The present invention relates to systems and methods for controlling various aspects of a digital printing system that uses an intermediate transfer member. In particular, the present invention is suitable for printing systems in which images are formed by the deposition of ink droplets by multiple print bars, and in which it is desirable to adjust the spacing between ink droplets, in response to longitudinal stretching of the intermediate transfer member.
Various printing devices use an inkjet printing process, in which an ink is jetted to form an image onto the surface of an intermediate transfer member (ITM), which is then used to transfer the image onto a substrate. The ITM may be a flexible belt guided over rollers. The flexibility of the belt can cause a portion of the belt to become stretched longitudinally, and especially in the area of an image forming station wherein a drive roller that is downstream of the image-forming station can impart a higher velocity to the belt than an upstream drive roller, i.e., a drive roller that is upstream of the image-forming station. This difference in velocity at the drive rollers keeps a portion of the belt taut as it passes the print bars of the image-forming station. In some cases the tautness-making can lead to the aforementioned stretching. The terms ‘longitudinally’, ‘upstream’ and ‘downstream’ are used herein relative to the print direction, i.e., the travel direction of ink images formed upon the belt.
The portion of the belt that was stretched between the upstream and downstream drive rollers may become unstretched after passing the downstream drive roller, or stretched to a lesser degree, and when images are transferred from the belt to substrate at an impression station, inter-droplet spacing of an image may be different than it was at the time that the image was formed at the image-forming station. In other words, a stretch factor characterizing an extent of stretching at the impression station will often be different from a stretch factor characterizing an extent of stretching at the image-forming station. It is, therefore, necessary to compensate for the different stretching factors.
The following co-pending patent publications provide background material, and are all incorporated herein by reference in their entirety: WO/2017/009722 (publication of PCT/IB2016/053049 filed May 25, 2016), WO/2016/166690 (publication of PCT/IB2016/052120 filed Apr. 4, 2016), WO/2016/151462 (publication of PCT/IB2016/051560 filed Mar. 20, 2016), WO/2016/113698 (publication of PCT/IB2016/050170 filed Jan. 14, 2016), WO/2015/110988 (publication of PCT/IB2015/050501 filed Jan. 22, 2015), WO/2015/036812 (publication of PCT/IB2013/002571 filed Sep. 12, 2013), WO/2015/036864 (publication of PCT/IB2014/002366 filed Sep. 11, 2014), WO/2015/036865 (publication of PCT/IB2014/002395 filed Sep. 11, 2014), WO/2015/036906 (publication of PCT/IB2014/064277 filed Sep. 12, 2014), WO/2013/136220 (publication of PCT/IB2013/051719 filed Mar. 5, 2013), WO/2013/132419 (publication of PCT/IB2013/051717 filed Mar. 5, 2013), WO/2013/132424 (publication of PCT/IB2013/051727 filed Mar. 5, 2013), WO/2013/132420 (publication of PCT/IB2013/051718 filed Mar. 5, 2013), WO/2013/132439 (publication of PCT/IB2013/051755 filed Mar. 5, 2013), WO/2013/132438 (publication of PCT/IB2013/051751 filed Mar. 5, 2013), WO/2013/132418 (publication of PCT/IB2013/051716 filed Mar. 5, 2013), WO/2013/132356 (publication of PCT/IB2013/050245 filed Jan. 10, 2013), WO/2013/132345 (publication of PCT/IB2013/000840 filed Mar. 5, 2013), WO/2013/132339 (publication of PCT/IB2013/000757 filed Mar. 5, 2013), WO/2013/132343 (publication of PCT/IB2013/000822 filed Mar. 5, 2013), WO/2013/132340 (publication of PCT/IB2013/000782 filed Mar. 5, 2013), and WO/2013/132432 (publication of PCT/IB2013/051743 filed Mar. 5, 2013).
A method of printing is disclosed according to embodiments. The method uses a printing system that comprises (i) a flexible intermediate transfer member (ITM) disposed around a plurality of guide rollers including an upstream guide roller and a downstream guide roller, at which respective upstream and downstream encoders are installed, and (ii) an image-forming station at which ink images are formed by droplet deposition, the image-forming station comprising an upstream print bar and a downstream print bar, the upstream and downstream print bars being disposed over the ITM and respectively aligned with the upstream and downstream guide rollers, the upstream and downstream print bars defining a reference portion RF of the ITM. The method comprises (a) measuring a local velocity V of the ITM under at least one of the upstream and downstream print bars at least once during each time interval TIi, each time interval TIi being one of M consecutive preset divisions of a predetermined time period TT, where M is a positive integer; (b) determining a respective time-interval-specific stretch factor SF(TIi) for the reference portion RF, based on a mathematical relationship between a time-interval-specific stretched length XEST(TIi) and a fixed physical distance XFIX between the upstream and downstream print bars; and (c) controlling an ink deposition parameter of the downstream print bar according to the determined time-interval-specific stretch factor SF(TIi), so as to compensate for stretching of the reference portion of the ITM.
In some embodiments, the time-interval-specific stretched length XEST(TIi) can be obtained by summing, for the immediately preceding M time intervals TIi, respective segment-lengths XSEG(TIi) calculated from the local velocities V measured during each time interval TIi, wherein the calculating includes the use of at least one of a summation, a product, and an integral.
In some embodiments, the ink deposition parameter can be a spacing between respective ink droplets deposited by upstream and downstream print bars onto the ITM.
In some embodiments, it can be that every time interval TIi is one Mth of the predetermined time period TT. In some embodiments, the predetermined time period TT can be a measured travel time of a portion of the ITM from the upstream print bar to the downstream print bar. The portion of the ITM can be the reference portion RF of the ITM.
In some embodiments, M can equal 1. In some embodiments, M can be greater than 1 and not greater than 10. In some embodiments, M can be greater than 10 and not greater than 1,000.
A method of printing is disclosed, according to embodiments. The method uses a printing system that comprises (i) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM), and (ii) an impression station downstream of the image-forming station at which the ink images are transferred to substrate. The method comprises (a) tracking a stretch-factor ratio between a first measured or estimated local stretch factor of the ITM at the image-forming station and a second measured or estimated local stretch factor of the ITM at the impression station; and (b) in response to and in accordance with detected changes in the tracked stretch factor ratio, controlling deposition of droplets onto the ITM at the imaging station so as to modify a spacing between ink droplets in ink images formed on the ITM at the imaging station.
In some embodiments, the method can additionally comprise the steps of (a) transporting the ink images formed on the ITM at the imaging station to the impression station; and (b) transferring the ink images to substrate at the impression station, such that a spacing between ink droplets in ink images when transferred to substrate at the impression station is different than the spacing between the respective ink droplets when the ink images were formed at the image-forming station. The spacing between ink droplets in ink images when transferred to substrate at the impression station can be smaller than the spacing between the respective ink droplets when the ink images were formed at the image-forming station.
In some embodiments, it can be that (i) the image-forming station of the printing system comprises a plurality of print bars, and (ii) the tracking a stretch-factor ratio between a measured or estimated local stretch factor of the ITM at the image-forming station and a measured or estimated local stretch factor of the ITM at the impression station includes tracking a respective stretch-factor ratio between a measured or estimated local stretch factor of the ITM at each print bar of the image-forming station and a measured or estimated local stretch factor of the ITM at the impression station.
A method of printing is disclosed, according to embodiments. The method uses a printing system that comprises (i) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM), and (ii) an impression station downstream of the image-forming station at which the ink images are transferred to substrate. The method comprises (a) tracking a first ITM stretch factor at the image-forming station and a second ITM stretch factor at the impression station, the second ITM stretch factor being different than the first ITM stretch factor; (b) forming the ink images at the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor; and (c) transferring the ink images to substrate at the impression station with a droplet-to-droplet spacing according to the second ITM stretch factor.
In some embodiments, the second stretch factor can be smaller than the first ITM stretch factor.
In some embodiments, it can be that (i) the image-forming station of the printing system comprises a plurality of print bars, (ii) tracking a first ITM stretch factor at the image-forming station includes tracking a respective first ITM stretch factor at each print bar of the image-forming station, and (iii) forming the ink images at the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor includes forming the ink images at each print bar of the image-forming station with a droplet-to-droplet spacing according to the first ITM stretch factor corresponding to the respective print bar.
A method of printing an image is disclosed, according to embodiments. The method uses a printing system that comprises (i) an intermediate transfer member (ITM) comprising a flexible endless belt mounted over a plurality of guide rollers, (ii) an image-forming station comprising a print bar disposed over a surface of the ITM, the print bar configured to form ink images upon a surface of the ITM by droplet deposition, and (iii) a conveyer for driving rotation of the ITM in a print direction to transport the ink images towards an impression station where they are transferred to substrate. The method comprises (a) depositing ink droplets, by the print bar, so as to form an ink image on the ITM with at least a part of the ink image characterized by a first between-droplet spacing in the print direction; (b) transporting the ink image, by the ITM, to the impression station; and (c) transferring the ink image to substrate at the impression station with a second between-droplet spacing in the print direction, wherein the first between-droplet spacing in the print direction is in accordance with data associated with stretching of the ITM at the print bar.
