing system, if illustrated ‘from the other side’, would show the reverse direction of travel.


Rollers 242, 240 are respectively positioned upstream and downstream of the image forming station 212—thus, roller 242 may be referred to as a “upstream roller” while roller 240 may be referred to as a “downstream roller”. In some embodiments, downstream roller 240 can be a “drive roller”, i.e., a roller that drives the rotation of the ITM 210 because it is engaged with a motor or other conveying mechanism. Upstream roller 242 can also be a drive roller. In other embodiments these two rollers can be unpowered guide rollers, i.e., guide rollers are rollers which rotate with the passage thereupon (or therearound) of the ITM 210 and don't accelerate or regulate the velocity of the ITM 210. Any one or more of the other rollers 232, 260, 253, 255 can be drive rollers or guide rollers depending on system design. For any two rollers, it is possible to view one as a downstream roller and one as an upstream roller, according to the direction of travel of the ITM 210 (e.g., the print direction 1200).


In FIG. 1, the illustrated printing system 100 further comprises the following elements:


(a) the image forming station 212 mentioned earlier, which comprises, for example, print bars 222 (respectively 2221, 2222, 2223 and 2224) each noted in the figure as one of C, M Y and K—for cyan, magenta, yellow and black. The image forming station 212 is configured to form ink images (NOT SHOWN) upon a surface of the ITM 210 (e.g., by droplet deposition thereon).


(b) a drying station 214 for drying the ink images.


(c) the impression station 216, also mentioned earlier, where the ink images are transferred from the surface of the ITM 210 to sheet 231 or web substrate (only sheet substrate is illustrated in FIG. 1).


In the particular non-limiting example of FIG. 1, the impression station 216 comprises an impression cylinder 220 and a blanket/pressure cylinder 218 that carries a compressible layer 219.


The skilled artisan will appreciate that not every component illustrated in FIG. 1 is required, and that a complex digital printing system such as that illustrated in FIG. 1 can comprise additional components which are not shown because they are not relevant to the present disclosure.



FIG. 2 illustrates, schematically, another non-limiting example of a printing system 100 according to embodiments. Print bars 2221 . . . 222N are disposed above a surface of the ITM 210. Each respective one of guide rollers 2321 . . . 232N is ‘aligned’ with a corresponding one of print bars 2221 . . . 222N. For the purposes of this disclosure, ‘corresponding’ means that, by way of example, guide roller 2321 corresponds to print bar 2221, guide roller 2322 corresponds to print bar 2222, and so on. Each guide roller 232 comprises an encoder 250, i.e., a respective one of encoders 2501 . . . 250N. An encoder, as in the example illustrated in FIG. 2, can be a rotary encoder. A rotary encoder, as is known in the art, can be used, inter alia, for measuring rotational speed, and for communicating the rotational speed to a controller (not shown in FIG. 2) for recordation and/or for further data processing). Although not shown in FIG. 2, each drive roller 240, 242 may also include an encoder. What is meant by ‘aligned’ is that the placement of each print bar 222 relative to a corresponding guide roller 232 (or, alternatively, the placement of each guide roller 232 relative to a corresponding each print bar 222) is based on a pre-determined and fixed spatial relationship. For example, as illustrated in FIG. 3A, each of neighboring print bars 222j or 222j+1 (two of the print bars 2221 . . . 222N) is aligned centerline-to-centerline above respective guide roller 232j or 232j+1. The fixed physical distance between the print bars on a horizontal plane, centerline-to-centerline, is shown in FIG. 3A as XFIX. In some embodiments the fixed physical distance between each two neighboring print bars 222 of all the print bars 2221 . . . 222N can be the same XFIX, and in other embodiments (not shown) there can be a different fixed physical distance XFIXj,j+1 between each pair of neighboring print bars 222j, 222j+1 for each print bar 222j. The alignment of print bars with corresponding guide rollers is not necessarily centerline-to-centerline: FIG. 3B illustrates a non-limiting example in which the vertical alignment is such that the actual centerline of each guide roller 232, if extended vertically, would pass somewhat left of a vertical centerline of each corresponding print bar 222. Obviously, the vertically-extended centerline of each guide roller could pass somewhat right of the vertical centerline, or might even not pass through the print bar but instead adjacent to it. In any of these cases, as exemplified in FIG. 3B, the horizontal distance from print bar 222j to print bar 222j+1 is still defined by a fixed physical distance XFIX, and once again it is noted that in some embodiments the fixed physical distance between each two neighboring print bars 222 of all the print bars 2221 . . . 222N can be the same XFIX, or not.


Referring again to FIG. 2, a downstream drive roller 240 according to embodiments can have a higher rotational velocity than an upstream drive roller 242. The result of the difference in rotational velocities is that upstream drive roller 242 has the effect of being a ‘drag’ on the ITM 210. This can be ‘designed-in’ to the operation of the printing system 100 as a way of applying or maintaining a longitudinal tension force F in the ITM 210 that helps ensure that the ITM 210 is taut as it passes through the image-forming station 212 and under the print bars 2221 . . . 222N. The longitudinal tension force, the direction of which is indicated in FIG. 2 by the arrow marked F (the arrow shows only direction and does not indicate location or magnitude), propagates through the section of the ITM 210 that is between downstream drive roller 240 and upstream drive roller 242, i.e., the section between Points A and B in FIG. 2, and as a result the surface velocity of the ITM 210 monotonically increases from Point A to Point B. (Note: for the purpose of this discussion, Points A and B might be anywhere along the arcs where ITM 210 is in contact with the respective drive rollers 240, 242, and the precise location along each respective arc can be calculated but is not particularly relevant here.) This means that for every adjacent two guide rollers 232, the ITM 210 will have a higher velocity at the more downstream one than at the more upstream one, and the more downstream one will have a higher rotational velocity than the more upstream one. In an alternative embodiment (not shown) which produces the same resulting longitudinal tension force, the downstream roller 240 can have the same rotational velocity as upstream roller 242 (or even a smaller rotation velocity than upstream roller 242) if downstream roller 240 has a larger diameter than upstream roller 242.


Referring now to FIG. 4A, neighboring print bars 222j and 222j+1 are respectively aligned with neighboring guide rollers 232j and 232j+1. A local linear velocity of the ITM 210 at the downstream guide roller 232j+1 is Vj+1, and a local linear velocity of the ITM 210 at the upstream guide roller 232j is Vj. The travel of the ITM 210 at these respective velocities causes downstream neighboring print bar 222j+1 to rotate with rotational velocity RVj+1 and upstream neighboring print bar 222j to rotate with rotational velocity RVj. Downstream guide roller 232j+1 includes encoder 250j+1, and upstream guide roller 232j includes encoder 250j. Each encoder 250 is operative to record (or, alternatively and equivalently, cause to record, or be used in the recording of) the respective rotational velocity RV of corresponding guide roller 232 in real time, with the frequency of such recording (e.g., number of values recorded per minute or per second) being a design choice. The recording can be in a non-transitory computer storage medium to enable later analysis or other purposes, or can be in a transitory computer storage medium for use in further calculations that may use rotational velocity of guide rollers, or in both. For example, each rotational velocity RV value can be used to determine a local ITM 210 linear velocity V at each respective guide roller 232. The determining can be done by a controller or other electronic circuitry (not shown in FIG. 4A), as will be discussed later in this disclosure, which can be configured to calculate a linear velocity V of the ITM 210 from a rotational velocity RV by using a known diameter or radius of a respective roller 232 in which an encoder 250 is installed. In other words, a rotational velocity RV can be ‘translated’ to a linear velocity V in a straightforward manner.


Referring again to FIG. 2, longitudinal tension force F, imparted by the difference in rotational velocities of the drive rollers 240, 242, keeps the ITM 210 taut. Because of longitudinal elasticity of the ITM 210, the tension force F can cause the section of the ITM 210 between Points A and B to become not only taut, but also longitudinally stretched. Estimating the extent of this stretching can be a useful step in controlling the deposition of ink droplets onto the ITM 210 so as to compensate for the stretching. One way of estimating the extent of the stretching is to derive a stretch factor for each print bar, preferably a print-bar-specific stretch factor that is valid and applicable at a given point in time or during a given time interval. A stretch factor can be used, inter alia, to control the spacing of ink droplets deposited onto ITM 210 so as to compensate for the stretching. The skilled artisan will appreciate that stretching of an ITM 210 at any point along its length can also be increased or mitigated by other factors such as, for example, temperature, humidity, friction at the guide rollers, cleanliness of any of the relevant components; i.e., the difference in rotational velocity (and/or diameter) of the drive rollers 240, 242 may not be the only contributory factor to the stretching, but this does not affect the efficacy of the methods and systems described herein.



FIG. 4B illustrates the neighboring guide rollers 232j and 232j+1 of FIG. 4A, and shows a reference portion RF of the ITM 210 between the two guide rollers 232j and 232j+1. Reference portion RF of the ITM 210 is a physical segment of the ITM 210 which at times can be equal in length to the fixed physical distance XFIX between corresponding print bars 222j and 222j+1 of FIG. 4A, and which at other times can be a different length than XFIX because of the aforementioned longitudinal stretching. Whilst FIG. 4B (taken in combination with FIG. 4A) shows RF and XFIX as being of equal length, this is shown for convenience only and illustrates only one idealized situation. The actual length of the reference portion RF, whether stretched or unstretched, can be estimated at any given time and used as an indication of stretching of the ITM 210 at the downstream print bar 222j+1. As a non-limiting example, the integral of the linear velocity Vj+1 of the ITM 210 at downstream drive roller 232j+1, i.e., as the ITM 210 passes downstream print bar 222j+1 and downstream drive roller 232j+1, can be taken over a time interval TT. As another non-limiting example, the integral of the linear velocity Vj of the ITM 210 at upstream drive roller 232j, i.e., as the ITM 210 passes upstream print bar 222j and upstream drive roller 232j, can be taken over a time interval TT. An example of a time interval TT is a time interval that represents a nominal travel time of a length of ITM 210 equivalent in length to the reference portion RF over a fixed distance such as XFIX. The nominal travel time can be derived, in a non-limiting example, by estimating or calculating a nominal system-wide velocity of the ITM 210, e.g., the total length of the ITM 210 divided by a designed or observed time for the ITM 210 to make a complete revolution. In other examples, TT can be obtained in other ways, for example by experimentation with an operating printing system 100.


In embodiments, a first estimated length or ‘downstream-based’ estimated length XEST(TT)j+1 is calculated by integrating velocity measurements Vj+1 (the velocity under downstream print bar 222j+1) over a time interval TT corresponding to the travel time of the reference portion RF at a pre-determined velocity. XEST(TT)j+1 is the time-interval-specific (i.e., specific to time period TT) estimated stretched length of the reference portion RF. In other embodiments, a second estimated length or ‘upstream-based’ estimated length XEST(TT)j of the reference portion RF is calculated by integrating velocity measurements Vj (the velocity of the ITM 210 under upstream print bar 222j) over the same time interval TT. The propagation of the tension force F through the reference portion RF produces an increase in velocity along the distance traveled from upstream print bar 222j to downstream print bar 222j+1; therefore, downstream velocity Vj+1 at the downstream roller 232j+1 is higher than upstream velocity Vj at upstream roller 232j, and the downstream-based estimated length XEST(TT)j+1 is therefore greater than upstream-based estimated length XEST(TT)j. As previously noted, this force F is due to the rotational velocity (and/or diameter) of downstream drive roller 240 being greater than that of upstream drive roller 242. The increase in velocity can be a linear function of the distance from upstream print bar 222j.


As shown in FIG. 5, an estimated length XEST(TT)j+1 calculated using local velocity Vj+1 at downstream guide roller 232j+1 is greater than XFIX (this discussion assumes that tension force F is applied to at least the reference portion RF of the ITM 210), and an estimated length XEST(TT)j calculated using local velocity Vj at upstream guide roller 232j is always less than XFIX in such a case. Moreover, if there are no other accelerating or decelerating factors (e.g., external forces), then the arithmetic average of XEST(TT)j and XEST(TT)j+1 is equal to the known, fixed physical distance XFIX. Thus, once XEST(TT)j has been calculated using Vj, then XEST(TT)j+1 can be calculated by subtracting XEST(TT)j from XFIX and then adding the remainder to XFIX. For this reason, the selection of upstream versus downstream roller velocity (respectively, Vj versus Vj+1) as the basis for the derivation of a stretch factor according to the embodiments disclosed herein does not affect the outcome of the derivation—even though the stretch factor is going to be applied when printing at the downstream print bar 222j+1.


As the skilled practitioner will appreciate, it may not always be possible, practical or desirable to obtain enough velocity V data points during a time period TT to perform an integration of local velocity over time to obtain a distance. Therefore, any manner of alternative mathematical operation (or combination of operations) can be used in place of integration, as long as the mathematical operation calculates a reasonable estimation of stretched length. For example, if only one velocity measurement is available for a time interval—or, alternatively, if all velocity (Vj or Vj+1) measurements at a given print bar for a time interval are equal—then the estimated length XEST(TT)j or XEST(TT)j+1 can simply be calculated by multiplying the velocity value by the time interval, i.e., TT. If multiple velocity measurements are available, but not enough to perform an integration, the velocity measurements can be averaged (e.g., by arithmetic average, or weighted average that is weighted according to the respective proportions of time when each velocity value is measured) before multiplying.


Comparing estimated stretched length XEST(TT)j+1 to the known fixed-in-space physical length XFIX—for example, calculating a ratio between the two values—produces a stretch factor SF for the reference portion RF. In other words, in a situation where a reference portion RF of the ITM 210 is not stretched by a tension force F, the length of reference portion RF might be equivalent or based upon (with an offset) to the fixed physical between-print-bar distance XFIX; however, when the ITM is stretched, then the length of the stretched reference portion RF of the ITM 210 is larger by a factor of stretch factor SF (and approximately equal to XEST(TT)j+1). In some cases, an inter-droplet spacing is also made larger due to stretching, by a stretch factor SF. In some embodiments the length of reference portion RF is equal to XFIX at the impression station 216.