In some embodiments, the second between-droplet spacing can be smaller than the first between-droplet spacing. In some embodiments the first between-droplet spacing in the print direction can change from time to time.
In embodiments, a printing system comprises (a) a flexible intermediate transfer member (ITM) disposed around a plurality of guide rollers including upstream and downstream guide rollers at which upstream and downstream encoders are respectively installed; (b) an image-forming station at which ink images are formed by droplet deposition, the image-forming station comprising an upstream print bar and a downstream print bar, the upstream and downstream print bars disposed over the ITM and respectively aligned with the upstream and downstream guide rollers, the upstream and downstream print bars (i) having a fixed physical distance XFIX therebetween and (ii) defining a reference portion RF of the ITM; and (c) electronic circuitry for controlling a spacing between respective ink droplets deposited by the upstream and downstream print bars onto the ITM and other ink droplets according to a calculated time-interval-specific stretch factor SF(TIi) so as to compensate for stretching of the reference portion RF of the ITM, wherein (i) a time-interval-specific stretch factor SF(TIi) for each time interval TIi is based on a mathematical relationship between an estimated time-interval-specific stretched length XEST(TIi) and fixed physical distance XFIX, the time-interval-specific stretched length XEST(TIi) being the sum of M segment-lengths XSEG(TIi) corresponding to local velocities V measured under at least one of the upstream and downstream print bars at least once during each respective time interval TIi, and (ii) each respective time interval TIi is one of M consecutive preset divisions of a predetermined time period TT, M being a positive integer.
In embodiments, a printing system comprises (a) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM); (b) an impression station downstream of the image-forming station, at which the ink images are transferred to substrate; and (c) electronic circuitry configured to track a stretch-factor ratio between a measured or estimated local stretch factor of the ITM at the image-forming station and a measured or estimated local stretch factor of the ITM at the impression station, and, in response to and in accordance with detected changes in the tracked stretch factor ratio, control deposition of droplets onto the ITM at the imaging station so as to modify a spacing between ink droplets in ink images formed on the ITM at the imaging station.
In some embodiments, the electronic circuitry can be configured such that modifying of a spacing between ink droplets in ink images formed on the ITM at the imaging station is such that the spacing between ink droplets in ink images formed on the ITM is larger than a spacing between the droplets in the ink images when transferred to substrate at the impression station.
In embodiments, a printing system comprises (a) an image-forming station at which ink images are formed by droplet deposition on a rotating flexible intermediate transfer member (ITM); (b) electronic circuitry configured to track a first ITM stretch factor at the image-forming station and a second ITM stretch factor at an impression station downstream of the image-forming station at which the ink images are transferred to substrate, and to control deposition of droplets onto the ITM at the imaging station so as to modify a spacing between ink droplets in accordance with the first ITM stretch factor; and (c) the impression station, at which the ink images are transferred to substrate with a spacing between ink droplets in accordance with the second stretch factor.
In some embodiments, the second stretch factor can be smaller than the first ITM stretch factor.
In embodiments, a printing system comprises (a) an intermediate transfer member (ITM) comprising a flexible endless belt mounted over a plurality of guide rollers and rotating in a print direction; (b) an image-forming station comprising a print bar disposed over a surface of the ITM, the print bar configured to deposit droplets upon a surface of the ITM so as to form ink images characterized at least in part by a first between-droplet spacing in the print direction which is selected in accordance with in accordance with data associated with stretching of the ITM at the print bar; and (c) a conveyer for driving rotation of the ITM in a print direction to transport the ink images towards an impression station where they are transferred to substrate with a second between-droplet spacing in the print direction.
In some embodiments, the second between-droplet spacing can be smaller than the first between-droplet spacing.
The invention will now be described further, by way of example, with reference to the accompanying drawings, in which the dimensions of components and features shown in the figures are chosen for convenience and clarity of presentation and not necessarily to scale. In the drawings:
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. Throughout the drawings, like-referenced characters are generally used to designate like elements. Subscripted reference numbers (e.g., 101) or letter-modified reference numbers (e.g., 100a) may be used to designate multiple separate appearances of elements in a single drawing, e.g. 101 is a single appearance (out of a plurality of appearances) of element 10, and likewise 100a is a single appearance (out of a plurality of appearances) of element 100.
For convenience, in the context of the description herein, various terms are presented here. To the extent that definitions are provided, explicitly or implicitly, here or elsewhere in this application, such definitions are understood to be consistent with the usage of the defined terms by those of skill in the pertinent art(s). Furthermore, such definitions are to be construed in the broadest possible sense consistent with such usage.
A “controller” or, alternately, “electronic circuitry”, as used herein is intended to describe any processor, or computer comprising one or more processors, configured to control one or more aspects of the operation of a printing system or of one or more printing system components according to program instructions that can include rules, machine-learned rules, algorithms and/or heuristics, the programming methods of which are not relevant to this invention. A controller can be a stand-alone controller with a single function as described, or alternatively can combine more than one control function according to the embodiments herein and/or one or more control functions not related to the present invention or not disclosed herein. For example, a single controller may be provided for controlling all aspects of the operation of a printing system, the control functions described herein being one aspect of the control functions of such a controller. Similarly, the functions disclosed herein with respect to a controller can be split or distributed among more than one computer or processor, in which case any such plurality of computers or processors are to be construed as being equivalent to a single computer or processor for the purposes of this definition. For purposes of clarity, some components associated with computer networks, such as, for example, communications equipment and data storage equipment, have been omitted in this specification but a skilled practitioner will understand that a controller as used herein can include any network gear or ancillary equipment necessary for carrying out the functions described herein.
In various embodiments, an ink image is first deposited on a surface of an intermediate transfer member (ITM), and transferred from the surface of the intermediate transfer member to a substrate (i.e. sheet substrate or web substrate). For the present disclosure, the terms “intermediate transfer member”, “image transfer member” and “ITM” are synonymous and may be used interchangeably. The location at which the ink is deposited on the ITM is referred to as the “image forming station”. In many embodiments, the ITM comprises a “belt” or “endless belt” or “blanket” and these terms may be used interchangeably with ITM. The area or region of the printing press at which the ink image is transferred to substrate is an “impression station”. It is appreciated that for some printing systems, there may be a plurality of impression stations.
The terms ‘longitudinally’ and ‘longitudinal’ refer to a direction that is parallel to the direction of travel of an intermediate transfer member (ITM) in a printing system.
Referring now to the figures,
In the example of
Rollers 242, 240 are respectively positioned upstream and downstream of the image forming station 212—thus, roller 242 may be referred to as a “upstream roller” while roller 240 may be referred to as a “downstream roller”. In some embodiments, downstream roller 240 can be a “drive roller”, i.e., a roller that drives the rotation of the ITM 210 because it is engaged with a motor or other conveying mechanism. Upstream roller 242 can also be a drive roller. In other embodiments these two rollers can be unpowered guide rollers, i.e., guide rollers are rollers which rotate with the passage thereupon (or therearound) of the ITM 210 and don't accelerate or regulate the velocity of the ITM 210. Any one or more of the other rollers 232, 260, 253, 255 can be drive rollers or guide rollers depending on system design. For any two rollers, it is possible to view one as a downstream roller and one as an upstream roller, according to the direction of travel of the ITM 210 (e.g., the print direction 1200).
In
(a) the image forming station 212 mentioned earlier, which comprises, for example, print bars 222 (respectively 2221, 2222, 2223 and 2224) each noted in the figure as one of C, M Y and K—for cyan, magenta, yellow and black. The image forming station 212 is configured to form ink images (NOT SHOWN) upon a surface of the ITM 210 (e.g., by droplet deposition thereon).
(b) a drying station 214 for drying the ink images.
(c) the impression station 216, also mentioned earlier, where the ink images are transferred from the surface of the ITM 210 to sheet 231 or web substrate (only sheet substrate is illustrated in
In the particular non-limiting example of
The skilled artisan will appreciate that not every component illustrated in
Referring again to
Referring now to
Referring again to
In embodiments, a first estimated length or ‘downstream-based’ estimated length XEST(TT)j+1 is calculated by integrating velocity measurements Vj+1 (the velocity under downstream print bar 222j+1) over a time interval TT corresponding to the travel time of the reference portion RF at a pre-determined velocity. XEST(TT)j+1 is the time-interval-specific (i.e., specific to time period TT) estimated stretched length of the reference portion RF. In other embodiments, a second estimated length or ‘upstream-based’ estimated length XEST(TT)j of the reference portion RF is calculated by integrating velocity measurements Vj (the velocity of the ITM 210 under upstream print bar 222j) over the same time interval TT. The propagation of the tension force F through the reference portion RF produces an increase in velocity along the distance traveled from upstream print bar 222j to downstream print bar 222j+1; therefore, downstream velocity Vj+1 at the downstream roller 232j+1 is higher than upstream velocity Vj at upstream roller 232j, and the downstream-based estimated length XEST(TT)j+1 is therefore greater than upstream-based estimated length XEST(TT)j. As previously noted, this force F is due to the rotational velocity (and/or diameter) of downstream drive roller 240 being greater than that of upstream drive roller 242. The increase in velocity can be a linear function of the distance from upstream print bar 222j.
As shown in
As the skilled practitioner will appreciate, it may not always be possible, practical or desirable to obtain enough velocity V data points during a time period TT to perform an integration of local velocity over time to obtain a distance. Therefore, any manner of alternative mathematical operation (or combination of operations) can be used in place of integration, as long as the mathematical operation calculates a reasonable estimation of stretched length. For example, if only one velocity measurement is available for a time interval—or, alternatively, if all velocity (Vj or Vj+1) measurements at a given print bar for a time interval are equal—then the estimated length XEST(TT)j or XEST(TT)j+1 can simply be calculated by multiplying the velocity value by the time interval, i.e., TT. If multiple velocity measurements are available, but not enough to perform an integration, the velocity measurements can be averaged (e.g., by arithmetic average, or weighted average that is weighted according to the respective proportions of time when each velocity value is measured) before multiplying.
Comparing estimated stretched length XEST(TT)j+1 to the known fixed-in-space physical length XFIX—for example, calculating a ratio between the two values—produces a stretch factor SF for the reference portion RF. In other words, in a situation where a reference portion RF of the ITM 210 is not stretched by a tension force F, the length of reference portion RF might be equivalent or based upon (with an offset) to the fixed physical between-print-bar distance XFIX; however, when the ITM is stretched, then the length of the stretched reference portion RF of the ITM 210 is larger by a factor of stretch factor SF (and approximately equal to XEST(TT)j+1). In some cases, an inter-droplet spacing is also made larger due to stretching, by a stretch factor SF. In some embodiments the length of reference portion RF is equal to XFIX at the impression station 216.
In an example, an inter-droplet spacing distance between a first ink droplet deposited on the ITM 210 by an upstream print bar 222j and a second ink droplet deposited by a downstream neighboring print bar 222j+1 is controlled in order to take into account the stretch factor SF as applied to the length of the reference portion RF of the ITM 210. In one example, an inter-droplet spacing on the physical ITM 210 may be close to zero or even zero, as in the case of a color registration or same-color overlay at substantially the same place in an image. In another example, an inter-droplet spacing on the ITM 210 can be much larger if the two droplets are at different places in the image. Referring again to
The skilled practitioner will understand that while the above example based on
In another example, an inter-droplet spacing distance between an ink droplet deposited on the ITM 210 by a downstream print bar 222j+1 and another ink droplet deposited by the same downstream print bar 222j+1 is controlled in order to compensate for a stretch factor SF. A full-color ink image, as is known in the art, can typically comprise four monochromatic images (i.e., CMYK color separations of the single image) which are all printed substantially within the confines of the same ink-image space on the surface of an ITM 210, by different print bars. When printing each of the four (e.g., cyan, magenta, yellow and black) images, a stretch factor SF as applied to the length of the reference portion RF of the ITM 210 can be taken into account. This can compensate for stretching at the imaging station and optionally compensate for the extent to which the ITM 210, or any portion thereof, is stretched at the impression station where the ink images are eventually transferred to substrate. Thus, inter-droplet spacing of ink droplets of a given color deposited by a given print bar 222—in this example, upstream print bar 222j—may be controlled based on the same stretch factor SF used in the earlier example with respect to inter-droplet spacing between ink droplets deposited by separate, e.g., upstream and downstream print bars 222j and 222j+1.
Examples of Deriving Stretch Factors
In a first, downstream-based, example, XFIX is 30 cm, and a nominal velocity of the ITM 210 based on design specifications is 3.2 m/s. The time period TT is set at the quotient of XFIX divided by this nominal velocity, or 0.0125 s. During a time period TT, downstream velocity Vj+1 is measured, using encoder 250j+1 of downstream roller 232j+1, to be 3.23 m/s. This yields an estimated length XEST(TT)j+1 of the reference portion RF of 30.28125 cm and a stretch factor SF of 1.009375 when XEST(TT)j+1 is divided by XFIX.
In a second, upstream-based, example, XFIX is 40 cm and the time period TT is set at a value equal to the quotient of XFIX divided by an ITM 210 velocity value of 2 m/s, or 0.02 s; the velocity was calculated in this example by timing an entire revolution of an ITM 210 with a known total length. During a time period TT, upstream velocity Vj is measured multiple times, using encoder 250j of roller 232j, and integrated over the time period TT (which equals 0.02 s). This integral, which serves as an estimated length XEST(TT)j of the reference portion RF, is calculated to be 39.90 cm. As discussed earlier, XFIX is equivalent to the arithmetic average of XEST(TT)j and XEST(TT)j+1, and the difference between fixed physical distance XFIX minus estimated distance XEST(TT)j calculated using velocity Vj measured at the upstream print bar 222j, will equal the difference between an estimated distance XEST(TT)j+1 calculated at downstream print bar 222j+1 minus XFIX. Thus, we can obtain a stretch factor SF of 1.025 by (a) calculating an XEST(TT)j+1 of 0.0401 m (by subtracting 39.90 cm from 40 cm, and adding the difference to 40 cm, and (b) dividing the value of XEST(TT)j+1 by XFIX.
In some embodiments, a pre-determined time interval (or time period) TT, which as described above, can correspond to the travel time of a reference portion RF of the ITM 210 at a pre-determined velocity, is divided into time intervals TI1 . . . TIM, where each time interval TIi is one of M consecutive preset divisions of the predetermined time period TT. In some embodiments, each time interval TIi is exactly one M-th of the time period TT, in which case all M of the M consecutive subdivision time intervals TI1 . . . TIM are equal to each other. In other embodiments, the M consecutive time intervals TI1 . . . TIM can have different durations, in a sequence that repeats every M consecutive time intervals, such that at any given time, the immediately previous M consecutive time intervals TIi will add up to TT.
By dividing the time period TT into M time intervals, it is possible to apply the methods and calculations discussed above with respect to time period TT, with higher resolution, that is, with respect to smaller time intervals TIi. In this way it can be possible to derive a more precise estimation of the length of a reference portion of the ITM, and from there a more precise stretch factor SF. This means deriving, for each time interval TIi of the M time intervals TIi, a time-interval-specific stretch factor SF(TIi) and a time-interval-specific estimated length XEST(TIi) of the reference portion RF of the ITM. Note: the notation SF(TIi) and XEST(TIi) for each of the time-interval-specific stretch factors and estimated lengths, respectively, indicates that each calculation is performed with respect to data (e.g., angular velocities) measured in that specific time interval and is valid for that specific time interval.
In embodiments, M can be any positive integer. For example, M can equal 1. If M equals 1, then there is only one time interval TIi (i.e., TI1), and TI1 is equivalent to TT; the resolution or precision of the derivation of a stretch factor is the same as in the foregoing discussion, which can be referred to as the “M=1 case”. An M equal to 1 might be chosen, for example, if it is not possible or practical to measure velocity with greater time-resolution, or if a print controller cannot adjust stretch factors or inter-droplet spacings frequently enough to justify the collection of the additional data. Alternatively, a low value of M, even a value of 1, might be chosen if it is determined that increasing the value of M will not increase the precision of the derivation of the stretch factor enough to justify the additional computing power. Otherwise, M can be chosen to be greater than 1 in order to increase the precision of the derivation of the stretch factor. In other examples, M is between 1 and 1,000. In still other examples, M is between 10 and 100. It is possible to experiment and determine a value of M beyond which there is no increase in precision of the stretch factor—this value will be design-specific for a given printing system.
As a result of dividing the time period TT into M time intervals TI1 . . . TIM for the purpose of compensating for longitudinal stretching of an ITM, for example the stretching caused by differences in rotational velocity between a downstream drive roller and an upstream drive roller, it is possible to derive and apply a stretch factor SF(TIi) during each time interval TIi. This time-interval-specific stretch factor SF(TIi) can be derived from a time-interval-specific estimated length XEST(TIi) of the reference portion RF of the ITM, and the time-interval-specific estimated length XEST(TIi) can be calculated by summing segment-lengths XSEG(TIi) calculated from local velocities V measured during each respective time interval TIi. Specifically, the time-interval-specific estimated length XEST(TIi) can be calculated by summing segment-lengths XSEG(TIi) calculated for the immediately preceding M time intervals TIi.