In an example, an inter-droplet spacing distance between a first ink droplet deposited on the ITM 210 by an upstream print bar 222j and a second ink droplet deposited by a downstream neighboring print bar 222j+1 is controlled in order to take into account the stretch factor SF as applied to the length of the reference portion RF of the ITM 210. In one example, an inter-droplet spacing on the physical ITM 210 may be close to zero or even zero, as in the case of a color registration or same-color overlay at substantially the same place in an image. In another example, an inter-droplet spacing on the ITM 210 can be much larger if the two droplets are at different places in the image. Referring again to FIG. 5, the arrows indicating the respective lengths of XEST(TT)j+1) and XFIX illustrate this point thusly: the ratio between the length of the XEST(TT)j+1 arrow and the length of the XFIX arrow represents the stretching of a distance between the first and second ink droplets on the surface of the ITM 210 when at least the reference portion RF of the ITM 210 is stretched.


The skilled practitioner will understand that while the above example based on FIG. 5 involved a discussion of ink droplets deposited by successive print bars 222j and 222j+1, this discussion is not intended to be limiting to the specific case of successive print bars, and the example should be interpreted so as to encompass ink droplets deposited by any two print bars 222 in the regardless of whether there are other print bars disposed between the two. For example, a first print bar 222j−1 may deposit droplets of cyan-colored ink, a second print 222j may deposit droplets of magenta-colored ink, and a third print bar 222j+1 may deposit droplets of yellow-colored ink. However, even though the distance between, for example, non-successive print bars 222j−1 and 222j+1 is greater than XFIX (generally speaking, an integer multiple of XFIX where the integer multiple is greater than 1), the stretch factor SF at downstream print bar 222j+1 is still based on the relationship of XEST(TT)j+1 to XFIX. because that appropriately captures the necessary data associated with stretching at the downstream print bar 222j+1.


In another example, an inter-droplet spacing distance between an ink droplet deposited on the ITM 210 by a downstream print bar 222j+1 and another ink droplet deposited by the same downstream print bar 222j+1 is controlled in order to compensate for a stretch factor SF. A full-color ink image, as is known in the art, can typically comprise four monochromatic images (i.e., CMYK color separations of the single image) which are all printed substantially within the confines of the same ink-image space on the surface of an ITM 210, by different print bars. When printing each of the four (e.g., cyan, magenta, yellow and black) images, a stretch factor SF as applied to the length of the reference portion RF of the ITM 210 can be taken into account. This can compensate for stretching at the imaging station and optionally compensate for the extent to which the ITM 210, or any portion thereof, is stretched at the impression station where the ink images are eventually transferred to substrate. Thus, inter-droplet spacing of ink droplets of a given color deposited by a given print bar 222—in this example, upstream print bar 222j—may be controlled based on the same stretch factor SF used in the earlier example with respect to inter-droplet spacing between ink droplets deposited by separate, e.g., upstream and downstream print bars 222j and 222j+1.


Examples of Deriving Stretch Factors


In a first, downstream-based, example, XFIX is 30 cm, and a nominal velocity of the ITM 210 based on design specifications is 3.2 m/s. The time period TT is set at the quotient of XFIX divided by this nominal velocity, or 0.0125 s. During a time period TT, downstream velocity Vj+1 is measured, using encoder 250j+1 of downstream roller 232j+1, to be 3.23 m/s. This yields an estimated length XEST(TT)j+1 of the reference portion RF of 30.28125 cm and a stretch factor SF of 1.009375 when XEST(TT)j+1 is divided by XFIX.


In a second, upstream-based, example, XFIX is 40 cm and the time period TT is set at a value equal to the quotient of XFIX divided by an ITM 210 velocity value of 2 m/s, or 0.02 s; the velocity was calculated in this example by timing an entire revolution of an ITM 210 with a known total length. During a time period TT, upstream velocity Vj is measured multiple times, using encoder 250j of roller 232j, and integrated over the time period TT (which equals 0.02 s). This integral, which serves as an estimated length XEST(TT)j of the reference portion RF, is calculated to be 39.90 cm. As discussed earlier, XFIX is equivalent to the arithmetic average of XEST(TT)j and XEST(TT)j+1, and the difference between fixed physical distance XFIX minus estimated distance XEST(TT)j calculated using velocity Vj measured at the upstream print bar 222j, will equal the difference between an estimated distance XEST(TT)j+1 calculated at downstream print bar 222j+1 minus XFIX. Thus, we can obtain a stretch factor SF of 1.025 by (a) calculating an XEST(TT)j+1 of 0.0401 m (by subtracting 39.90 cm from 40 cm, and adding the difference to 40 cm, and (b) dividing the value of XEST(TT)j+1 by XFIX.


In some embodiments, a pre-determined time interval (or time period) TT, which as described above, can correspond to the travel time of a reference portion RF of the ITM 210 at a pre-determined velocity, is divided into time intervals TI1 . . . TIM, where each time interval TIi is one of M consecutive preset divisions of the predetermined time period TT. In some embodiments, each time interval TIi is exactly one M-th of the time period TT, in which case all M of the M consecutive subdivision time intervals TI1 . . . TIM are equal to each other. In other embodiments, the M consecutive time intervals TI1 . . . TIM can have different durations, in a sequence that repeats every M consecutive time intervals, such that at any given time, the immediately previous M consecutive time intervals TIi will add up to TT.


By dividing the time period TT into M time intervals, it is possible to apply the methods and calculations discussed above with respect to time period TT, with higher resolution, that is, with respect to smaller time intervals TIi. In this way it can be possible to derive a more precise estimation of the length of a reference portion of the ITM, and from there a more precise stretch factor SF. This means deriving, for each time interval TIi of the M time intervals TIi, a time-interval-specific stretch factor SF(TIi) and a time-interval-specific estimated length XEST(TIi) of the reference portion RF of the ITM. Note: the notation SF(TIi) and XEST(TIi) for each of the time-interval-specific stretch factors and estimated lengths, respectively, indicates that each calculation is performed with respect to data (e.g., angular velocities) measured in that specific time interval and is valid for that specific time interval.


In embodiments, M can be any positive integer. For example, M can equal 1. If M equals 1, then there is only one time interval TIi (i.e., TI1), and TI1 is equivalent to TT; the resolution or precision of the derivation of a stretch factor is the same as in the foregoing discussion, which can be referred to as the “M=1 case”. An M equal to 1 might be chosen, for example, if it is not possible or practical to measure velocity with greater time-resolution, or if a print controller cannot adjust stretch factors or inter-droplet spacings frequently enough to justify the collection of the additional data. Alternatively, a low value of M, even a value of 1, might be chosen if it is determined that increasing the value of M will not increase the precision of the derivation of the stretch factor enough to justify the additional computing power. Otherwise, M can be chosen to be greater than 1 in order to increase the precision of the derivation of the stretch factor. In other examples, M is between 1 and 1,000. In still other examples, M is between 10 and 100. It is possible to experiment and determine a value of M beyond which there is no increase in precision of the stretch factor—this value will be design-specific for a given printing system.


As a result of dividing the time period TT into M time intervals TI1 . . . TIM for the purpose of compensating for longitudinal stretching of an ITM, for example the stretching caused by differences in rotational velocity between a downstream drive roller and an upstream drive roller, it is possible to derive and apply a stretch factor SF(TIi) during each time interval TIi. This time-interval-specific stretch factor SF(TIi) can be derived from a time-interval-specific estimated length XEST(TIi) of the reference portion RF of the ITM, and the time-interval-specific estimated length XEST(TIi) can be calculated by summing segment-lengths XSEG(TIi) calculated from local velocities V measured during each respective time interval TIi. Specifically, the time-interval-specific estimated length XEST(TIi) can be calculated by summing segment-lengths XSEG(TIi) calculated for the immediately preceding M time intervals TIi.


Referring now to FIG. 6, the estimated length of a segment XSEG(TIi)j, i.e., a segment-length specific to time interval TIi and calculated from local velocity Vj of the ITM 210 at the upstream guide roller 232j, can be calculated from measurements of local velocity Vj which are made by encoder 250j. The calculations can use integration of velocity V1 values over the time interval TIi, or other appropriate mathematical operators (in the same manner as discussed above with respect to XEST(TT)j and XESTTT)j+1). Similarly, a value for the length of segment XSEG(TIi)j+1 can be calculated using measurements of velocity Vj+1 of the ITM 210 at the downstream guide roller 232j+1. A new segment-length XSEG(TIi)j or XSEG(TIi)j+1 can be calculated for each subsequent and consecutive time-interval TIi, each one of the segment-lengths XSEG(TIi)j or XSEG(TIi)j+1 being calculated from at least one value of velocity (Vj or Vj+1, respectively) measured during the respective time interval TIi.



FIG. 7 shows how segment lengths XSEG(TI1) . . . XSEG(TIM) calculated from local velocity measurements for the immediately preceding M time intervals TI1 . . . TIM are summed, in order to obtain a time-interval-specific stretched length estimate XEST(TIi). As noted earlier, the convention in this disclosure is that movement of the ITM 210 at the image-forming station 212 is always shown as left-to-right in the figures, and for this reason alone, the successive segment lengths XSEG(TI1) . . . XSEG(TIM) are shown from right to left: The first (oldest) segment length by chronological sequence, XSEG(TI1), is shown at right, and the M-th, or last (most recent) segment length of the immediately preceding M segment lengths (i.e., the segment lengths calculated for the immediately preceding M time intervals TIi), XSEG(TIM), is shown at left.


The following discussion relates to the expression “immediately preceding M time intervals TIi” as used herein: As discussed with respect to various embodiments, in each time interval TIi which is one of M consecutive pre-set subdivisions of time period TT, a time-interval-specific stretch factor SF(TIi) is to be determined by comparing an estimated length XEST(TIi) of reference portion RF of ITM 210—when stretched by tension forces in the ITM 210—to the fixed physical distance XFIX between upstream and downstream print bars 222j, 222j+1. By “comparing” we mean performing one or more mathematical operations, as detailed earlier. The estimated length XEST(TIi) used in determining the time-interval-specific stretch factor SF(TIi) is calculated for every time interval TIi, meaning M times as frequently as the “M=1 case” where a stretch factor SF is calculated only once for each entire undivided time period TT. When M is greater than 1, then XEST(TIi) is calculated by summing up M segment-lengths XSEG(TIi) corresponding to M consecutive time intervals TIi. The summing up may begin, as a non-limiting example, with setting the time interval TIi for which XEST(TIi) is being calculated to TI1, or, as a second non-limiting example, starting with the time interval TIi that came just before that one being set to TI1. As long as M consecutive time intervals TIi are addressed in the summing-up, it doesn't matter that the segment-lengths XSEG(TIi) may relate to time intervals TIi of different durations—because of the commutative property of addition, any M consecutive time intervals TIi will always add up to TT and the segment-lengths XSEG(TIi) corresponding to the M consecutive time intervals TIi can be summed up to yield the time-interval-specific estimated length XEST(TIi) for the reference portion RF, valid for time interval TIi.


The preceding discussion, for the sake of clarity, was neutral with respect to which of the upstream and downstream rollers 232j, 232j+1 was the basis for velocity measurements V that were used in calculating segment-lengths XSEG(TIi) and summing up segment-lengths XSEG(TIi) to determine an estimated length XEST(TIi). As explained earlier with respect to the M=1 case, either of the upstream or downstream roller-encoder pairs (i.e., upstream roller 232j with encoder 250j, or downstream roller 232j+1 with encoder 250j+1) may be used. In the case that velocity V measurements of the ITM 210 are taken at the upstream roller 232j, then in each time interval TIi an upstream-based segment-length XSEG(TIi)j is calculated from the one or more velocity values V measured during each time interval TIi of time intervals TIi . . . TIM. M consecutive calculated upstream-based segment-length XSEG(TIi)j . . . XSEG(TIM)j for M consecutive time intervals TI1 . . . TIM are summed to yield an upstream-based time-interval-specific estimated length XEST(TIi)j of reference portion RF. Alternatively, if velocity V measurements of the ITM 210 are taken at the downstream roller 232j+1, then in each time interval TIi a downstream-based segment-length XSEG(TIi)j+1 is calculated from the one or more velocity values V measured during each time interval TIi of time intervals TIi . . . TIM. M consecutive calculated downstream-based segment-length XSEG(TI1)j+1 . . . XSEG(TIM)j+1 for M consecutive time intervals TI1 . . . TIM are summed to yield a downstream-based time-interval-specific estimated length XEST(TIi)j+1 of reference portion RF. From this point, a time-interval-specific stretch factor SF(TIi) may be calculated in the same ways that the stretch factor SF was calculated in the M=1 case. In other words, calculating a time-interval-specific stretch factor SF(TIi) on the basis of time-interval-specific estimated length XEST(TIi)j+1 is entirely analogous to calculating a stretch factor SF on the basis of estimated length XEST(TT)j+1, and calculating a time-interval-specific stretch factor SF(TIi) on the basis of time-interval-specific estimated length XEST(TIi)j is entirely analogous to calculating a stretch factor SF on the basis of estimated length XEST(TT)j.