Referring now to
The following discussion relates to the expression “immediately preceding M time intervals TIi” as used herein: As discussed with respect to various embodiments, in each time interval TIi which is one of M consecutive pre-set subdivisions of time period TT, a time-interval-specific stretch factor SF(TIi) is to be determined by comparing an estimated length XEST(TIi) of reference portion RF of ITM 210—when stretched by tension forces in the ITM 210—to the fixed physical distance XFIX between upstream and downstream print bars 222j, 222j+1. By “comparing” we mean performing one or more mathematical operations, as detailed earlier. The estimated length XEST(TIi) used in determining the time-interval-specific stretch factor SF(TIi) is calculated for every time interval TIi, meaning M times as frequently as the “M=1 case” where a stretch factor SF is calculated only once for each entire undivided time period TT. When M is greater than 1, then XEST(TIi) is calculated by summing up M segment-lengths XSEG(TIi) corresponding to M consecutive time intervals TIi. The summing up may begin, as a non-limiting example, with setting the time interval TIi for which XEST(TIi) is being calculated to TI1, or, as a second non-limiting example, starting with the time interval TIi that came just before that one being set to TI1. As long as M consecutive time intervals TIi are addressed in the summing-up, it doesn't matter that the segment-lengths XSEG(TIi) may relate to time intervals TIi of different durations—because of the commutative property of addition, any M consecutive time intervals TIi will always add up to TT and the segment-lengths XSEG(TIi) corresponding to the M consecutive time intervals TIi can be summed up to yield the time-interval-specific estimated length XEST(TIi) for the reference portion RF, valid for time interval TIi.
The preceding discussion, for the sake of clarity, was neutral with respect to which of the upstream and downstream rollers 232j, 232j+1 was the basis for velocity measurements V that were used in calculating segment-lengths XSEG(TIi) and summing up segment-lengths XSEG(TIi) to determine an estimated length XEST(TIi). As explained earlier with respect to the M=1 case, either of the upstream or downstream roller-encoder pairs (i.e., upstream roller 232j with encoder 250j, or downstream roller 232j+1 with encoder 250j+1) may be used. In the case that velocity V measurements of the ITM 210 are taken at the upstream roller 232j, then in each time interval TIi an upstream-based segment-length XSEG(TIi)j is calculated from the one or more velocity values V measured during each time interval TIi of time intervals TIi . . . TIM. M consecutive calculated upstream-based segment-length XSEG(TIi)j . . . XSEG(TIM)j for M consecutive time intervals TI1 . . . TIM are summed to yield an upstream-based time-interval-specific estimated length XEST(TIi)j of reference portion RF. Alternatively, if velocity V measurements of the ITM 210 are taken at the downstream roller 232j+1, then in each time interval TIi a downstream-based segment-length XSEG(TIi)j+1 is calculated from the one or more velocity values V measured during each time interval TIi of time intervals TIi . . . TIM. M consecutive calculated downstream-based segment-length XSEG(TI1)j+1 . . . XSEG(TIM)j+1 for M consecutive time intervals TI1 . . . TIM are summed to yield a downstream-based time-interval-specific estimated length XEST(TIi)j+1 of reference portion RF. From this point, a time-interval-specific stretch factor SF(TIi) may be calculated in the same ways that the stretch factor SF was calculated in the M=1 case. In other words, calculating a time-interval-specific stretch factor SF(TIi) on the basis of time-interval-specific estimated length XEST(TIi)j+1 is entirely analogous to calculating a stretch factor SF on the basis of estimated length XEST(TT)j+1, and calculating a time-interval-specific stretch factor SF(TIi) on the basis of time-interval-specific estimated length XEST(TIi)j is entirely analogous to calculating a stretch factor SF on the basis of estimated length XEST(TT)j.
A method of printing using a printing system 100 is disclosed, including method steps shown in the flowchart in
a. Step S01, measuring a local velocity V of the ITM 210 under one of upstream and downstream print bars 222j, 222j+1. Measurements of velocity V can be based on measurements of rotational velocity RV made by respective upstream and downstream encoders 250j, 250j+1 installed at respective upstream and downstream guide rollers 232j, 232j+1. (Rotational velocity is converted to linear velocity by V=RV*R, where R is the radius of roller) Velocity V measurements/calculations are made at least once during each time interval TIi. Each time interval TIi is one of M consecutive pre-set divisions of a time period TT, which in some embodiments can be a measured travel time of a reference portion RF of the ITM 210 over a fixed distance XFIX between the upstream and downstream print bars 222j, 222j+1. The M pre-set time intervals TI1 . . . TIM can be all of the same duration, or can be of different durations. M can equal 1, or can equal any positive integer greater than 1.
b. Step S02, obtaining a time-interval-specific stretched length XEST(TIi) of a reference portion RF of the ITM 210, by summing respective segment-lengths XSEG(TIi) calculated from the local velocities V measured during each respective time interval TIi. The calculating of segment lengths from distances can include integrating, summing, and/or multiplying.
c. Step S03, determining a time-interval-specific stretch factor SF(TIi) for the reference portion RF by comparing (e.g, dividing or otherwise performing mathematical operations) the time-interval-specific stretched length XEST(TIi) and the fixed physical distance XFIX between the upstream and downstream print bars 222j, 222j+1.
d. Step S04, controlling inter-droplet spacing between ink droplets deposited onto the ITM 210 by the downstream print bar 222j+1 and other ink droplets deposited onto the ITM 210, the controlling being in accordance with the time-interval-specific stretch factor SF(TIi) or with any other measure using data associated with stretching of the ITM 210. The controlling can be done so as to compensate for the stretching of the reference portion RF of the ITM 210. In some embodiments, the ‘other ink droplets’ are deposited onto the ITM 210 by an upstream print bar, such as upstream print bar 222j. As discussed elsewhere in this disclosure, the other ink droplets can be deposited onto ITM 210 by any print bar 222 that is located upstream of downstream print bar 222j+1, for example print bar 222j−1. The ‘other ink droplets’ can be in a different color (and the stretching compensation is performed for color registration purposes) or in the same color (and the stretching compensation is performed for image overlay purposes). In other embodiments, the ‘other ink droplets’ are also deposited onto the ITM 210 by downstream print bar 222j+1 and are of the same color, and are intended to be deposited in different locations within an ink image.
In some embodiments, not all of the steps of the method are necessary.
In some embodiments, a stretch factor is used for modifying inter-droplet spacing such that the spacing between two ink droplets deposited upon the ITM is greater when the ITM is locally stretched than when it is not, and the inter-droplet spacing is adjusted using the stretch factor so as to compensate for the stretching. In some embodiments, ITM can be unstretched when images are transferred to a substrate (e.g., a paper or plastic medium) at an impression station. In such cases, applying the stretch factor at the image-forming station ensures that an undistorted image is transferred to substrate. In some embodiments, an ITM is stretched at an impression station by a longitudinal force. The stretching at the impression station can be different than the stretching at the image-forming station where the ink droplets are deposited upon the ITM. For example, the stretching at the impression station can be less than the stretching at the image-forming station. In some embodiments, a stretch factor ratio is calculated or tracked, where the stretch factor ratio is the ratio between a first ITM stretch factor at the image-forming station and a second ITM stretch factor at the impression station. The stretch factor ratio can be applied at the image-forming station, where the inter-droplet spacing of droplets deposited onto an ITM is controlled in accordance with the stretch factor ratio.
Referring to
Applying Stretch Factors and Stretch Factor Ratios
Stretch factors and stretch factor ratios can be used in a number of ways to improve the quality of printed images produced by digital printing systems, and especially indirect inkjet printing systems using intermediate transfer media. Stretch factors and stretch factor ratios can be used to improve color registration and overlay printing by ensuring that the spacing of droplets being deposited by one or more print bars takes into account the local stretching of a reference portion RF of the ITM 210 corresponding to the distance between print bars. Stretch factors and stretch factor ratios can be used to compensate for the local stretching of the ITM 210 at the one or both of an image-forming station and an impression (image-transfer) station, and also to compensate for the difference or ratio between stretch factors at the two stations.
We refer now to
Part B shows the relative spacing of the two ink droplets 311, 312 deposited onto the ITM 210 on the basis of the respective values of the two pixels 301, 302. The distance between the two ink droplets 311, 312 as deposited is D2. D2 is deliberately made greater than D1 by controlling the inter-droplet spacing at the print bar 222j+1, because of the application of a stretch factor ratio SF/SFIMP. This ratio is equal to a stretch factor SF at the image-forming station divided by a stretch factor SFIMP at the impression station (e.g., between the two drive rollers 253, 255 of
Part C shows the relative spacing of the two ink droplets 311, 312 at location on the ITM 210 after the image-forming station and before the impression station—in other words, when the ITM 210 is presumably slack and there is no specific longitudinal tension applied. Here, the two ink droplets 311, 312 are a distance D3 apart. D3 is smaller than D1 (and, by extension, D2), i.e., the ink droplets are closer together than they are meant to be in the final printed image. This is because the stretching of the ITM 210 at the impression station will cause the distance between the two ink droplets to grow once more, to the original planned D1. The ratio of D1 to D3 is preferably equivalent to the stretch factor SFIMP at the impression station.
Part D of
Part E shows the printed image on substrate after transfer at the impression station, and the inter-droplet spacing is D1, the same as the original planned spacing.
The skilled artisan will understand that the process illustrated in
A method of printing using a printing system 100 is now disclosed, including method steps shown in the flowchart in
a. Step S11, tracking a stretch-factor ratio between a stretch factor at the image-forming station 212 and a stretch factor at the impression station 216. Each stretch factor (for example stretch factor SF or SF(TIi) at the image-forming station 212 and stretch factor SFIMP at the impression station 216) can be measured, estimated or calculated according to the various embodiments disclosed herein. In some embodiments, the image-forming station 212 of the printing system 100 comprises a plurality of print bars 222, and the tracking a stretch-factor ratio between a stretch factor of the ITM at the image-forming station 212 and a stretch factor at the impression station 216 includes tracking a respective stretch-factor ratio between a local stretch factor at each print bar 222j of print bars 2221 . . . 222N of the image-forming station 212 and a stretch factor at the impression station 216.
b. Step S12, controlling deposition of ink droplets onto the ITM 210 at the imaging 212 station so as to modify a spacing between ink droplets, in response to detected changes in the stretch factor ratio tracked in Step S11.
Another method of printing using a printing system 100 is now disclosed, including method steps shown in the flowchart in
a. Step S11, as described above.
b. Step S12, as described above.
c. Step S13, transporting the ink images formed on the ITM at the image-forming station 212 (in step S12) to the impression station 216.
d. Step S14, transferring the ink images to substrate at the impression station 216, such that a spacing between ink droplets is different than when the ink images were formed at the image-forming station 212. In some embodiments, the inter-droplet spacing when images are transferred to substrate at the impression station 216 is smaller than when the ink images were formed at the image-forming station 212. In some embodiments, when images are transferred to substrate at the impression station 216, the ink droplets deposited at the image-forming station 212 will have substantially been dried and flattened to form a film, or ink residue, on the ITM 210. The ink residue can comprise a colorant such as a pigment or dye. In other words, it can be that there are no longer any ink droplets per se by the time the ink images arrive at the impression station 216. Nonetheless, the distance between visible pixels formed by deposition of one or more ink droplets, can be measured and used as inter-droplet spacing distances. For example, pixels respectively formed at least in part by droplets 311, 312 of
To remove any doubt, the expression “spacing between ink droplets in ink images when transferred to substrate at the impression station” should be understood throughout the present disclosure as equivalent to the expression “spacing, when ink images are transferred to substrate at the impression station, between pixels comprising the residue of substantially dried ink droplets”. “Spacing,” in embodiments, can mean centerline-to-centerline. “Ink droplets” in the context of the impression station, in the context of transferring ink images to substrate at the impression station, should be understood to mean the residue or dried residue of the ink droplets.
Another method of printing using a printing system 100 is disclosed, including method steps shown in the flowchart in
a. Step S21, tracking a first ITM stretch factor SF or SF(TIi) at the image-forming station 212 and a second ITM stretch factor SFIMP at the impression station 216, the second stretch factor SFIMP being different than the first stretch factor SF or SF(TIi).
b. Step S22, forming ink images on the ITM 210 at the imaging station 212 with a droplet-to-droplet spacing according to the first stretch factor SF or SF(TIi).
c. Step S23, transferring the ink images to substrate at the impression station 216 with a droplet-to-droplet spacing according to the second stretch factor SFIMP. The droplet-to-droplet spacing according to the second stretch factor SFIMP can be evidenced by visible inter-pixel spacing D1 at the impression station 216, as discussed earlier with respect to Step S14. In some embodiments, the second stretch factor SFIMP is smaller than the first stretch factor SF or SF(TIi).
In some embodiments of the method, the image-forming station 212 comprises a plurality of print bars 222, and tracking a first stretch factor SF or SF(TIi) at the image-forming station 212 includes tracking a respective first stretch factor SF or SF(TIi) at each print bar 222j of print bars 2221 . . . 222N of the image-forming station 212. In addition, forming the ink images at the image-forming station 212 with a droplet-to-droplet spacing according to the first stretch factor SF or SF(TIi) includes forming the ink images at each print bar 222j of print bars 2221 . . . 222N of the image-forming station 212 with a droplet-to-droplet spacing according to the first stretch factor SF or SF(TIi) corresponding to the respective print bar 222j.
Yet another method of printing using a printing system 100 is now disclosed, including method steps shown in the flowchart in
a. Step S31, depositing ink droplets so as to form an ink image on the ITM 210 with at least a part of the ink image characterized by a first between-droplet spacing in the print direction 2012. In some embodiments, the first between-droplet spacing in the print direction 2012 changes from time to time.
b. Step S32, transporting the ink image to the impression station 216.
c. Step S33, transferring the ink image to substrate at the impression station 216 with a second between-droplet spacing in the print direction.
According to the method, the first between-droplet spacing in the print direction 2012 is in accordance with an observed or calculated stretching of the ITM 210 at the print bar 222.
In some embodiments of the method, the second between-droplet spacing is smaller than the first between-droplet spacing.
Embodiments of a printing system 100 are illustrated in
According to some embodiments, a printing system 100 comprises a flexible ITM 210 disposed around a plurality of guide rollers 232 (2321 . . . 232N), 260 including upstream and downstream guide rollers 232j, 232j+1 at which respective upstream and downstream encoders 250j, 250j+1 are installed. The printing system 100 additionally comprises an image-forming station 212 at which ink images are formed by droplet deposition, the image-forming station 212 comprising upstream and downstream print bars 222j, 222j+1 disposed over the ITM 210 and respectively aligned with the upstream and downstream guide rollers 232j, 232j+1, the upstream and downstream print bars 222j, 222j+1 having a fixed physical distance XFIX therebetween and defining a reference portion RF of the ITM 210. The printing system additionally comprises electronic circuitry 400 for controlling the spacing between ink droplets deposited by the downstream print bar 222j+1 onto the ITM 210 according to a calculated time-interval-specific stretch factor SF(TIi) so as to compensate for the stretching of the reference portion RF of the ITM 210. Methods for derivation or calculation of the time-interval-specific stretch factor SF(TIi) for each time interval TIi (one of M consecutive preset divisions of a predetermined time period TT) are disclosed above.
According to some embodiments, a printing system 100 comprises an image-forming station 212 at which ink images are formed by droplet deposition on a rotating flexible ITM 210, an impression station 216 downstream of the image-forming station 212, and electronic circuitry configured to (a) track a stretch-factor ratio between a stretch factor SF or SF(TIi) at the image-forming station 212 and a stretch factor SFIMP at the impression station 216, and (b) control deposition of droplets onto the ITM 210 at the imaging station 212 in accordance with detected changes in the tracked stretch factor ratio, so as to modify a spacing between ink droplets in ink images formed on the ITM 210 at the imaging station 212. The electronic circuitry 400 can be configured to ensure that when modifying a spacing between ink droplets in ink images formed on the ITM 210 at the imaging station 212, the spacing is larger than a spacing between the droplets in the ink images when they are transferred to substrate 231 at the impression station 216.
According to some embodiments, a printing system comprises an image-forming station 212 at which ink images are formed by droplet deposition on a rotating flexible ITM 210, electronic circuitry 400 configured to track a first stretch factor SF or SF(TIi) at the image-forming station 212 and a second ITM stretch factor SFIMP at an impression station 216 downstream of the image-forming station 212, and to control deposition of droplets onto the ITM 210 at the imaging station 212 so as to modify a spacing between ink droplets in accordance with the first stretch factor SF or SF(TIi). The printing system 100 also comprises the impression station 216, at which the ink images are transferred to substrate with a spacing between ink droplets in accordance with the second stretch factor SFIMP. The second stretch factor SFIMP can be smaller than the first stretch factor SF or SF(TIi).