A method of printing using a printing system 100 is disclosed, including method steps shown in the flowchart in FIG. 8. The method can be performed using a printing system 100 that comprises (i) a flexible ITM 210 disposed around a plurality of guide rollers 232 (2321 . . . 232N) including respective upstream and downstream guide rollers 232j, 232j+1 at which respective upstream and downstream encoders 250j, 250j+1 are installed, and (ii) an image-forming station 212 at which ink images are formed by droplet deposition. The image-forming station 212 can comprise upstream and downstream print bars 222j, 222j+1 disposed over the ITM 210 and respectively aligned with the upstream and downstream guide rollers 232j, 232j+1, and the upstream and downstream print bars 222j, 222j+1 can define a reference portion RF of the ITM 210. The method comprises:


a. Step S01, measuring a local velocity V of the ITM 210 under one of upstream and downstream print bars 222j, 222j+1. Measurements of velocity V can be based on measurements of rotational velocity RV made by respective upstream and downstream encoders 250j, 250j+1 installed at respective upstream and downstream guide rollers 232j, 232j+1. (Rotational velocity is converted to linear velocity by V=RV*R, where R is the radius of roller) Velocity V measurements/calculations are made at least once during each time interval TIi. Each time interval TIi is one of M consecutive pre-set divisions of a time period TT, which in some embodiments can be a measured travel time of a reference portion RF of the ITM 210 over a fixed distance XFIX between the upstream and downstream print bars 222j, 222j+1. The M pre-set time intervals TI1 . . . TIM can be all of the same duration, or can be of different durations. M can equal 1, or can equal any positive integer greater than 1.


b. Step S02, obtaining a time-interval-specific stretched length XEST(TIi) of a reference portion RF of the ITM 210, by summing respective segment-lengths XSEG(TIi) calculated from the local velocities V measured during each respective time interval TIi. The calculating of segment lengths from distances can include integrating, summing, and/or multiplying.


c. Step S03, determining a time-interval-specific stretch factor SF(TIi) for the reference portion RF by comparing (e.g, dividing or otherwise performing mathematical operations) the time-interval-specific stretched length XEST(TIi) and the fixed physical distance XFIX between the upstream and downstream print bars 222j, 222j+1.


d. Step S04, controlling inter-droplet spacing between ink droplets deposited onto the ITM 210 by the downstream print bar 222j+1 and other ink droplets deposited onto the ITM 210, the controlling being in accordance with the time-interval-specific stretch factor SF(TIi) or with any other measure using data associated with stretching of the ITM 210. The controlling can be done so as to compensate for the stretching of the reference portion RF of the ITM 210. In some embodiments, the ‘other ink droplets’ are deposited onto the ITM 210 by an upstream print bar, such as upstream print bar 222j. As discussed elsewhere in this disclosure, the other ink droplets can be deposited onto ITM 210 by any print bar 222 that is located upstream of downstream print bar 222j+1, for example print bar 222j−1. The ‘other ink droplets’ can be in a different color (and the stretching compensation is performed for color registration purposes) or in the same color (and the stretching compensation is performed for image overlay purposes). In other embodiments, the ‘other ink droplets’ are also deposited onto the ITM 210 by downstream print bar 222j+1 and are of the same color, and are intended to be deposited in different locations within an ink image.


In some embodiments, not all of the steps of the method are necessary.


In some embodiments, a stretch factor is used for modifying inter-droplet spacing such that the spacing between two ink droplets deposited upon the ITM is greater when the ITM is locally stretched than when it is not, and the inter-droplet spacing is adjusted using the stretch factor so as to compensate for the stretching. In some embodiments, ITM can be unstretched when images are transferred to a substrate (e.g., a paper or plastic medium) at an impression station. In such cases, applying the stretch factor at the image-forming station ensures that an undistorted image is transferred to substrate. In some embodiments, an ITM is stretched at an impression station by a longitudinal force. The stretching at the impression station can be different than the stretching at the image-forming station where the ink droplets are deposited upon the ITM. For example, the stretching at the impression station can be less than the stretching at the image-forming station. In some embodiments, a stretch factor ratio is calculated or tracked, where the stretch factor ratio is the ratio between a first ITM stretch factor at the image-forming station and a second ITM stretch factor at the impression station. The stretch factor ratio can be applied at the image-forming station, where the inter-droplet spacing of droplets deposited onto an ITM is controlled in accordance with the stretch factor ratio.


Referring to FIG. 9, ink images are transferred to substrate (not shown) when the image-carrying ITM 210 passed between an impression cylinder 220 and a pressure cylinder 218. FIG. 9 illustrates the ‘bottom run’ of a printing system (for example: printing system 100 of FIG. 1 or FIG. 2), and therefore the travel of the ITM 210 is shown as right-to-left. In some embodiments, roller 255, downstream of impression cylinder 220, is a drive roller, and roller 253, upstream of impression cylinder 220, is also a drive roller. Roller 255 rotates with a rotational velocity of RV255 and roller 253 rotates with a rotational velocity of RV253. The ITM 210 will have a local velocity RV255 at downstream roller 255 and a local velocity RV253 at upstream roller 253. If the two rotational velocities are different, i.e., if RV255>RV253, then a longitudinal tension force FIMP will cause the ITM 210 to become locally stretched between the two rollers 253, 255. A local stretch factor for the impression station, SFIMP, can be calculated or estimated by applying any of the methods disclosed herein with respect to obtaining stretch factors SF or SF(TIi) at an image-forming station. Either of the stretch factors can alternatively be estimated or empirically derived, for example, through trial-and-error with multiple print runs, or by using other experimental tools to measure velocities, accelerations or forces.


Applying Stretch Factors and Stretch Factor Ratios


Stretch factors and stretch factor ratios can be used in a number of ways to improve the quality of printed images produced by digital printing systems, and especially indirect inkjet printing systems using intermediate transfer media. Stretch factors and stretch factor ratios can be used to improve color registration and overlay printing by ensuring that the spacing of droplets being deposited by one or more print bars takes into account the local stretching of a reference portion RF of the ITM 210 corresponding to the distance between print bars. Stretch factors and stretch factor ratios can be used to compensate for the local stretching of the ITM 210 at the one or both of an image-forming station and an impression (image-transfer) station, and also to compensate for the difference or ratio between stretch factors at the two stations.


We refer now to FIG. 10, which illustrates, by example, how stretch factors and a stretch factor ratio can be applied to spacing between ink droplets in a printing process. According to embodiments, such as any of the embodiments disclosed herein, a first ITM stretch factor SF—or, alternatively: SF(TIi)—is calculated to represent the local stretching of the ITM 210 at a given downstream print bar 222j+1, for example, a print bar 222j+1 at which one or both of ink droplets 311, 312 are deposited: In some embodiments, only ink droplet 312 is deposited at print bar 222j+1, and ink droplet 311 is deposited by a print bar further upstream, such as print bar 222j or print bar 222j−1. In other embodiments, both of ink droplets 311, 312 are deposited at print bar 222j+1. A second ITM stretch factor SFIMP is calculated to represent the local stretching of the ITM 210 at the impression cylinder 220. As shown in Part A of FIG. 10, an original half-toned digital image comprises pixels 301 and 302, spaced apart a distance D1 (i.e., such that when the image is printed, ink representing the two pixels will be printed using droplets deposited with an inter-droplet spacing D1).


Part B shows the relative spacing of the two ink droplets 311, 312 deposited onto the ITM 210 on the basis of the respective values of the two pixels 301, 302. The distance between the two ink droplets 311, 312 as deposited is D2. D2 is deliberately made greater than D1 by controlling the inter-droplet spacing at the print bar 222j+1, because of the application of a stretch factor ratio SF/SFIMP. This ratio is equal to a stretch factor SF at the image-forming station divided by a stretch factor SFIMP at the impression station (e.g., between the two drive rollers 253, 255 of FIG. 9).


Part C shows the relative spacing of the two ink droplets 311, 312 at location on the ITM 210 after the image-forming station and before the impression station—in other words, when the ITM 210 is presumably slack and there is no specific longitudinal tension applied. Here, the two ink droplets 311, 312 are a distance D3 apart. D3 is smaller than D1 (and, by extension, D2), i.e., the ink droplets are closer together than they are meant to be in the final printed image. This is because the stretching of the ITM 210 at the impression station will cause the distance between the two ink droplets to grow once more, to the original planned D1. The ratio of D1 to D3 is preferably equivalent to the stretch factor SFIMP at the impression station.


Part D of FIG. 10 confirms that, once past a drive roller 253 upstream of impression cylinder 220, the ITM 210 is once again stretched, this time by the impression station stretch factor SFIMP, and the inter-droplet spacing that ‘shrank’ to D3 in the ‘slack’ part of the ITM's rotation in Part C is now stretched back out to D4, which—if all of the stretch factors and stretch factor ratios have been well calculated or estimated—equals D1.


Part E shows the printed image on substrate after transfer at the impression station, and the inter-droplet spacing is D1, the same as the original planned spacing.


The skilled artisan will understand that the process illustrated in FIG. 10 can be carried out using only a stretch factor SF at the imaging station, merely by setting SFIMP, the value of the stretch factor at the impression station, to 1. In cases where the longitudinal tension applied by guide rollers (e.g., guide rollers 253, 255) in the bottom run is lower or much lower than that imparted by guide rollers (e.g., guide roller 240, 242) in the top run, this can be a suitable emulation of using a stretch factor ratio. In other cases, the use of a stretch factor ratio instead of a single ITM stretch factor may produce better printing results. For example, it may be possible to adjust the longitudinal tension of the ITM 210 in the bottom run of a printing system 100 to be substantially equal to the longitudinal tension in the top run. In such a case, as can be understood from the preceding discussion of FIG. 10, the respective ITM stretch factors SF at the imaging station and SFIMP at the impression station are substantially the same, the stretch factor ratio is approximately equal to 1, and no compensation need be made for ITM stretching during ink deposition. The resulting ink images will appear distorted in the ‘slack’ portion of the ITM where no longitudinal tension is applied between the imaging station and the impression station, but the distortion will be substantially eliminated at the impression station by the application of longitudinal tension there.


A method of printing using a printing system 100 is now disclosed, including method steps shown in the flowchart in FIG. 11A. The method can be carried out using a printing system, for example printing system 100 of FIG. 1 which comprises an image-forming station 212 at which ink images are formed by droplet deposition on a rotating flexible ITM 210, and (ii) an impression station 216 downstream of the image-forming station 212 at which the ink images are transferred to substrate 231. The method comprises:


a. Step S11, tracking a stretch-factor ratio between a stretch factor at the image-forming station 212 and a stretch factor at the impression station 216. Each stretch factor (for example stretch factor SF or SF(TIi) at the image-forming station 212 and stretch factor SFIMP at the impression station 216) can be measured, estimated or calculated according to the various embodiments disclosed herein. In some embodiments, the image-forming station 212 of the printing system 100 comprises a plurality of print bars 222, and the tracking a stretch-factor ratio between a stretch factor of the ITM at the image-forming station 212 and a stretch factor at the impression station 216 includes tracking a respective stretch-factor ratio between a local stretch factor at each print bar 222j of print bars 2221 . . . 222N of the image-forming station 212 and a stretch factor at the impression station 216.


b. Step S12, controlling deposition of ink droplets onto the ITM 210 at the imaging 212 station so as to modify a spacing between ink droplets, in response to detected changes in the stretch factor ratio tracked in Step S11.


Another method of printing using a printing system 100 is now disclosed, including method steps shown in the flowchart in FIG. 11B. The method can be carried out using a printing system, for example printing system 100 of FIG. 1 which comprises an image-forming station 212 at which ink images are formed by droplet deposition on a rotating flexible ITM 210, and (ii) an impression station 216 downstream of the image-forming station 212 at which the ink images are transferred to substrate 231. The method comprises:


a. Step S11, as described above.


b. Step S12, as described above.


c. Step S13, transporting the ink images formed on the ITM at the image-forming station 212 (in step S12) to the impression station 216.


d. Step S14, transferring the ink images to substrate at the impression station 216, such that a spacing between ink droplets is different than when the ink images were formed at the image-forming station 212. In some embodiments, the inter-droplet spacing when images are transferred to substrate at the impression station 216 is smaller than when the ink images were formed at the image-forming station 212. In some embodiments, when images are transferred to substrate at the impression station 216, the ink droplets deposited at the image-forming station 212 will have substantially been dried and flattened to form a film, or ink residue, on the ITM 210. The ink residue can comprise a colorant such as a pigment or dye. In other words, it can be that there are no longer any ink droplets per se by the time the ink images arrive at the impression station 216. Nonetheless, the distance between visible pixels formed by deposition of one or more ink droplets, can be measured and used as inter-droplet spacing distances. For example, pixels respectively formed at least in part by droplets 311, 312 of FIG. 10 can be used—for example, for calculating stretch factors and ratios—when the inter-pixel distances can be seen and measured. Inter-droplet spacing distance D1 of FIG. 10 is an example of inter-droplet spacing that, as evidenced by Part E of FIG. 10, is retained at the impression station and on printed substrate as inter-pixel spacing. Thus, any reference to inter-droplet spacing at an impression station in this disclosure can be understood as the underlying inter-droplet spacing evidenced by corresponding inter-pixel spacing. On the other hand, intra-pixel inter-droplet spacing at the impression station may not be visibly measurable as greater than zero because of the post-deposition mixing of colors of ink droplets deposited to form a single pixel. A stretch factor SFIMP as applied to intra-pixel spacing can be made equal to 1, and in this case a calculated stretch factor ratio would be equal to the stretch factor at the image-forming station, i.e., SF or SF(TIi).


To remove any doubt, the expression “spacing between ink droplets in ink images when transferred to substrate at the impression station” should be understood throughout the present disclosure as equivalent to the expression “spacing, when ink images are transferred to substrate at the impression station, between pixels comprising the residue of substantially dried ink droplets”. “Spacing,” in embodiments, can mean centerline-to-centerline. “Ink droplets” in the context of the impression station, in the context of transferring ink images to substrate at the impression station, should be understood to mean the residue or dried residue of the ink droplets.


Another method of printing using a printing system 100 is disclosed, including method steps shown in the flowchart in FIG. 12. The method can be carried out using a printing system, for example printing system 100 of FIG. 1, which comprises an image-forming station 212 at which ink images are formed by droplet deposition on a rotating flexible ITM 210, and an impression station 216 downstream of the image-forming station 212 at which the ink images are transferred to substrate 231. The method comprises:


a. Step S21, tracking a first ITM stretch factor SF or SF(TIi) at the image-forming station 212 and a second ITM stretch factor SFIMP at the impression station 216, the second stretch factor SFIMP being different than the first stretch factor SF or SF(TIi).


b. Step S22, forming ink images on the ITM 210 at the imaging station 212 with a droplet-to-droplet spacing according to the first stretch factor SF or SF(TIi).


c. Step S23, transferring the ink images to substrate at the impression station 216 with a droplet-to-droplet spacing according to the second stretch factor SFIMP. The droplet-to-droplet spacing according to the second stretch factor SFIMP can be evidenced by visible inter-pixel spacing D1 at the impression station 216, as discussed earlier with respect to Step S14. In some embodiments, the second stretch factor SFIMP is smaller than the first stretch factor SF or SF(TIi).


In some embodiments of the method, the image-forming station 212 comprises a plurality of print bars 222, and tracking a first stretch factor SF or SF(TIi) at the image-forming station 212 includes tracking a respective first stretch factor SF or SF(TIi) at each print bar 222j of print bars 2221 . . . 222N of the image-forming station 212. In addition, forming the ink images at the image-forming station 212 with a droplet-to-droplet spacing according to the first stretch factor SF or SF(TIi) includes forming the ink images at each print bar 222j of print bars 2221 . . . 222N of the image-forming station 212 with a droplet-to-droplet spacing according to the first stretch factor SF or SF(TIi) corresponding to the respective print bar 222j.


Yet another method of printing using a printing system 100 is now disclosed, including method steps shown in the flowchart in FIG. 13. The method can be carried out using a printing system, for example printing system 100 of FIG. 1 which comprises an ITM 210 comprising a flexible endless belt mounted over a plurality of guide rollers 232 (2321 . . . 232N), 260, and an image-forming station 212 comprising a print bar 222 disposed over a surface of the ITM 210, the print bar 222 configured to form ink images upon a surface of the ITM by droplet deposition. The suitable printing system 100 additionally comprises a conveyer for driving rotation of the ITM in a print direction (arrow 2012 in FIG. 1) to transport the ink images towards an impression station 216 where they are transferred to substrate 231. The conveyor can include one or more electric motors (not shown) and one or more drive rollers 242, 240, 253, 250. The method comprises:


a. Step S31, depositing ink droplets so as to form an ink image on the ITM 210 with at least a part of the ink image characterized by a first between-droplet spacing in the print direction 2012. In some embodiments, the first between-droplet spacing in the print direction 2012 changes from time to time.


b. Step S32, transporting the ink image to the impression station 216.


c. Step S33, transferring the ink image to substrate at the impression station 216 with a second between-droplet spacing in the print direction.


According to the method, the first between-droplet spacing in the print direction 2012 is in accordance with an observed or calculated stretching of the ITM 210 at the print bar 222.


In some embodiments of the method, the second between-droplet spacing is smaller than the first between-droplet spacing.


Embodiments of a printing system 100 are illustrated in FIG. 14.


According to some embodiments, a printing system 100 comprises a flexible ITM 210 disposed around a plurality of guide rollers 232 (2321 . . . 232N), 260 including upstream and downstream guide rollers 232j, 232j+1 at which respective upstream and downstream encoders 250j, 250j+1 are installed. The printing system 100 additionally comprises an image-forming station 212 at which ink images are formed by droplet deposition, the image-forming station 212 comprising upstream and downstream print bars 222j, 222j+1 disposed over the ITM 210 and respectively aligned with the upstream and downstream guide rollers 232j, 232j+1, the upstream and downstream print bars 222j, 222j+1 having a fixed physical distance XFIX therebetween and defining a reference portion RF of the ITM 210. The printing system additionally comprises electronic circuitry 400 for controlling the spacing between ink droplets deposited by the downstream print bar 222j+1 onto the ITM 210 according to a calculated time-interval-specific stretch factor SF(TIi) so as to compensate for the stretching of the reference portion RF of the ITM 210. Methods for derivation or calculation of the time-interval-specific stretch factor SF(TIi) for each time interval TIi (one of M consecutive preset divisions of a predetermined time period TT) are disclosed above.


According to some embodiments, a printing system 100 comprises an image-forming station 212 at which ink images are formed by droplet deposition on a rotating flexible ITM 210, an impression station 216 downstream of the image-forming station 212, and electronic circuitry configured to (a) track a stretch-factor ratio between a stretch factor SF or SF(TIi) at the image-forming station 212 and a stretch factor SFIMP at the impression station 216, and (b) control deposition of droplets onto the ITM 210 at the imaging station 212 in accordance with detected changes in the tracked stretch factor ratio, so as to modify a spacing between ink droplets in ink images formed on the ITM 210 at the imaging station 212. The electronic circuitry 400 can be configured to ensure that when modifying a spacing between ink droplets in ink images formed on the ITM 210 at the imaging station 212, the spacing is larger than a spacing between the droplets in the ink images when they are transferred to substrate 231 at the impression station 216.


According to some embodiments, a printing system comprises an image-forming station 212 at which ink images are formed by droplet deposition on a rotating flexible ITM 210, electronic circuitry 400 configured to track a first stretch factor SF or SF(TIi) at the image-forming station 212 and a second ITM stretch factor SFIMP at an impression station 216 downstream of the image-forming station 212, and to control deposition of droplets onto the ITM 210 at the imaging station 212 so as to modify a spacing between ink droplets in accordance with the first stretch factor SF or SF(TIi). The printing system 100 also comprises the impression station 216, at which the ink images are transferred to substrate with a spacing between ink droplets in accordance with the second stretch factor SFIMP. The second stretch factor SFIMP can be smaller than the first stretch factor SF or SF(TIi).


According to some embodiments, a printing system 100 comprises a flexible ITM 210 mounted over a plurality of guide rollers 232 (2321 . . . 232N), 260 and rotating in a print direction 1200, an image-forming station 212 comprising a print bar 222 disposed over a surface of the ITM 210, the print bar 222 configured to deposit droplets upon a surface of the ITM 210 so as to form ink images characterized at least in part by a first between-droplet spacing in the print direction 1200 which is selected in accordance with an observed or calculated stretching of the ITM 210 at the print bar, and a conveyer for driving rotation of the ITM 210 in a print direction 1200 to transport the ink images towards an impression station 216 where they are transferred to substrate 231 with a second between-droplet spacing in the print direction 1200. The conveyor can include one or more electric motors (not shown) and one or more drive rollers 242, 240, 253, 250. In some embodiments, the second between-droplet spacing is smaller than the first between-droplet spacing.


The present invention has been described using detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. The described embodiments comprise different features, not all of which are required in all embodiments of the invention. Some embodiments of the present invention utilize only some of the features or possible combinations of the features. Variations of embodiments of the present invention that are described and embodiments of the present invention comprising different combinations of features noted in the described embodiments will occur to persons skilled in the art to which the invention pertains.


In the description and claims of the present disclosure, each of the verbs, “comprise”, “include” and “have”, and conjugates thereof, are used to indicate that the object or objects of the verb are not necessarily a complete listing of members, components, elements or parts of the subject or subjects of the verb. As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a marking” or “at least one marking” may include a plurality of markings.

Claims
  • 1. A method of printing using a printing system that comprises (i) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM), and (ii) an impression station downstream of the image-forming station at which the ink images are transferred to substrate, the method comprising: a. tracking a stretch-factor ratio between a first measured or estimated local stretch factor of the ITM at the image-forming station and a second measured or estimated local stretch factor of the ITM at the impression station;b. in response to and in accordance with detected changes in the tracked stretch factor ratio, controlling deposition of droplets onto the ITM at the imaging station so as to modify a spacing between ink droplets in ink images formed on the ITM at the imaging station.
  • 2. The method of claim 1, additionally comprising the steps of: a. transporting the ink images formed on the ITM at the imaging station to the impression station; andb. transferring the ink images to substrate at the impression station, such that a spacing between ink droplets in ink images when transferred to substrate at the impression station is different than the spacing between the respective ink droplets when the ink images were formed at the image-forming station.
  • 3. The method of claim 2, wherein the spacing between ink droplets in ink images when transferred to substrate at the impression station is smaller than the spacing between the respective ink droplets when the ink images were formed at the image-forming station.
  • 4. The method of claim 1, wherein (i) the image-forming station of the printing system comprises a plurality of print bars, and (ii) the tracking a stretch-factor ratio between a measured or estimated local stretch factor of the ITM at the image-forming station and a measured or estimated local stretch factor of the ITM at the impression station includes tracking a respective stretch-factor ratio between a measured or estimated local stretch factor of the ITM at each print bar of the image-forming station and a measured or estimated local stretch factor of the ITM at the impression station.
  • 5. A method of printing using a printing system that comprises (i) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM), and (ii) an impression station downstream of the image-forming station at which the ink images are transferred to substrate, the method comprising: a. tracking a first ITM stretch factor at the image-forming station and a second ITM stretch factor at the impression station, the second ITM stretch factor being different than the first ITM stretch factor;b. forming the ink images at the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor; andc. transferring the ink images to substrate at the impression station with a droplet-to-droplet spacing according to the second ITM stretch factor.
  • 6. The method of claim 5, wherein the second stretch factor is smaller than the first ITM stretch factor.
  • 7. The method of claim 5, wherein: (i) the image-forming station of the printing system comprises a plurality of print bars, (ii) tracking a first ITM stretch factor at the image-forming station includes tracking a respective first ITM stretch factor at each print bar of the image-forming station, and (iii) forming the ink images at the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor includes forming the ink images at each print bar of the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor corresponding to the respective print bar.
  • 8. A method of printing an image using a printing system that comprises (i) an intermediate transfer member (ITM) comprising a flexible endless belt mounted over a plurality of guide rollers, (ii) an image-forming station comprising a print bar disposed over a surface of the ITM, the print bar configured to form ink images upon a surface of the ITM by droplet deposition, and (iii) a conveyer for driving rotation of the ITM in a print direction to transport the ink images towards an impression station where they are transferred to substrate, the method comprising: a. depositing ink droplets, by the print bar, so as to form an ink image on the ITM with at least a part of the ink image characterized by a first between-droplet spacing in the print direction;b. transporting the ink image, by the ITM, to the impression station; andc. transferring the ink image to substrate at the impression station with a second between-droplet spacing in the print direction,wherein the first between-droplet spacing in the print direction is in accordance with data associated with stretching of the ITM at the print bar and wherein the second between-droplet spacing is smaller than the first between-droplet spacing.
  • 9. The method of claim 8, wherein the first between-droplet spacing in the print direction changes from time to time.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims the benefit of U.S. Provisional Patent Application No. 62/713,632 filed on Aug. 2, 2018, which is incorporated herein by reference in its entirety.