According to some embodiments, a printing system 100 comprises a flexible ITM 210 mounted over a plurality of guide rollers 232 (2321 . . . 232N), 260 and rotating in a print direction 1200, an image-forming station 212 comprising a print bar 222 disposed over a surface of the ITM 210, the print bar 222 configured to deposit droplets upon a surface of the ITM 210 so as to form ink images characterized at least in part by a first between-droplet spacing in the print direction 1200 which is selected in accordance with an observed or calculated stretching of the ITM 210 at the print bar, and a conveyer for driving rotation of the ITM 210 in a print direction 1200 to transport the ink images towards an impression station 216 where they are transferred to substrate 231 with a second between-droplet spacing in the print direction 1200. The conveyor can include one or more electric motors (not shown) and one or more drive rollers 242, 240, 253, 250. In some embodiments, the second between-droplet spacing is smaller than the first between-droplet spacing.
The present invention has been described using detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. The described embodiments comprise different features, not all of which are required in all embodiments of the invention. Some embodiments of the present invention utilize only some of the features or possible combinations of the features. Variations of embodiments of the present invention that are described and embodiments of the present invention comprising different combinations of features noted in the described embodiments will occur to persons skilled in the art to which the invention pertains.
In the description and claims of the present disclosure, each of the verbs, “comprise”, “include” and “have”, and conjugates thereof, are used to indicate that the object or objects of the verb are not necessarily a complete listing of members, components, elements or parts of the subject or subjects of the verb. As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a marking” or “at least one marking” may include a plurality of markings.
This patent application claims the benefit of U.S. Provisional Patent Application No. 62/713,632 filed on Aug. 2, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2839181 | Renner | Jun 1958 | A |
3011545 | Welsh et al. | Dec 1961 | A |
3053319 | Cronin et al. | Sep 1962 | A |
3697551 | Thomson | Oct 1972 | A |
3697568 | Boissieras et al. | Oct 1972 | A |
3889802 | Jonkers et al. | Jun 1975 | A |
3898670 | Erikson et al. | Aug 1975 | A |
3947113 | Buchan et al. | Mar 1976 | A |
4009958 | Kurita et al. | Mar 1977 | A |
4093764 | Duckett et al. | Jun 1978 | A |
4293866 | Takita et al. | Oct 1981 | A |
4401500 | Hamada et al. | Aug 1983 | A |
4535694 | Fukuda | Aug 1985 | A |
4538156 | Durkee et al. | Aug 1985 | A |
4555437 | Tanck | Nov 1985 | A |
4575465 | Viola | Mar 1986 | A |
4642654 | Toganoh et al. | Feb 1987 | A |
4853737 | Hartley et al. | Aug 1989 | A |
4976197 | Yamanari et al. | Dec 1990 | A |
5012072 | Martin et al. | Apr 1991 | A |
5039339 | Phan et al. | Aug 1991 | A |
5062364 | Lewis et al. | Nov 1991 | A |
5075731 | Kamimura et al. | Dec 1991 | A |
5099256 | Anderson | Mar 1992 | A |
5106417 | Hauser et al. | Apr 1992 | A |
5128091 | Agur et al. | Jul 1992 | A |
5190582 | Shinozuka et al. | Mar 1993 | A |
5198835 | Ando et al. | Mar 1993 | A |
5246100 | Stone et al. | Sep 1993 | A |
5264904 | Audi et al. | Nov 1993 | A |
5305099 | Morcos | Apr 1994 | A |
5333771 | Cesario | Aug 1994 | A |
5349905 | Taylor et al. | Sep 1994 | A |
5352507 | Bresson et al. | Oct 1994 | A |
5365324 | Gu et al. | Nov 1994 | A |
5406884 | Okuda et al. | Apr 1995 | A |
5471233 | Okamoto et al. | Nov 1995 | A |
5532314 | Sexsmith | Jul 1996 | A |
5552875 | Sagiv et al. | Sep 1996 | A |
5575873 | Pieper et al. | Nov 1996 | A |
5587779 | Heeren et al. | Dec 1996 | A |
5608004 | Toyoda et al. | Mar 1997 | A |
5613669 | Grueninger | Mar 1997 | A |
5614933 | Hindman et al. | Mar 1997 | A |
5623296 | Fujino et al. | Apr 1997 | A |
5642141 | Hale et al. | Jun 1997 | A |
5660108 | Pensavecchia | Aug 1997 | A |
5677719 | Granzow | Oct 1997 | A |
5679463 | Visser et al. | Oct 1997 | A |
5698018 | Bishop et al. | Dec 1997 | A |
5723242 | Woo et al. | Mar 1998 | A |
5733698 | Lehman et al. | Mar 1998 | A |
5736250 | Heeks et al. | Apr 1998 | A |
5772746 | Sawada et al. | Jun 1998 | A |
5777576 | Zur et al. | Jul 1998 | A |
5777650 | Blank | Jul 1998 | A |
5841456 | Takei et al. | Nov 1998 | A |
5859076 | Kozma et al. | Jan 1999 | A |
5880214 | Okuda | Mar 1999 | A |
5883144 | Bambara et al. | Mar 1999 | A |
5883145 | Hurley et al. | Mar 1999 | A |
5884559 | Okubo et al. | Mar 1999 | A |
5889534 | Johnson et al. | Mar 1999 | A |
5891934 | Moffatt et al. | Apr 1999 | A |
5895711 | Yamaki et al. | Apr 1999 | A |
5902841 | Jaeger et al. | May 1999 | A |
5923929 | Ben et al. | Jul 1999 | A |
5929129 | Feichtinger | Jul 1999 | A |
5932659 | Bambara et al. | Aug 1999 | A |
5935751 | Matsuoka et al. | Aug 1999 | A |
5978631 | Lee | Nov 1999 | A |
5978638 | Tanaka et al. | Nov 1999 | A |
5991590 | Chang et al. | Nov 1999 | A |
6004647 | Bambara et al. | Dec 1999 | A |
6009284 | Weinberger et al. | Dec 1999 | A |
6024018 | Darel et al. | Feb 2000 | A |
6024786 | Gore | Feb 2000 | A |
6025453 | Keller et al. | Feb 2000 | A |
6033049 | Fukuda | Mar 2000 | A |
6045817 | Ananthapadmanabhan et al. | Apr 2000 | A |
6053438 | Romano, Jr. et al. | Apr 2000 | A |
6055396 | Pang | Apr 2000 | A |
6059407 | Komatsu et al. | May 2000 | A |
6071368 | Boyd et al. | Jun 2000 | A |
6072976 | Kuriyama et al. | Jun 2000 | A |
6078775 | Arai et al. | Jun 2000 | A |
6094558 | Shimizu et al. | Jul 2000 | A |
6102538 | Ochi et al. | Aug 2000 | A |
6103775 | Bambara et al. | Aug 2000 | A |
6108513 | Landa et al. | Aug 2000 | A |
6109746 | Jeanmaire et al. | Aug 2000 | A |
6132541 | Heaton | Oct 2000 | A |
6143807 | Lin et al. | Nov 2000 | A |
6166105 | Santilli et al. | Dec 2000 | A |
6195112 | Fassler et al. | Feb 2001 | B1 |
6196674 | Takemoto | Mar 2001 | B1 |
6213580 | Segerstrom et al. | Apr 2001 | B1 |
6214894 | Bambara et al. | Apr 2001 | B1 |
6221928 | Kozma et al. | Apr 2001 | B1 |
6234625 | Wen | May 2001 | B1 |
6242503 | Kozma et al. | Jun 2001 | B1 |
6257716 | Yanagawa et al. | Jul 2001 | B1 |
6261688 | Kaplan et al. | Jul 2001 | B1 |
6262137 | Kozma et al. | Jul 2001 | B1 |
6262207 | Rao et al. | Jul 2001 | B1 |
6303215 | Sonobe et al. | Oct 2001 | B1 |
6316512 | Bambara et al. | Nov 2001 | B1 |
6332943 | Herrmann et al. | Dec 2001 | B1 |
6354700 | Roth | Mar 2002 | B1 |
6357869 | Rasmussen et al. | Mar 2002 | B1 |
6357870 | Beach et al. | Mar 2002 | B1 |
6358660 | Agler et al. | Mar 2002 | B1 |
6363234 | Landa et al. | Mar 2002 | B2 |
6364451 | Silverbrook | Apr 2002 | B1 |
6377772 | Chowdry et al. | Apr 2002 | B1 |
6383278 | Hirasa et al. | May 2002 | B1 |
6386697 | Yamamoto et al. | May 2002 | B1 |
6390617 | Iwao | May 2002 | B1 |
6396528 | Yanagawa | May 2002 | B1 |
6397034 | Tarnawskyj et al. | May 2002 | B1 |
6400913 | De et al. | Jun 2002 | B1 |
6402317 | Yanagawa et al. | Jun 2002 | B2 |
6409331 | Gelbart | Jun 2002 | B1 |
6432501 | Yang et al. | Aug 2002 | B1 |
6438352 | Landa et al. | Aug 2002 | B1 |
6454378 | Silverbrook et al. | Sep 2002 | B1 |
6471803 | Pelland et al. | Oct 2002 | B1 |
6530321 | Andrew et al. | Mar 2003 | B2 |
6530657 | Polierer | Mar 2003 | B2 |
6531520 | Bambara et al. | Mar 2003 | B1 |
6551394 | Hirasa et al. | Apr 2003 | B2 |
6551716 | Landa et al. | Apr 2003 | B1 |
6554189 | Good et al. | Apr 2003 | B1 |
6559969 | Lapstun | May 2003 | B1 |
6575547 | Sakuma | Jun 2003 | B2 |
6586100 | Pickering et al. | Jul 2003 | B1 |
6590012 | Miyabayashi | Jul 2003 | B2 |
6608979 | Landa et al. | Aug 2003 | B1 |
6623817 | Yang et al. | Sep 2003 | B1 |
6630047 | Jing et al. | Oct 2003 | B2 |
6639527 | Johnson | Oct 2003 | B2 |
6648468 | Shinkoda et al. | Nov 2003 | B2 |
6678068 | Richter et al. | Jan 2004 | B1 |
6682189 | May et al. | Jan 2004 | B2 |
6685769 | Karl et al. | Feb 2004 | B1 |
6704535 | Kobayashi et al. | Mar 2004 | B2 |
6709096 | Beach et al. | Mar 2004 | B1 |
6716562 | Uehara et al. | Apr 2004 | B2 |
6719423 | Chowdry et al. | Apr 2004 | B2 |
6720367 | Taniguchi et al. | Apr 2004 | B2 |
6755519 | Gelbart et al. | Jun 2004 | B2 |
6761446 | Chowdry et al. | Jul 2004 | B2 |
6770331 | Mielke et al. | Aug 2004 | B1 |
6789887 | Yang et al. | Sep 2004 | B2 |
6811840 | Cross | Nov 2004 | B1 |
6827018 | Hartmann et al. | Dec 2004 | B1 |
6881458 | Ludwig et al. | Apr 2005 | B2 |
6898403 | Baker et al. | May 2005 | B2 |
6912952 | Landa et al. | Jul 2005 | B1 |
6916862 | Ota et al. | Jul 2005 | B2 |
6917437 | Myers et al. | Jul 2005 | B1 |
6966712 | Trelewicz et al. | Nov 2005 | B2 |
6970674 | Sato et al. | Nov 2005 | B2 |
6974022 | Saeki | Dec 2005 | B2 |
6982799 | Lapstun | Jan 2006 | B2 |
6983692 | Beauchamp et al. | Jan 2006 | B2 |
7025453 | Ylitalo et al. | Apr 2006 | B2 |
7057760 | Lapstun et al. | Jun 2006 | B2 |
7084202 | Pickering et al. | Aug 2006 | B2 |
7128412 | King et al. | Oct 2006 | B2 |
7129858 | Ferran et al. | Oct 2006 | B2 |
7134953 | Reinke | Nov 2006 | B2 |
7160377 | Zoch et al. | Jan 2007 | B2 |
7204584 | Lean et al. | Apr 2007 | B2 |
7213900 | Ebihara | May 2007 | B2 |
7224478 | Lapstun et al. | May 2007 | B1 |
7265819 | Raney | Sep 2007 | B2 |
7271213 | Hoshida et al. | Sep 2007 | B2 |
7296882 | Buehler et al. | Nov 2007 | B2 |
7300133 | Folkins et al. | Nov 2007 | B1 |
7300147 | Johnson | Nov 2007 | B2 |
7304753 | Richter et al. | Dec 2007 | B1 |
7322689 | Kohne et al. | Jan 2008 | B2 |
7334520 | Geissler et al. | Feb 2008 | B2 |
7348368 | Kakiuchi et al. | Mar 2008 | B2 |
7360887 | Konno | Apr 2008 | B2 |
7362464 | Kitazawa | Apr 2008 | B2 |
7459491 | Tyvoll et al. | Dec 2008 | B2 |
7527359 | Stevenson et al. | May 2009 | B2 |
7575314 | Desie et al. | Aug 2009 | B2 |
7612125 | Muller et al. | Nov 2009 | B2 |
7655707 | Ma | Feb 2010 | B2 |
7655708 | House et al. | Feb 2010 | B2 |
7699922 | Breton et al. | Apr 2010 | B2 |
7708371 | Yamanobe | May 2010 | B2 |
7709074 | Uchida et al. | May 2010 | B2 |
7712890 | Yahiro | May 2010 | B2 |
7732543 | Loch et al. | Jun 2010 | B2 |
7732583 | Annoura et al. | Jun 2010 | B2 |
7808670 | Lapstun et al. | Oct 2010 | B2 |
7810922 | Gervasi et al. | Oct 2010 | B2 |
7845788 | Oku | Dec 2010 | B2 |
7867327 | Sano et al. | Jan 2011 | B2 |
7876345 | Houjou | Jan 2011 | B2 |
7910183 | Wu | Mar 2011 | B2 |
7919544 | Matsuyama et al. | Apr 2011 | B2 |
7942516 | Ohara et al. | May 2011 | B2 |
7977408 | Matsuyama et al. | Jul 2011 | B2 |
7985784 | Kanaya et al. | Jul 2011 | B2 |
8002400 | Kibayashi et al. | Aug 2011 | B2 |
8012538 | Yokouchi | Sep 2011 | B2 |
8025389 | Yamanobe et al. | Sep 2011 | B2 |
8038284 | Hori et al. | Oct 2011 | B2 |
8041275 | Soria et al. | Oct 2011 | B2 |
8042906 | Chiwata et al. | Oct 2011 | B2 |
8059309 | Lapstun et al. | Nov 2011 | B2 |
8095054 | Nakamura | Jan 2012 | B2 |
8109595 | Tanaka et al. | Feb 2012 | B2 |
8122846 | Stiblert et al. | Feb 2012 | B2 |
8147055 | Cellura et al. | Apr 2012 | B2 |
8162428 | Eun et al. | Apr 2012 | B2 |
8177351 | Taniuchi et al. | May 2012 | B2 |
8186820 | Chiwata | May 2012 | B2 |
8192904 | Nagai et al. | Jun 2012 | B2 |
8215762 | Ageishi | Jul 2012 | B2 |
8242201 | Goto et al. | Aug 2012 | B2 |
8256857 | Folkins et al. | Sep 2012 | B2 |
8263683 | Gibson et al. | Sep 2012 | B2 |
8264135 | Ozolins et al. | Sep 2012 | B2 |
8295733 | Imoto | Oct 2012 | B2 |
8303072 | Shibata et al. | Nov 2012 | B2 |
8304043 | Nagashima et al. | Nov 2012 | B2 |
8353589 | Ikeda et al. | Jan 2013 | B2 |
8434847 | Dejong et al. | May 2013 | B2 |
8460450 | Taverizatshy et al. | Jun 2013 | B2 |
8469476 | Mandel et al. | Jun 2013 | B2 |
8474963 | Hasegawa et al. | Jul 2013 | B2 |
8536268 | Karjala et al. | Sep 2013 | B2 |
8546466 | Yamashita et al. | Oct 2013 | B2 |
8556400 | Yatake et al. | Oct 2013 | B2 |
8693032 | Goddard et al. | Apr 2014 | B2 |
8711304 | Mathew et al. | Apr 2014 | B2 |
8714731 | Leung et al. | May 2014 | B2 |
8746873 | Tsukamoto et al. | Jun 2014 | B2 |
8779027 | Idemura et al. | Jul 2014 | B2 |
8802221 | Noguchi et al. | Aug 2014 | B2 |
8867097 | Mizuno | Oct 2014 | B2 |
8885218 | Hirose | Nov 2014 | B2 |
8891128 | Yamazaki | Nov 2014 | B2 |
8894198 | Hook et al. | Nov 2014 | B2 |
8919946 | Suzuki et al. | Dec 2014 | B2 |
9004629 | De et al. | Apr 2015 | B2 |
9186884 | Landa et al. | Nov 2015 | B2 |
9229664 | Landa et al. | Jan 2016 | B2 |
9264559 | Motoyanagi et al. | Feb 2016 | B2 |