US Referenced Citations (514)
Number Name Date Kind
2839181 Renner Jun 1958 A
3011545 Welsh et al. Dec 1961 A
3053319 Cronin et al. Sep 1962 A
3697551 Thomson Oct 1972 A
3697568 Boissieras et al. Oct 1972 A
3889802 Jonkers et al. Jun 1975 A
3898670 Erikson et al. Aug 1975 A
3947113 Buchan et al. Mar 1976 A
4009958 Kurita et al. Mar 1977 A
4093764 Duckett et al. Jun 1978 A
4293866 Takita et al. Oct 1981 A
4401500 Hamada et al. Aug 1983 A
4535694 Fukuda Aug 1985 A
4538156 Durkee et al. Aug 1985 A
4555437 Tanck Nov 1985 A
4575465 Viola Mar 1986 A
4642654 Toganoh et al. Feb 1987 A
4853737 Hartley et al. Aug 1989 A
4976197 Yamanari et al. Dec 1990 A
5012072 Martin et al. Apr 1991 A
5039339 Phan et al. Aug 1991 A
5062364 Lewis et al. Nov 1991 A
5075731 Kamimura et al. Dec 1991 A
5099256 Anderson Mar 1992 A
5106417 Hauser et al. Apr 1992 A
5128091 Agur et al. Jul 1992 A
5190582 Shinozuka et al. Mar 1993 A
5198835 Ando et al. Mar 1993 A
5246100 Stone et al. Sep 1993 A
5264904 Audi et al. Nov 1993 A
5305099 Morcos Apr 1994 A
5333771 Cesario Aug 1994 A
5349905 Taylor et al. Sep 1994 A
5352507 Bresson et al. Oct 1994 A
5365324 Gu et al. Nov 1994 A
5406884 Okuda et al. Apr 1995 A
5471233 Okamoto et al. Nov 1995 A
5532314 Sexsmith Jul 1996 A
5552875 Sagiv et al. Sep 1996 A
5575873 Pieper et al. Nov 1996 A
5587779 Heeren et al. Dec 1996 A
5608004 Toyoda et al. Mar 1997 A
5613669 Grueninger Mar 1997 A
5614933 Hindman et al. Mar 1997 A
5623296 Fujino et al. Apr 1997 A
5642141 Hale et al. Jun 1997 A
5660108 Pensavecchia Aug 1997 A
5677719 Granzow Oct 1997 A
5679463 Visser et al. Oct 1997 A
5698018 Bishop et al. Dec 1997 A
5723242 Woo et al. Mar 1998 A
5733698 Lehman et al. Mar 1998 A
5736250 Heeks et al. Apr 1998 A
5772746 Sawada et al. Jun 1998 A
5777576 Zur et al. Jul 1998 A
5777650 Blank Jul 1998 A
5841456 Takei et al. Nov 1998 A
5859076 Kozma et al. Jan 1999 A
5880214 Okuda Mar 1999 A
5883144 Bambara et al. Mar 1999 A
5883145 Hurley et al. Mar 1999 A
5884559 Okubo et al. Mar 1999 A
5889534 Johnson et al. Mar 1999 A
5891934 Moffatt et al. Apr 1999 A
5895711 Yamaki et al. Apr 1999 A
5902841 Jaeger et al. May 1999 A
5923929 Ben et al. Jul 1999 A
5929129 Feichtinger Jul 1999 A
5932659 Bambara et al. Aug 1999 A
5935751 Matsuoka et al. Aug 1999 A
5978631 Lee Nov 1999 A
5978638 Tanaka et al. Nov 1999 A
5991590 Chang et al. Nov 1999 A
6004647 Bambara et al. Dec 1999 A
6009284 Weinberger et al. Dec 1999 A
6024018 Darel et al. Feb 2000 A
6024786 Gore Feb 2000 A
6025453 Keller et al. Feb 2000 A
6033049 Fukuda Mar 2000 A
6045817 Ananthapadmanabhan et al. Apr 2000 A
6053438 Romano, Jr. et al. Apr 2000 A
6055396 Pang Apr 2000 A
6059407 Komatsu et al. May 2000 A
6071368 Boyd et al. Jun 2000 A
6072976 Kuriyama et al. Jun 2000 A
6078775 Arai et al. Jun 2000 A
6094558 Shimizu et al. Jul 2000 A
6102538 Ochi et al. Aug 2000 A
6103775 Bambara et al. Aug 2000 A
6108513 Landa et al. Aug 2000 A
6109746 Jeanmaire et al. Aug 2000 A
6132541 Heaton Oct 2000 A
6143807 Lin et al. Nov 2000 A
6166105 Santilli et al. Dec 2000 A
6195112 Fassler et al. Feb 2001 B1
6196674 Takemoto Mar 2001 B1
6213580 Segerstrom et al. Apr 2001 B1
6214894 Bambara et al. Apr 2001 B1
6221928 Kozma et al. Apr 2001 B1
6234625 Wen May 2001 B1
6242503 Kozma et al. Jun 2001 B1
6257716 Yanagawa et al. Jul 2001 B1
6261688 Kaplan et al. Jul 2001 B1
6262137 Kozma et al. Jul 2001 B1
6262207 Rao et al. Jul 2001 B1
6303215 Sonobe et al. Oct 2001 B1
6316512 Bambara et al. Nov 2001 B1
6332943 Herrmann et al. Dec 2001 B1
6354700 Roth Mar 2002 B1
6357869 Rasmussen et al. Mar 2002 B1
6357870 Beach et al. Mar 2002 B1
6358660 Agler et al. Mar 2002 B1
6363234 Landa et al. Mar 2002 B2
6364451 Silverbrook Apr 2002 B1
6377772 Chowdry et al. Apr 2002 B1
6383278 Hirasa et al. May 2002 B1
6386697 Yamamoto et al. May 2002 B1
6390617 Iwao May 2002 B1
6396528 Yanagawa May 2002 B1
6397034 Tarnawskyj et al. May 2002 B1
6400913 De et al. Jun 2002 B1
6402317 Yanagawa et al. Jun 2002 B2
6409331 Gelbart Jun 2002 B1
6432501 Yang et al. Aug 2002 B1
6438352 Landa et al. Aug 2002 B1
6454378 Silverbrook et al. Sep 2002 B1
6471803 Pelland et al. Oct 2002 B1
6530321 Andrew et al. Mar 2003 B2
6530657 Polierer Mar 2003 B2
6531520 Bambara et al. Mar 2003 B1
6551394 Hirasa et al. Apr 2003 B2
6551716 Landa et al. Apr 2003 B1
6554189 Good et al. Apr 2003 B1
6559969 Lapstun May 2003 B1
6575547 Sakuma Jun 2003 B2
6586100 Pickering et al. Jul 2003 B1
6590012 Miyabayashi Jul 2003 B2
6608979 Landa et al. Aug 2003 B1
6623817 Yang et al. Sep 2003 B1
6630047 Jing et al. Oct 2003 B2
6639527 Johnson Oct 2003 B2
6648468 Shinkoda et al. Nov 2003 B2
6678068 Richter et al. Jan 2004 B1
6682189 May et al. Jan 2004 B2
6685769 Karl et al. Feb 2004 B1
6704535 Kobayashi et al. Mar 2004 B2
6709096 Beach et al. Mar 2004 B1
6716562 Uehara et al. Apr 2004 B2
6719423 Chowdry et al. Apr 2004 B2
6720367 Taniguchi et al. Apr 2004 B2
6755519 Gelbart et al. Jun 2004 B2
6761446 Chowdry et al. Jul 2004 B2
6770331 Mielke et al. Aug 2004 B1
6789887 Yang et al. Sep 2004 B2
6811840 Cross Nov 2004 B1
6827018 Hartmann et al. Dec 2004 B1
6881458 Ludwig et al. Apr 2005 B2
6898403 Baker et al. May 2005 B2
6912952 Landa et al. Jul 2005 B1
6916862 Ota et al. Jul 2005 B2
6917437 Myers et al. Jul 2005 B1
6966712 Trelewicz et al. Nov 2005 B2
6970674 Sato et al. Nov 2005 B2
6974022 Saeki Dec 2005 B2
6982799 Lapstun Jan 2006 B2
6983692 Beauchamp et al. Jan 2006 B2
7025453 Ylitalo et al. Apr 2006 B2
7057760 Lapstun et al. Jun 2006 B2
7084202 Pickering et al. Aug 2006 B2
7128412 King et al. Oct 2006 B2
7129858 Ferran et al. Oct 2006 B2
7134953 Reinke Nov 2006 B2
7160377 Zoch et al. Jan 2007 B2
7204584 Lean et al. Apr 2007 B2
7213900 Ebihara May 2007 B2
7224478 Lapstun et al. May 2007 B1
7265819 Raney Sep 2007 B2
7271213 Hoshida et al. Sep 2007 B2
7296882 Buehler et al. Nov 2007 B2
7300133 Folkins et al. Nov 2007 B1
7300147 Johnson Nov 2007 B2
7304753 Richter et al. Dec 2007 B1
7322689 Kohne et al. Jan 2008 B2
7334520 Geissler et al. Feb 2008 B2
7348368 Kakiuchi et al. Mar 2008 B2
7360887 Konno Apr 2008 B2
7362464 Kitazawa Apr 2008 B2
7459491 Tyvoll et al. Dec 2008 B2
7527359 Stevenson et al. May 2009 B2
7575314 Desie et al. Aug 2009 B2
7612125 Muller et al. Nov 2009 B2
7655707 Ma Feb 2010 B2
7655708 House et al. Feb 2010 B2
7699922 Breton et al. Apr 2010 B2
7708371 Yamanobe May 2010 B2
7709074 Uchida et al. May 2010 B2
7712890 Yahiro May 2010 B2
7732543 Loch et al. Jun 2010 B2
7732583 Annoura et al. Jun 2010 B2
7808670 Lapstun et al. Oct 2010 B2
7810922 Gervasi et al. Oct 2010 B2
7845788 Oku Dec 2010 B2
7867327 Sano et al. Jan 2011 B2
7876345 Houjou Jan 2011 B2
7910183 Wu Mar 2011 B2
7919544 Matsuyama et al. Apr 2011 B2
7942516 Ohara et al. May 2011 B2
7977408 Matsuyama et al. Jul 2011 B2
7985784 Kanaya et al. Jul 2011 B2
8002400 Kibayashi et al. Aug 2011 B2
8012538 Yokouchi Sep 2011 B2
8025389 Yamanobe et al. Sep 2011 B2
8038284 Hori et al. Oct 2011 B2
8041275 Soria et al. Oct 2011 B2
8042906 Chiwata et al. Oct 2011 B2
8059309 Lapstun et al. Nov 2011 B2
8095054 Nakamura Jan 2012 B2
8109595 Tanaka et al. Feb 2012 B2
8122846 Stiblert et al. Feb 2012 B2
8147055 Cellura et al. Apr 2012 B2
8162428 Eun et al. Apr 2012 B2
8177351 Taniuchi et al. May 2012 B2
8186820 Chiwata May 2012 B2
8192904 Nagai et al. Jun 2012 B2
8215762 Ageishi Jul 2012 B2
8242201 Goto et al. Aug 2012 B2
8256857 Folkins et al. Sep 2012 B2
8263683 Gibson et al. Sep 2012 B2
8264135 Ozolins et al. Sep 2012 B2
8295733 Imoto Oct 2012 B2
8303072 Shibata et al. Nov 2012 B2
8304043 Nagashima et al. Nov 2012 B2
8353589 Ikeda et al. Jan 2013 B2
8434847 Dejong et al. May 2013 B2
8460450 Taverizatshy et al. Jun 2013 B2
8469476 Mandel et al. Jun 2013 B2
8474963 Hasegawa et al. Jul 2013 B2
8536268 Karjala et al. Sep 2013 B2
8546466 Yamashita et al. Oct 2013 B2
8556400 Yatake et al. Oct 2013 B2
8693032 Goddard et al. Apr 2014 B2
8711304 Mathew et al. Apr 2014 B2
8714731 Leung et al. May 2014 B2
8746873 Tsukamoto et al. Jun 2014 B2
8779027 Idemura et al. Jul 2014 B2
8802221 Noguchi et al. Aug 2014 B2
8867097 Mizuno Oct 2014 B2
8885218 Hirose Nov 2014 B2
8891128 Yamazaki Nov 2014 B2
8894198 Hook et al. Nov 2014 B2
8919946 Suzuki et al. Dec 2014 B2
9004629 De et al. Apr 2015 B2
9186884 Landa et al. Nov 2015 B2
9229664 Landa et al. Jan 2016 B2
9264559 Motoyanagi et al. Feb 2016 B2
9284469 Song et al. Mar 2016 B2
9290016 Landa et al. Mar 2016 B2
9327496 Landa et al. May 2016 B2
9353273 Landa et al. May 2016 B2
9381736 Landa et al. Jul 2016 B2
9446586 Matos et al. Sep 2016 B2
9498946 Landa et al. Nov 2016 B2
9505208 Shmaiser et al. Nov 2016 B2
9517618 Landa et al. Dec 2016 B2
9566780 Landa et al. Feb 2017 B2
9568862 Shmaiser et al. Feb 2017 B2
9643400 Landa et al. May 2017 B2
9643403 Landa et al. May 2017 B2
9776391 Landa et al. Oct 2017 B2
9782993 Landa et al. Oct 2017 B2
9849667 Landa et al. Dec 2017 B2
9884479 Landa et al. Feb 2018 B2
9902147 Shmaiser et al. Feb 2018 B2
9914316 Landa et al. Mar 2018 B2
10065411 Landa et al. Sep 2018 B2
10175613 Watanabe Jan 2019 B2
10179447 Shmaiser et al. Jan 2019 B2
10190012 Landa et al. Jan 2019 B2
10195843 Landa et al. Feb 2019 B2
10201968 Landa et al. Feb 2019 B2
10226920 Shmaiser et al. Mar 2019 B2
10266711 Landa et al. Apr 2019 B2
10300690 Landa et al. May 2019 B2
10357963 Landa et al. Jul 2019 B2
10357985 Landa et al. Jul 2019 B2
10427399 Shmaiser et al. Oct 2019 B2
10434761 Landa et al. Oct 2019 B2
10703094 Shmaiser et al. Jul 2020 B2
20010022607 Takahashi et al. Sep 2001 A1
20020041317 Kashiwazaki et al. Apr 2002 A1
20020064404 Iwai May 2002 A1
20020102374 Gervasi et al. Aug 2002 A1
20020121220 Lin Sep 2002 A1
20020150408 Mosher et al. Oct 2002 A1
20020164494 Grant et al. Nov 2002 A1
20020197481 Jing et al. Dec 2002 A1
20030004025 Okuno et al. Jan 2003 A1
20030018119 Frenkel et al. Jan 2003 A1
20030030686 Abe et al. Feb 2003 A1
20030032700 Morrison et al. Feb 2003 A1
20030043258 Kerr et al. Mar 2003 A1
20030054139 Ylitalo et al. Mar 2003 A1
20030055129 Alford Mar 2003 A1
20030063179 Adachi Apr 2003 A1
20030064317 Bailey et al. Apr 2003 A1
20030081964 Shimura et al. May 2003 A1
20030118381 Law et al. Jun 2003 A1
20030129435 Blankenship et al. Jul 2003 A1
20030186147 Pickering et al. Oct 2003 A1
20030214568 Nishikawa et al. Nov 2003 A1
20030234849 Pan et al. Dec 2003 A1
20040003863 Eckhardt Jan 2004 A1
20040020382 McLean et al. Feb 2004 A1
20040036758 Sasaki et al. Feb 2004 A1
20040047666 Imaizumi et al. Mar 2004 A1
20040087707 Zoch et al. May 2004 A1
20040123761 Szumla et al. Jul 2004 A1
20040125188 Szumla et al. Jul 2004 A1
20040145643 Nakamura Jul 2004 A1
20040173111 Okuda Sep 2004 A1
20040200369 Brady Oct 2004 A1
20040228642 Iida et al. Nov 2004 A1
20040246324 Nakashima Dec 2004 A1
20040246326 Dwyer et al. Dec 2004 A1
20040252175 Bejat et al. Dec 2004 A1
20050031807 Quintens et al. Feb 2005 A1
20050082146 Axmann Apr 2005 A1
20050110855 Taniuchi et al. May 2005 A1
20050111861 Calamita et al. May 2005 A1
20050134874 Overall et al. Jun 2005 A1
20050150408 Hesterman Jul 2005 A1
20050195235 Kitao Sep 2005 A1
20050235870 Ishihara Oct 2005 A1
20050266332 Pavlisko et al. Dec 2005 A1
20050272334 Wang et al. Dec 2005 A1
20060004123 Wu et al. Jan 2006 A1
20060135709 Hasegawa et al. Jun 2006 A1
20060164488 Taniuchi et al. Jul 2006 A1
20060164489 Vega et al. Jul 2006 A1
20060192827 Takada et al. Aug 2006 A1
20060233578 Maki et al. Oct 2006 A1
20060286462 Jackson et al. Dec 2006 A1
20070014595 Kawagoe Jan 2007 A1
20070025768 Komatsu et al. Feb 2007 A1
20070029171 Nemedi Feb 2007 A1
20070045939 Toya et al. Mar 2007 A1
20070054981 Yanagi et al. Mar 2007 A1
20070064077 Konno Mar 2007 A1
20070077520 Maemoto Apr 2007 A1
20070120927 Snyder et al. May 2007 A1
20070123642 Banning et al. May 2007 A1
20070134030 Lior et al. Jun 2007 A1
20070144368 Barazani et al. Jun 2007 A1
20070146462 Taniuchi et al. Jun 2007 A1
20070147894 Yokota et al. Jun 2007 A1
20070166071 Shima Jul 2007 A1
20070176995 Kadomatsu et al. Aug 2007 A1
20070189819 Uehara et al. Aug 2007 A1
20070199457 Cyman, Jr. et al. Aug 2007 A1
20070229639 Yahiro Oct 2007 A1
20070253726 Kagawa Nov 2007 A1
20070257955 Tanaka et al. Nov 2007 A1
20070285486 Harris et al. Dec 2007 A1
20080006176 Houjou Jan 2008 A1
20080030536 Furukawa et al. Feb 2008 A1
20080032072 Taniuchi et al. Feb 2008 A1
20080044587 Maeno et al. Feb 2008 A1
20080055356 Yamanobe Mar 2008 A1
20080055381 Doi et al. Mar 2008 A1
20080074462 Hirakawa Mar 2008 A1
20080112912 Springob et al. May 2008 A1
20080124158 Folkins May 2008 A1
20080138546 Soria et al. Jun 2008 A1
20080166495 Maeno et al. Jul 2008 A1
20080167185 Hirota Jul 2008 A1
20080175612 Oikawa et al. Jul 2008 A1
20080196612 Rancourt et al. Aug 2008 A1
20080196621 Ikuno et al. Aug 2008 A1
20080213548 Koganehira et al. Sep 2008 A1
20080236480 Furukawa et al. Oct 2008 A1
20080253812 Pearce et al. Oct 2008 A1
20090022504 Kuwabara et al. Jan 2009 A1
20090041515 Kim Feb 2009 A1
20090041932 Ishizuka et al. Feb 2009 A1
20090074492 Ito Mar 2009 A1
20090082503 Yanagi et al. Mar 2009 A1
20090087565 Houjou Apr 2009 A1
20090098385 Kaemper et al. Apr 2009 A1
20090116885 Ando May 2009 A1
20090148200 Hara et al. Jun 2009 A1
20090165937 Inoue et al. Jul 2009 A1
20090190951 Torimaru et al. Jul 2009 A1
20090202275 Nishida et al. Aug 2009 A1
20090211490 Ikuno et al. Aug 2009 A1
20090220873 Enomoto et al. Sep 2009 A1
20090237479 Yamashita et al. Sep 2009 A1
20090256896 Scarlata Oct 2009 A1
20090279170 Miyazaki et al. Nov 2009 A1
20090315926 Yamanobe Dec 2009 A1
20090317555 Hori Dec 2009 A1
20090318591 Ageishi et al. Dec 2009 A1
20100012023 Lefevre et al. Jan 2010 A1
20100053292 Thayer et al. Mar 2010 A1
20100053293 Thayer et al. Mar 2010 A1
20100066796 Yanagi et al. Mar 2010 A1
20100075843 Ikuno et al. Mar 2010 A1
20100086692 Ohta et al. Apr 2010 A1
20100091064 Araki et al. Apr 2010 A1
20100225695 Fujikura Sep 2010 A1
20100231623 Hirato Sep 2010 A1
20100239789 Umeda Sep 2010 A1
20100245511 Ageishi Sep 2010 A1
20100282100 Okuda et al. Nov 2010 A1
20100285221 Oki et al. Nov 2010 A1
20100303504 Funamoto et al. Dec 2010 A1
20100310281 Miura et al. Dec 2010 A1
20110044724 Funamoto et al. Feb 2011 A1
20110058001 Gila et al. Mar 2011 A1
20110058859 Nakamatsu et al. Mar 2011 A1
20110085828 Kosako et al. Apr 2011 A1
20110128300 Gay et al. Jun 2011 A1
20110141188 Morita Jun 2011 A1
20110149002 Kessler Jun 2011 A1
20110150509 Komiya Jun 2011 A1
20110150541 Michibata Jun 2011 A1
20110169889 Kojima et al. Jul 2011 A1
20110195260 Lee et al. Aug 2011 A1
20110199414 Lang Aug 2011 A1
20110234683 Komatsu Sep 2011 A1
20110234689 Saito Sep 2011 A1
20110249090 Moore et al. Oct 2011 A1
20110269885 Imai Nov 2011 A1
20110279554 Dannhauser et al. Nov 2011 A1
20110304674 Sambhy et al. Dec 2011 A1
20120013693 Tasaka et al. Jan 2012 A1
20120013694 Kanke Jan 2012 A1
20120013928 Yoshida et al. Jan 2012 A1
20120026224 Anthony et al. Feb 2012 A1
20120039647 Brewington et al. Feb 2012 A1
20120094091 Van et al. Apr 2012 A1
20120098882 Onishi et al. Apr 2012 A1
20120105561 Taniuchi et al. May 2012 A1
20120105562 Sekiguchi et al. May 2012 A1
20120113180 Tanaka et al. May 2012 A1
20120113203 Kushida et al. May 2012 A1
20120127250 Kanasugi et al. May 2012 A1
20120127251 Tsuji et al. May 2012 A1
20120140009 Kanasugi et al. Jun 2012 A1
20120156375 Brust et al. Jun 2012 A1
20120156624 Rondon et al. Jun 2012 A1
20120162302 Oguchi et al. Jun 2012 A1
20120163846 Andoh et al. Jun 2012 A1
20120194830 Gaertner et al. Aug 2012 A1
20120237260 Sengoku et al. Sep 2012 A1
20120287260 Lu et al. Nov 2012 A1
20120301186 Yang et al. Nov 2012 A1
20120314077 Clavenna, II et al. Dec 2012 A1
20130017006 Suda Jan 2013 A1
20130044188 Nakamura et al. Feb 2013 A1
20130057603 Gordon Mar 2013 A1
20130088543 Tsuji et al. Apr 2013 A1
20130120513 Thayer et al. May 2013 A1
20130201237 Thomson et al. Aug 2013 A1
20130234080 Torikoshi et al. Sep 2013 A1
20130242016 Edwards et al. Sep 2013 A1
20130338273 Shimanaka et al. Dec 2013 A1
20140001013 Takifuji et al. Jan 2014 A1
20140011125 Inoue et al. Jan 2014 A1
20140043398 Butler et al. Feb 2014 A1
20140104360 Häcker et al. Apr 2014 A1
20140168330 Liu et al. Jun 2014 A1
20140175707 Wolk et al. Jun 2014 A1
20140232782 Mukai et al. Aug 2014 A1
20140267777 Le et al. Sep 2014 A1
20140334855 Onishi Nov 2014 A1
20140339056 Iwakoshi et al. Nov 2014 A1
20150024648 Landa et al. Jan 2015 A1
20150025179 Landa et al. Jan 2015 A1
20150042736 Landa Feb 2015 A1
20150072090 Landa et al. Mar 2015 A1
20150085036 Liu et al. Mar 2015 A1
20150085037 Liu et al. Mar 2015 A1
20150116408 Armbruster et al. Apr 2015 A1
20150118503 Landa et al. Apr 2015 A1
20150195509 Phipps Jul 2015 A1
20150210065 Kelly et al. Jul 2015 A1
20150304531 Rodriguez et al. Oct 2015 A1
20150336378 Guttmann et al. Nov 2015 A1
20150361288 Song et al. Dec 2015 A1
20160031246 Sreekumar et al. Feb 2016 A1
20160222232 Landa et al. Aug 2016 A1
20160286462 Gohite et al. Sep 2016 A1
20160375680 Nishitani et al. Dec 2016 A1
20170028688 Dannhauser et al. Feb 2017 A1
20170104887 Nomura Apr 2017 A1
20170192374 Landa et al. Jul 2017 A1
20170244956 Stiglic et al. Aug 2017 A1
20180093470 Landa et al. Apr 2018 A1
20180259888 Mitsui et al. Sep 2018 A1
20190016114 Sugiyama et al. Jan 2019 A1
20190023000 Landa et al. Jan 2019 A1
20190023919 Landa et al. Jan 2019 A1
20190094727 Landa et al. Mar 2019 A1
20190118530 Landa et al. Apr 2019 A1
20190152218 Stein et al. May 2019 A1
20190168502 Shmaiser et al. Jun 2019 A1
20190193391 Landa et al. Jun 2019 A1
20190202198 Shmaiser et al. Jul 2019 A1
20190218411 Landa et al. Jul 2019 A1
20190256724 Landa et al. Aug 2019 A1
20200156366 Shmaiser et al. May 2020 A1
20200171813 Chechik et al. Jun 2020 A1
20200189264 Landa et al. Jun 2020 A1
20200198322 Landa et al. Jun 2020 A1
Foreign Referenced Citations (307)
Number Date Country
1121033 Apr 1996 CN
1200085 Nov 1998 CN
1212229 Mar 1999 CN
1324901 Dec 2001 CN
1493514 May 2004 CN
1720187 Jan 2006 CN
1261831 Jun 2006 CN
1809460 Jul 2006 CN
1289368 Dec 2006 CN
101073937 Nov 2007 CN
101177057 May 2008 CN
101249768 Aug 2008 CN
101344746 Jan 2009 CN
101359210 Feb 2009 CN
101508200 Aug 2009 CN
101524916 Sep 2009 CN
101544100 Sep 2009 CN
101544101 Sep 2009 CN
101607468 Dec 2009 CN
201410787 Feb 2010 CN
101835611 Sep 2010 CN
101873982 Oct 2010 CN
102248776 Nov 2011 CN
102555450 Jul 2012 CN
102648095 Aug 2012 CN
102925002 Feb 2013 CN
103045008 Apr 2013 CN
103309213 Sep 2013 CN
103991293 Aug 2014 CN
104271356 Jan 2015 CN
104284850 Jan 2015 CN
104618642 May 2015 CN
105058999 Nov 2015 CN
102010060999 Jun 2012 DE
0457551 Nov 1991 EP
0499857 Aug 1992 EP
0606490 Jul 1994 EP
0609076 Aug 1994 EP
0613791 Sep 1994 EP
0530627 Mar 1997 EP
0784244 Jul 1997 EP
0835762 Apr 1998 EP
0843236 May 1998 EP
0854398 Jul 1998 EP
1013466 Jun 2000 EP
1146090 Oct 2001 EP
1158029 Nov 2001 EP
0825029 May 2002 EP
1247821 Oct 2002 EP
0867483 Jun 2003 EP
0923007 Mar 2004 EP
1454968 Sep 2004 EP
1503326 Feb 2005 EP
1777243 Apr 2007 EP
2028238 Feb 2009 EP
2042317 Apr 2009 EP
2065194 Jun 2009 EP
2228210 Sep 2010 EP
2270070 Jan 2011 EP
2042318 Feb 2011 EP
2042325 Feb 2012 EP
2634010 Sep 2013 EP
2683556 Jan 2014 EP
2075635 Oct 2014 EP
748821 May 1956 GB
1496016 Dec 1977 GB
1520932 Aug 1978 GB
1522175 Aug 1978 GB
2321430 Jul 1998 GB
S5578904 Jun 1980 JP
S57121446 Jul 1982 JP
S6076343 Apr 1985 JP
S60199692 Oct 1985 JP
S6223783 Jan 1987 JP
H03248170 Nov 1991 JP
H05147208 Jun 1993 JP
H05192871 Aug 1993 JP
H05297737 Nov 1993 JP
H06954 Jan 1994 JP
H06100807 Apr 1994 JP
H06171076 Jun 1994 JP
H06345284 Dec 1994 JP
H07112841 May 1995 JP
H07186453 Jul 1995 JP
H07238243 Sep 1995 JP
H0862999 Mar 1996 JP
H08112970 May 1996 JP
2529651 Aug 1996 JP
H09123432 May 1997 JP
H09157559 Jun 1997 JP
H09281851 Oct 1997 JP
H09314867 Dec 1997 JP
H1142811 Feb 1999 JP
H11503244 Mar 1999 JP
H11106081 Apr 1999 JP
H11245383 Sep 1999 JP
2000108320 Apr 2000 JP
2000108334 Apr 2000 JP
2000141710 May 2000 JP
2000168062 Jun 2000 JP
2000169772 Jun 2000 JP
2000206801 Jul 2000 JP
2001088430 Apr 2001 JP
2001098201 Apr 2001 JP
2001139865 May 2001 JP
3177985 Jun 2001 JP
2001164165 Jun 2001 JP
2001199150 Jul 2001 JP
2001206522 Jul 2001 JP
2002020666 Jan 2002 JP
2002049211 Feb 2002 JP
2002069346 Mar 2002 JP
2002103598 Apr 2002 JP
2002169383 Jun 2002 JP
2002229276 Aug 2002 JP
2002234243 Aug 2002 JP
2002278365 Sep 2002 JP
2002304066 Oct 2002 JP
2002326733 Nov 2002 JP
2002371208 Dec 2002 JP
2003057967 Feb 2003 JP
2003114558 Apr 2003 JP
2003145914 May 2003 JP
2003183557 Jul 2003 JP
2003211770 Jul 2003 JP
2003219271 Jul 2003 JP
2003246135 Sep 2003 JP
2003246484 Sep 2003 JP
2003292855 Oct 2003 JP
2003313466 Nov 2003 JP
2004009632 Jan 2004 JP
2004019022 Jan 2004 JP
2004025708 Jan 2004 JP
2004034441 Feb 2004 JP
2004077669 Mar 2004 JP
2004114377 Apr 2004 JP
2004114675 Apr 2004 JP
2004148687 May 2004 JP
2004231711 Aug 2004 JP
2004524190 Aug 2004 JP
2004261975 Sep 2004 JP
2004325782 Nov 2004 JP
2005014255 Jan 2005 JP
2005014256 Jan 2005 JP
2005114769 Apr 2005 JP
2005215247 Aug 2005 JP
2005307184 Nov 2005 JP
2005319593 Nov 2005 JP
2006001688 Jan 2006 JP
2006023403 Jan 2006 JP
2006095870 Apr 2006 JP
2006102975 Apr 2006 JP
2006137127 Jun 2006 JP
2006143778 Jun 2006 JP
2006152133 Jun 2006 JP
2006224583 Aug 2006 JP
2006231666 Sep 2006 JP
2006234212 Sep 2006 JP
2006243212 Sep 2006 JP
2006263984 Oct 2006 JP
2006347081 Dec 2006 JP
2006347085 Dec 2006 JP
2007025246 Feb 2007 JP
2007041530 Feb 2007 JP
2007069584 Mar 2007 JP
2007079159 Mar 2007 JP
2007083445 Apr 2007 JP
2007190745 Aug 2007 JP
2007216673 Aug 2007 JP
2007253347 Oct 2007 JP
2007334125 Dec 2007 JP
2008006816 Jan 2008 JP
2008018716 Jan 2008 JP
2008019286 Jan 2008 JP
2008036968 Feb 2008 JP
2008137239 Jun 2008 JP
2008139877 Jun 2008 JP
2008142962 Jun 2008 JP
2008183744 Aug 2008 JP
2008194997 Aug 2008 JP
2008532794 Aug 2008 JP
2008201564 Sep 2008 JP
2008238674 Oct 2008 JP
2008246990 Oct 2008 JP
2008254203 Oct 2008 JP
2008255135 Oct 2008 JP
2009040892 Feb 2009 JP
2009045794 Mar 2009 JP
2009045851 Mar 2009 JP
2009045885 Mar 2009 JP
2009083314 Apr 2009 JP
2009083317 Apr 2009 JP
2009083325 Apr 2009 JP
2009096175 May 2009 JP
2009148908 Jul 2009 JP
2009154330 Jul 2009 JP
2009190375 Aug 2009 JP
2009202355 Sep 2009 JP
2009214318 Sep 2009 JP
2009214439 Sep 2009 JP
2009226852 Oct 2009 JP
2009226886 Oct 2009 JP
2009233977 Oct 2009 JP
2009234219 Oct 2009 JP
2010005815 Jan 2010 JP
2010054855 Mar 2010 JP
2010510357 Apr 2010 JP
2010105365 May 2010 JP
2010173201 Aug 2010 JP
2010184376 Aug 2010 JP
2010214885 Sep 2010 JP
2010228192 Oct 2010 JP
2010228392 Oct 2010 JP
2010234599 Oct 2010 JP
2010234681 Oct 2010 JP
2010241073 Oct 2010 JP
2010247381 Nov 2010 JP
2010247528 Nov 2010 JP
2010258193 Nov 2010 JP
2010260204 Nov 2010 JP
2010260287 Nov 2010 JP
2010260302 Nov 2010 JP
2010286570 Dec 2010 JP
2011002532 Jan 2011 JP
2011025431 Feb 2011 JP
2011037070 Feb 2011 JP
2011067956 Apr 2011 JP
2011126031 Jun 2011 JP
2011133884 Jul 2011 JP
2011144271 Jul 2011 JP
2011523601 Aug 2011 JP
2011173325 Sep 2011 JP
2011173326 Sep 2011 JP
2011186346 Sep 2011 JP
2011189627 Sep 2011 JP
2011201951 Oct 2011 JP
2011224032 Nov 2011 JP
2012042943 Mar 2012 JP
2012086499 May 2012 JP
2012111194 Jun 2012 JP
2012126123 Jul 2012 JP
2012139905 Jul 2012 JP
2012196787 Oct 2012 JP
2012201419 Oct 2012 JP
2013001081 Jan 2013 JP
2013060299 Apr 2013 JP
2013103474 May 2013 JP
2013121671 Jun 2013 JP
2013129158 Jul 2013 JP
2014047005 Mar 2014 JP
2014094827 May 2014 JP
2016185688 Oct 2016 JP
2180675 Mar 2002 RU
2282643 Aug 2006 RU
WO-8600327 Jan 1986 WO
WO-9307000 Apr 1993 WO
WO-9604339 Feb 1996 WO
WO-9631809 Oct 1996 WO
WO-9707991 Mar 1997 WO
WO-9736210 Oct 1997 WO
WO-9821251 May 1998 WO
WO-9855901 Dec 1998 WO
WO-9912633 Mar 1999 WO
WO-9942509 Aug 1999 WO
WO-9943502 Sep 1999 WO
WO-0064685 Nov 2000 WO
WO-0154902 Aug 2001 WO
WO-0170512 Sep 2001 WO
WO-02068191 Sep 2002 WO
WO-02078868 Oct 2002 WO
WO-02094912 Nov 2002 WO
WO-2004113082 Dec 2004 WO
WO-2004113450 Dec 2004 WO
WO-2006051733 May 2006 WO
WO-2006069205 Jun 2006 WO
WO-2006073696 Jul 2006 WO
WO-2006091957 Aug 2006 WO
WO-2007009871 Jan 2007 WO
WO-2007145378 Dec 2007 WO
WO-2008078841 Jul 2008 WO
WO-2009025809 Feb 2009 WO
WO-2009134273 Nov 2009 WO
WO-2010042784 Jul 2010 WO
WO-2010073916 Jul 2010 WO
WO-2011142404 Nov 2011 WO
WO-2012014825 Feb 2012 WO
WO-2012148421 Nov 2012 WO
WO-2013060377 May 2013 WO
WO-2013087249 Jun 2013 WO
WO-2013132339 Sep 2013 WO
WO-2013132340 Sep 2013 WO
WO-2013132343 Sep 2013 WO
WO-2013132345 Sep 2013 WO
WO-2013132356 Sep 2013 WO
WO-2013132418 Sep 2013 WO
WO-2013132419 Sep 2013 WO
WO-2013132420 Sep 2013 WO
WO-2013132424 Sep 2013 WO
WO-2013132432 Sep 2013 WO
WO-2013132438 Sep 2013 WO
WO-2013132439 Sep 2013 WO
WO-2013136220 Sep 2013 WO
WO-2015036864 Mar 2015 WO
WO-2015036906 Mar 2015 WO
WO-2015036960 Mar 2015 WO
WO-2016166690 Oct 2016 WO
WO-2017208246 Dec 2017 WO
Non-Patent Literature Citations (215)
Entry
CN101073937A Machine Translation (by EPO and Google)—published Nov. 21, 2007; Werner Kaman Maschinen GMBH & [DE].
CN101249768A Machine Translation (by EPO and Google)—published Aug. 27, 2008; Shantou Xinxie Special Paper T [CN].
CN101344746A Machine Translation (by EPO and Google)—published Jan. 14, 2009; Ricoh KK [JP].
CN101359210A Machine Translation (by EPO and Google)—published Feb. 4, 2009; Canon KK [JP].
CN101524916A Machine Translation (by EPO and Google)—published Sep. 9, 2009; Fuji Xerox Co Ltd.
CN101544100A Machine Translation (by EPO and Google)—published Sep. 30, 2009; Fuji Xerox Co Ltd.
CN102648095A Machine Translation (by EPO and Google)—published Aug. 22, 2012; Mars Inc.
CN103045008A Machine Translation (by EPO and Google)—published Apr. 17, 2013; Fuji Xerox Co Ltd.
CN105058999A Machine Translation (by EPO and Google)—published Nov. 18, 2015; Zhuoli Imaging Technology Co Ltd.
CN1121033A Machine Translation (by EPO and Google)—published Apr. 24, 1996; Kuehnle Manfred R [US].
CN1212229A Machine Translation (by EPO and Google)—published Mar. 31, 1999; Honta Industry Corp [JP].
CN201410787Y Machine Translation (by EPO and Google)—published Feb. 24, 2010; Zhejiang Chanx Wood Co Ltd.
Co-pending U.S. Appl. No. 16/590,397, filed Oct. 2, 2019.
Co-pending U.S. Appl. No. 16/649,177, filed Mar. 20, 2020.
Co-pending U.S. Appl. No. 16/764,330, filed May 14, 2020.
Co-pending U.S. Appl. No. 16/765,878, filed May 21, 2020.
Co-pending U.S. Appl. No. 16/784,208, filed Feb. 6, 2020.
Co-pending U.S. Appl. No. 16/793,995, filed Feb. 18, 2020.
Co-pending U.S. Appl. No. 16/814,900, filed Mar. 11, 2020.
Co-pending U.S. Appl. No. 16/850,229, filed Apr. 16, 2020.
Co-pending U.S. Appl. No. 16/883,617, filed May 26, 2020.
JP2000141710A Machine Translation (by EPO and Google)—published May 23, 2000; Brother Ind Ltd.
JP2000168062A Machine Translation (by EPO and Google)—published Jun. 20, 2000; Brother Ind Ltd.
JP2001088430A Machine Translation (by EPO and Google)—published Apr. 3, 2001; Kimoto KK.
JP2001098201A Machine Translation (by EPO and Google)—published Apr. 10, 2001; Eastman Kodak Co.
JP2001139865A Machine Translation (by EPO and Google)—published May 22, 2001; Sharp KK.
JP2001164165A Machine Translation (by EPO and Google)—published Jun. 19, 2001; Dainippon Ink & Chemicals.
JP2001199150A Machine Translation (by EPO and Google)—published Jul. 24, 2001; Canon KK.
JP2002069346A Machine Translation (by EPO and Google)—published Mar. 8, 2002; Dainippon Ink & Chemicals.
JP2002103598A Machine Translation (by EPO and Google)—published Apr. 9, 2002; Olympus Optical Co.
JP2003145914A Machine Translation (by EPO and Google)—published May 21, 2003; Konishiroku Photo Ind.
JP2003313466A Machine Translation (by EPO and Google)—published Nov. 6, 2003; Ricoh KK.
JP2006023403A Machine Translation (by EPO and Google)—published Jan. 26, 2006; Ricoh KK.
JP2006224583A Machine Translation (by EPO and Google)—published Aug. 31, 2006; Konica Minolta Holdings Inc.
JP2006231666A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Seiko Epson Corp.
JP2006234212A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Matsushita Electric Ind Co Ltd.
JP2007025246A Machine Translation (by EPO and Google)—published Feb. 1, 2007; Seiko Epson Corp.
JP2007083445A Machine Translation (by EPO and Google)—published Apr. 5, 2007; Fujifilm Corp.
JP2008139877A Machine Translation (by EPO and Google)—published Jun. 19, 2008; Xerox Corp.
JP2008183744A Machine Translation (by EPO and Google)—published Aug. 14, 2008, Fuji Xerox Co Ltd.
JP2008194997A Machine Translation (by EPO and Google)—published Aug. 28, 2008; Fuji Xerox Co Ltd.
JP2008238674A Machine Translation (by EPO and Google)—published Oct. 9, 2008; Brother Ind Ltd.
JP2008254203A Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp.
JP2010228392A Machine Translation (by EPO and Google)—published Oct. 14, 2010; Jujo Paper Co Ltd.
JP2010234599A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Duplo Seiko Corp et al.
JP2011037070A Machine Translation (by EPO and Google)—published Feb. 24, 2011; Riso Kagaku Corp.
JP2011067956A Machine Translation (by EPO and Google)—published Apr. 7, 2011; Fuji Xerox Co Ltd.
JP2012196787A Machine Translation (by EPO and Google)—published Oct. 18, 2012; Seiko Epson Corp.
JP2012201419A Machine Translation (by EPO and Google)—published Oct. 22, 2012, Seiko Epson Corp.
JP2014047005A Machine Translation (by EPO and Google)—published Mar. 17, 2014; Ricoh Co Ltd.
JP2014094827A Machine Translation (by EPO and Google)—published May 22, 2014; Panasonic Corp.
JP2016185688A Machine Translation (by EPO and Google)—published Oct. 27, 2016; Hitachi Industry Equipment Systems Co Ltd.
JPH03248170A Machine Translation (by EPO and Google)—published Nov. 6, 1991; Fujitsu Ltd.
JPH06954A Machine Translation (by EPO and Google)—published Jan. 11, 1994; Seiko Epson Corp.
JPH09157559A Machine Translation (by EPO and Google)—published Jun. 17, 1997; Toyo Ink Mfg Co.
JPH11245383A Machine Translation (by EPO and Google)—published Sep. 14, 1999; Xerox Corp.
JPS6223783A Machine Translation (by EPO and Google)—published Jan. 31, 1987; Canon KK.
Larostat 264 A Quaternary Ammonium Compound, Technical Bulletin, BASF Corporation, Dec. 2002, p. 1.
Flexicon., “Bulk Handling Equipment and Systems: Carbon Black,” 2018, 2 pages.
JP2004524190A Machine Translation (by EPO and Google)—published Aug. 12, 2004; Avery Dennison Corp.
JP2010234681A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Riso Kagaku Corp.
JP2010260302A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Riso Kagaku Corp.
JPH06171076A Machine Translation (by PlatPat English machine translation)—published Jun. 21, 1994, Seiko Epson Corp.
JPS60199692A Machine Translation (by EPO and Google)—published Oct. 9, 1985; Suwa Seikosha KK.
Montuori G.M., et al., “Geometrical Patterns for Diagrid Buildings: Exploring Alternative Design Strategies From the Structural Point of View,” Engineering Structures, Jul. 2014, vol. 71, pp. 112-127.
Technical Information Lupasol Types, Sep. 2010, 10 pages.
The Engineering Toolbox., “Dynamic Viscosity of Common Liquids,” 2018, 4 pages.
WO2006051733A1 Machine Translation (by EPO and Google)—published May 18, 2006; Konica Minolta Med & Graphic.
WO2010073916A1 Machine Translation (by EPO and Google)—published Jul. 1, 2010; Nihon Parkerizing [JP] et al.
“Amino Functional Silicone Polymers”, in Xiameter.COPYRGT. 2009 Dow Corning Corporation.
“Solubility of Alcohol”, in http://www.solubilityoflhings.com/water/alcohol; downloaded on Nov. 30, 2017.
BASF , “Joncryl 537”, Datasheet , Retrieved from the internet : Mar. 23, 2007 p. 1.
Clariant., “Ultrafine Pigment Dispersion for Design and Creative Materials: Hostafine Pigment Preparation” Jun. 19, 2008. Retrieved from the Internet: [URL: http://www.clariant.com/C125720D002B963C/4352D0BC052E90CEC1257479002707D9/$FILE/DP6208E_0608_FL_Hostafinefordesignandcreativematerials.pdf].
CN101177057 Machine Translation (by EPO and Google)—published May 14, 2008—Hangzhou Yuanyang Industry Co.
CN101873982A Machine Translation (by EPO and Google)—published Oct. 27, 2010; Habasit AG, Delair et al.
CN102555450A Machine Translation (by EPO and Google)—published Jul. 11, 2012; Fuji Xerox Co., Ltd, Motoharu et al.
CN102925002 Machine Translation (by EPO and Google)—published Feb. 13, 2013; Jiangnan University, Fu et al.
CN103991293A Machine Translation (by EPO and Google)—published Aug. 20, 2014; Miyakoshi Printing Machinery Co., Ltd, Junichi et al.
CN104618642 Machine Translation (by EPO and Google); published on May 13, 2015, Yulong Comp Comm Tech Shenzhen.
CN1493514A Machine Translation (by EPO and Google)—published May 5, 2004; GD Spa, Boderi et al.
CN1809460A Machine Translation (by EPO and Google)—published Jul. 26, 2006; Canon KK.
Co-pending U.S. Appl. No. 16/303,613, filed Nov. 20, 2018.
Co-pending U.S. Appl. No. 16/303,615, filed Nov. 20, 2018.
Co-pending U.S. Appl. No. 16/303,631, filed Nov. 20, 2018.
Co-pending U.S. Appl. No. 16/432,934, filed Jun. 6, 2019.
Co-pending U.S. Appl. No. 16/433,970, filed Jun. 6, 2019.
Co-pending U.S. Appl. No. 16/542,362, filed Aug. 16, 2019.
DE102010060999 Machine Translation (by EPO and Google)—published Jun. 6, 2012; Wolf, Roland, Dr.-Ing.
Epomin Polyment, product information from Nippon Shokubai, dated Feb. 28, 2014.
Handbook of Print Media, 2001, Springer Verlag, Berlin/Heidelberg/New York, pp. 127-136,748—With English Translation.
IP.com Search, 2018, 2 pages.
IP.com Search, 2019, 1 page.
JP2000108320 Machine Translation (by PlatPat English machine translation)—published Apr. 18, 2000 Brother Ind. Ltd.
JP2000108334A Machine Translation (by EPO and Google)—published Apr. 18, 2000; Brother Ind Ltd.
JP2000169772 Machine Translation (by EPO and Google)—published Jun. 20, 2000; Tokyo Ink Mfg Co Ltd.
JP2000206801 Machine Translation (by PlatPat English machine translation); published on Jul. 28, 2000, Canon KK, Kobayashi et al.
JP2001206522 Machine Translation (by EPO, PlatPat and Google)—published Jul. 31, 2001; Nitto Denko Corp, Kato et al.
JP2002169383 Machine Translation (by EPO, PlatPat and Google)—published Jun. 14, 2002 Richo KK.
JP2002234243 Machine Translation (by EPO and Google)—published Aug. 20, 2002; Hitachi Koki Co Ltd.
JP2002278365 Machine Translation (by PlatPat English machine translation)—published Sep. 27, 2002 Katsuaki, Ricoh KK.
JP2002304066A Machine Translation (by EPO and Google)—published Oct. 18, 2002; PFU Ltd.
JP2002326733 Machine Translation (by EPO, PlatPat and Google)—published Nov. 12, 2002; Kyocera Mita Corp.
JP2002371208 Machine Translation (by EPO and Google)—published Dec. 26, 2002; Canon Inc.
JP2003114558 Machine Translation (by EPO, PlatPat and Google)—published Apr. 18, 2003 Mitsubishi Chem Corp, Yuka Denshi Co Ltd, et al.
JP2003211770 Machine Translation (by EPO and Google)—published Jul. 29, 2003 Hitachi Printing Solutions.
JP2003219271 Machine Translation (by EPO and Google); published on Jul. 31, 2003, Japan Broadcasting.
JP2003246135 Machine Translation (by PlatPat English machine translation)—published Sep. 2, 2003 Ricoh KK, Morohoshi et al.
JP2003246484 Machine Translation (English machine translation)—published Sep. 2, 2003 Kyocera Corp.
JP2003292855A Machine Translation (by EPO and Google)—published Oct. 15, 2003; Konishiroku Photo Ind.
JP2004009632A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Konica Minolta Holdings Inc.
JP2004019022 Machine Translation (by EPO and Google)—published Jan. 22, 2004; Yamano et al.
JP2004025708A Machine Translation (by EPO and Google)—published Jan. 29, 2004; Konica Minolta Holdings Inc.
JP2004034441A Machine Translation (by EPO and Google)—published Feb. 5, 2004; Konica Minolta Holdings Inc.
JP2004077669 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2004 Fuji Xerox Co Ltd.
JP2004114377(A) Machine Translation (by EPO and Google)—published Apr. 15, 2004; Konica Minolta Holdings Inc, et al.
JP2004114675 Machine Translation (by EPO and Google)—published Apr. 15, 2004; Canon Inc.
JP2004148687A Machine Translation (by EPO and Google)—published May 27, 2014; Mitsubishi Heavy Ind Ltd.
JP2004231711 Machine Translation (by EPO and Google)—published Aug. 19, 2004; Seiko Epson Corp.
JP2004261975 Machine Translation (by EPO, PlatPat and Google); published on Sep. 24, 2004, Seiko Epson Corp, Kataoka et al.
JP2004325782A Machine Translation (by EPO and Google)—published Nov. 18, 2004; Canon KK.
JP2005014255 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc.
JP2005014256 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc.
JP2005114769 Machine Translation (by PlatPat English machine translation)—published Apr. 28, 2005 Ricoh KK.
JP2005215247A Machine Translation (by EPO and Google)—published Aug. 11, 2005; Toshiba Corp.
JP2005319593 Machine Translation (by EPO and Google)—published Nov. 17, 2005, Jujo Paper Co Ltd.
JP2006001688 Machine Translation (by PlatPat English machine translation)—published Jan. 5, 2006 Ricoh KK.
JP2006095870A Machine Translation (by EPO and Google)—published Apr. 13, 2006; Fuji Photo Film Co Ltd.
JP2006102975 Machine Translation (by EPO and Google)—published Apr. 20, 2006; Fuji Photo Film Co Ltd.
JP2006137127 Machine Translation (by EPO and Google)—published Jun. 1, 2006; Konica Minolta Med & Graphic.
JP2006143778 Machine Translation (by EPO, PlatPat and Google)—published Jun. 8, 2006 Sun Bijutsu Insatsu KK et al.
JP2006152133 Machine Translation (by EPO, PlatPat and Google)—published Jun. 15, 2006 Seiko Epson Corp.
JP2006243212 Machine Translation (by PlatPat English machine translation)—published Sep. 14, 2006 Fuji Xerox Co Ltd.
JP2006263984 Machine Translation (by EPO, PlatPat and Google)—published Oct. 5, 2006 Fuji Photo Film Co Ltd.
JP2006347081 Machine Translation (by EPO and Google)—published Dec. 28, 2006; Fuji Xerox Co Ltd.
JP2006347085 Machine Translation (by EPO and Google)—published Dec. 28, 2006 Fuji Xerox Co Ltd.
JP2007041530A Machine Translation (by EPO and Google)—published Feb. 15, 2007; Fuji Xerox Co Ltd.
JP2007069584 Machine Translation (by EPO and Google)—published Mar. 22, 2007 Fujifilm.
JP2007216673 Machine Translation (by EPO and Google)—published Aug. 30, 2007 Brother Ind.
JP2007253347A Machine Translation (by EPO and Google)—published Oct. 4, 2007; Ricoh KK, Matsuo et al.
JP2008006816 Machine Translation (by EPO and Google)—published Jan. 17, 2008; Fujifilm Corp.
JP2008018716 Machine Translation (by EPO and Google)—published Jan. 31, 2008; Canon Inc.
JP2008137239A Machine Translation (by EPO and Google); published on Jun. 19, 2008, Kyocera Mita Corp.
JP2008142962 Machine Translation (by EPO and Google)—published Jun. 26, 2008; Fuji Xerox Co Ltd.
JP2008201564 Machine Translation (English machine translation)—published Sep. 4, 2008 Fuji Xerox Co Ltd.
JP2008246990 Machine Translation (by EPO and Google)—published Oct. 16, 2008, Jujo Paper Co Ltd.
JP2008255135 Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp.
JP2009045794 Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fujifilm Corp.
JP2009045851A Machine Translation (by EPO and Google); published on Mar. 5, 2009, Fujifilm Corp.
JP2009045885A Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fuji Xerox Co Ltd.
JP2009083314 Machine Translation (by EPO, PlatPat and Google)—published Apr. 23, 2009 Fujifilm Corp.
JP2009083317 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009; Fuji Film Corp.
JP2009083325 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009 Fujifilm.
JP2009096175 Machine Translation (EPO, PlatPat and Google) published on May 7, 2009 Fujifilm Corp.
JP2009148908A Machine Translation (by EPO and Google)—published Jul. 9, 2009; Fuji Xerox Co Ltd.
JP2009154330 Machine Translation (by EPO and Google)—published Jul. 16, 2009; Seiko Epson Corp.
JP2009190375 Machine Translation (by EPO and Google)—published Aug. 27, 2009; Fuji Xerox Co Ltd.
JP2009202355 Machine Translation (by EPO and Google)—published Sep. 10, 2009; Fuji Xerox Co Ltd.
JP2009214318 Machine Translation (by EPO and Google)—published Sep. 24, 2009 Fuji Xerox Co Ltd.
JP2009214439 Machine Translation (by PlatPat English machine translation)—published Sep. 24, 2009 Fujifilm Corp.
JP2009226852 Machine Translation (by EPO and Google)—published Oct. 8, 2009; Hirato Katsuyuki, Fujifilm Corp.
JP2009233977 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fuji Xerox Co Ltd.
JP2009234219 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fujifilm Corp.
JP2010054855 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2010 Itatsu, Fuji Xerox Co.
JP2010105365 Machine Translation (by EPO and Google)—published May 13, 2010; Fuji Xerox Co Ltd.
JP2010173201 Abstract; Machine Translation (by EPO and Google)—published Aug. 12, 2010; Richo Co Ltd.
JP2010184376 Machine Translation (by EPO, PlatPat and Google)—published Aug. 26, 2010 Fujifilm Corp.
JP2010214885A Machine Translation (by EPO and Google)—published Sep. 30, 2010; Mitsubishi Heavy Ind Ltd.
JP2010228192 Machine Translation (by PlatPat English machine translation)—published Oct. 14, 2010 Fuji Xerox.
JP2010241073 Machine Translation (by EPO and Google)—published Oct. 28, 2010; Canon Inc.
JP2010247381A Machine Translation (by EPO and Google); published on Nov. 4, 2010, Ricoh Co Ltd.
JP2010258193 Machine Translation (by EPO and Google)—published Nov. 11, 2010; Seiko Epson Corp.
JP2010260204A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Canon KK.
JP2010260287 Machine Translation (by EPO and Google)—published Nov. 18, 2010, Canon KK.
JP2011002532 Machine Translation (by PlatPat English machine translation)—published Jun. 1, 2011 Seiko Epson Corp.
JP2011025431 Machine Translation (by EPO and Google)—published Feb. 10, 2011; Fuji Xerox Co Ltd.
JP2011126031A Machine Translation (by EPO and Google); published on Jun. 30, 2011, Kao Corp.
JP2011144271 Machine Translation (by EPO and Google)—published Jun. 28, 2011 Toyo Ink SC Holdings Co Ltd.
JP2011173325 Abstract; Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc.
JP2011173326 Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc.
JP2011186346 Machine Translation (by PlatPat English machine translation)—published Sep. 22, 2011 Seiko Epson Corp, Nishimura et al.
JP2011189627 Machine Translation (by Google Patents)—published Sep. 29, 2011; Canon KK.
JP2011201951A Machine Translation (by PlatPat English machine translation); published on Oct. 13, 2011, Shin-Etsu Chemical Co Ltd, Todoroki et al.
JP2011224032 Machine Translation (by EPO and Google)—published Jul. 5, 2012 Canon KK.
JP2012086499 Machine Translation (by EPO and Google)—published May 10, 2012; Canon Inc.
JP2012111194 Machine Translation (by EPO and Google)—published Jun. 14, 2012; Konica Minolta.
JP2013001081 Machine Translation (by EPO and Google)—published Jan. 7, 2013; Kao Corp.
JP2013060299 Machine Translation (by EPO and Google)—published Apr. 4, 2013; Ricoh Co Ltd.
JP2013103474 Machine Translation (by EPO and Google)—published May 30, 2013; Ricoh Co Ltd.
JP2013121671 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Fuji Xerox Co Ltd.
JP2013129158 Machine Translation (by EPO and Google)—published Jul. 4, 2013; Fuji Xerox Co Ltd.
JP2529651 B2 Machine Translation (by EPO and Google)—issued Aug. 28, 1996;Osaka Sealing Insatsu KK.
JPH05147208 Machine Translation (by EPO and Google)—published Jun. 15, 1993—Mita Industrial Co Ltd.
JPH06100807 Machine Translation (by EPO and Google)—published Apr. 12, 1994; Seiko Instr Inc.
JPH06345284A Machine Translation (by EPO and Google); published on Dec. 20, 1994, Seiko Epson Corp.
JPH07186453A Machine Translation (by EPO and Google)—published Jul. 25, 1995; Toshiba Corp.
JPH07238243A Machine Translation (by EPO and Google)—published Sep. 12, 1995; Seiko Instr Inc.
JPH08112970 Machine Translation (by EPO and Google)—published May 7, 1996; Fuji Photo Film Co Ltd.
JPH0862999A Machine Translation (by EPO & Google)—published Mar. 8, 1996 Toray Industries, Yoshida, Tomoyuki.
JPH09123432 Machine Translation (by EPO and Google)—published May 13, 1997, Mita Industrial Co Ltd.
JPH09281851A Machine Translation (by EPO and Google)—published Oct. 31, 1997; Seiko Epson Corp.
JPH09314867A Machine Translation (by PlatPat English machine translation)—published Dec. 9, 1997, Toshiba Corp.
JPH11106081A Machine Translation (by EPO and Google)—published Apr. 20, 1999; Ricoh KK.
JPH5297737 Machine Translation (by EPO & Google machine translation)—published Nov. 12, 1993 Fuji Xerox Co Ltd.
JPS5578904A Machine Translation (by EPO and Google)—published Jun. 14, 1980; Yokoyama Haruo.
JPS57121446U Machine Translation (by EPO and Google)—published Jul. 28, 1982.
JPS6076343A Machine Translation (by EPO and Google)—published Apr. 30, 1985; Toray Industries.
Machine Translation (by EPO and Google) of JPH07112841 published on May 2, 1995 Canon KK.
Marconi Studios, Virtual SET Real Time; http://www.marconistudios.il/pp./virtualset_en.php.
Poly(vinyl acetate) data sheet. PolymerProcessing.com. Copyright 2010. http://polymerprocessing.com/polymers/PV AC.html.
Royal Television Society, The Flight of the Phoenix; https://rts.org.uk/article/flight-phoenix, Jan. 27, 2011.
RU2180675 Machine Translation (by EPO and Google)—published Mar. 20, 2002; Zao Rezinotekhnika.
RU2282643 Machine Translation (by EPO and Google)—published Aug. 27, 2006; Balakovorezinotekhnika Aoot.
Thomas E. F., “CRC Handbook of Food Additives, Second Edition, vol. 1” CRC Press LLC, 1972, p. 434.
Units of Viscosity published by Hydramotion Ltd. 1 York Road Park, Malton, York Y017 6YA, England; downloaded from www.hydramotion.com website on Jun. 19, 2017.
WO2013087249 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Koenig & Bauer AG.
Provisional Applications (1)
Number Date Country
62713632 Aug 2018 US