9284469 | Song et al. | Mar 2016 | B2 |
9290016 | Landa et al. | Mar 2016 | B2 |
9327496 | Landa et al. | May 2016 | B2 |
9353273 | Landa et al. | May 2016 | B2 |
9381736 | Landa et al. | Jul 2016 | B2 |
9446586 | Matos et al. | Sep 2016 | B2 |
9498946 | Landa et al. | Nov 2016 | B2 |
9505208 | Shmaiser et al. | Nov 2016 | B2 |
9517618 | Landa et al. | Dec 2016 | B2 |
9566780 | Landa et al. | Feb 2017 | B2 |
9568862 | Shmaiser et al. | Feb 2017 | B2 |
9643400 | Landa et al. | May 2017 | B2 |
9643403 | Landa et al. | May 2017 | B2 |
9776391 | Landa et al. | Oct 2017 | B2 |
9782993 | Landa et al. | Oct 2017 | B2 |
9849667 | Landa et al. | Dec 2017 | B2 |
9884479 | Landa et al. | Feb 2018 | B2 |
9902147 | Shmaiser et al. | Feb 2018 | B2 |
9914316 | Landa et al. | Mar 2018 | B2 |
10065411 | Landa et al. | Sep 2018 | B2 |
10175613 | Watanabe | Jan 2019 | B2 |
10179447 | Shmaiser et al. | Jan 2019 | B2 |
10190012 | Landa et al. | Jan 2019 | B2 |
10195843 | Landa et al. | Feb 2019 | B2 |
10201968 | Landa et al. | Feb 2019 | B2 |
10226920 | Shmaiser et al. | Mar 2019 | B2 |
10266711 | Landa et al. | Apr 2019 | B2 |
10300690 | Landa et al. | May 2019 | B2 |
10357963 | Landa et al. | Jul 2019 | B2 |
10357985 | Landa et al. | Jul 2019 | B2 |
10427399 | Shmaiser et al. | Oct 2019 | B2 |
10434761 | Landa et al. | Oct 2019 | B2 |
10703094 | Shmaiser et al. | Jul 2020 | B2 |
20010022607 | Takahashi et al. | Sep 2001 | A1 |
20020041317 | Kashiwazaki et al. | Apr 2002 | A1 |
20020064404 | Iwai | May 2002 | A1 |
20020102374 | Gervasi et al. | Aug 2002 | A1 |
20020121220 | Lin | Sep 2002 | A1 |
20020150408 | Mosher et al. | Oct 2002 | A1 |
20020164494 | Grant et al. | Nov 2002 | A1 |
20020197481 | Jing et al. | Dec 2002 | A1 |
20030004025 | Okuno et al. | Jan 2003 | A1 |
20030018119 | Frenkel et al. | Jan 2003 | A1 |
20030030686 | Abe et al. | Feb 2003 | A1 |
20030032700 | Morrison et al. | Feb 2003 | A1 |
20030043258 | Kerr et al. | Mar 2003 | A1 |
20030054139 | Ylitalo et al. | Mar 2003 | A1 |
20030055129 | Alford | Mar 2003 | A1 |
20030063179 | Adachi | Apr 2003 | A1 |
20030064317 | Bailey et al. | Apr 2003 | A1 |
20030081964 | Shimura et al. | May 2003 | A1 |
20030118381 | Law et al. | Jun 2003 | A1 |
20030129435 | Blankenship et al. | Jul 2003 | A1 |
20030186147 | Pickering et al. | Oct 2003 | A1 |
20030214568 | Nishikawa et al. | Nov 2003 | A1 |
20030234849 | Pan et al. | Dec 2003 | A1 |
20040003863 | Eckhardt | Jan 2004 | A1 |
20040020382 | McLean et al. | Feb 2004 | A1 |
20040036758 | Sasaki et al. | Feb 2004 | A1 |
20040047666 | Imaizumi et al. | Mar 2004 | A1 |
20040087707 | Zoch et al. | May 2004 | A1 |
20040123761 | Szumla et al. | Jul 2004 | A1 |
20040125188 | Szumla et al. | Jul 2004 | A1 |
20040145643 | Nakamura | Jul 2004 | A1 |
20040173111 | Okuda | Sep 2004 | A1 |
20040200369 | Brady | Oct 2004 | A1 |
20040228642 | Iida et al. | Nov 2004 | A1 |
20040246324 | Nakashima | Dec 2004 | A1 |
20040246326 | Dwyer et al. | Dec 2004 | A1 |
20040252175 | Bejat et al. | Dec 2004 | A1 |
20050031807 | Quintens et al. | Feb 2005 | A1 |
20050082146 | Axmann | Apr 2005 | A1 |
20050110855 | Taniuchi et al. | May 2005 | A1 |
20050111861 | Calamita et al. | May 2005 | A1 |
20050134874 | Overall et al. | Jun 2005 | A1 |
20050150408 | Hesterman | Jul 2005 | A1 |
20050195235 | Kitao | Sep 2005 | A1 |
20050235870 | Ishihara | Oct 2005 | A1 |
20050266332 | Pavlisko et al. | Dec 2005 | A1 |
20050272334 | Wang et al. | Dec 2005 | A1 |
20060004123 | Wu et al. | Jan 2006 | A1 |
20060135709 | Hasegawa et al. | Jun 2006 | A1 |
20060164488 | Taniuchi et al. | Jul 2006 | A1 |
20060164489 | Vega et al. | Jul 2006 | A1 |
20060192827 | Takada et al. | Aug 2006 | A1 |
20060233578 | Maki et al. | Oct 2006 | A1 |
20060286462 | Jackson et al. | Dec 2006 | A1 |
20070014595 | Kawagoe | Jan 2007 | A1 |
20070025768 | Komatsu et al. | Feb 2007 | A1 |
20070029171 | Nemedi | Feb 2007 | A1 |
20070045939 | Toya et al. | Mar 2007 | A1 |
20070054981 | Yanagi et al. | Mar 2007 | A1 |
20070064077 | Konno | Mar 2007 | A1 |
20070077520 | Maemoto | Apr 2007 | A1 |
20070120927 | Snyder et al. | May 2007 | A1 |
20070123642 | Banning et al. | May 2007 | A1 |
20070134030 | Lior et al. | Jun 2007 | A1 |
20070144368 | Barazani et al. | Jun 2007 | A1 |
20070146462 | Taniuchi et al. | Jun 2007 | A1 |
20070147894 | Yokota et al. | Jun 2007 | A1 |
20070166071 | Shima | Jul 2007 | A1 |
20070176995 | Kadomatsu et al. | Aug 2007 | A1 |
20070189819 | Uehara et al. | Aug 2007 | A1 |
20070199457 | Cyman, Jr. et al. | Aug 2007 | A1 |
20070229639 | Yahiro | Oct 2007 | A1 |
20070253726 | Kagawa | Nov 2007 | A1 |
20070257955 | Tanaka et al. | Nov 2007 | A1 |
20070285486 | Harris et al. | Dec 2007 | A1 |
20080006176 | Houjou | Jan 2008 | A1 |
20080030536 | Furukawa et al. | Feb 2008 | A1 |
20080032072 | Taniuchi et al. | Feb 2008 | A1 |
20080044587 | Maeno et al. | Feb 2008 | A1 |
20080055356 | Yamanobe | Mar 2008 | A1 |
20080055381 | Doi et al. | Mar 2008 | A1 |
20080074462 | Hirakawa | Mar 2008 | A1 |
20080112912 | Springob et al. | May 2008 | A1 |
20080124158 | Folkins | May 2008 | A1 |
20080138546 | Soria et al. | Jun 2008 | A1 |
20080166495 | Maeno et al. | Jul 2008 | A1 |
20080167185 | Hirota | Jul 2008 | A1 |
20080175612 | Oikawa et al. | Jul 2008 | A1 |
20080196612 | Rancourt et al. | Aug 2008 | A1 |
20080196621 | Ikuno et al. | Aug 2008 | A1 |
20080213548 | Koganehira et al. | Sep 2008 | A1 |
20080236480 | Furukawa et al. | Oct 2008 | A1 |
20080253812 | Pearce et al. | Oct 2008 | A1 |
20090022504 | Kuwabara et al. | Jan 2009 | A1 |
20090041515 | Kim | Feb 2009 | A1 |
20090041932 | Ishizuka et al. | Feb 2009 | A1 |
20090074492 | Ito | Mar 2009 | A1 |
20090082503 | Yanagi et al. | Mar 2009 | A1 |
20090087565 | Houjou | Apr 2009 | A1 |
20090098385 | Kaemper et al. | Apr 2009 | A1 |
20090116885 | Ando | May 2009 | A1 |
20090148200 | Hara et al. | Jun 2009 | A1 |
20090165937 | Inoue et al. | Jul 2009 | A1 |
20090190951 | Torimaru et al. | Jul 2009 | A1 |
20090202275 | Nishida et al. | Aug 2009 | A1 |
20090211490 | Ikuno et al. | Aug 2009 | A1 |
20090220873 | Enomoto et al. | Sep 2009 | A1 |
20090237479 | Yamashita et al. | Sep 2009 | A1 |
20090256896 | Scarlata | Oct 2009 | A1 |
20090279170 | Miyazaki et al. | Nov 2009 | A1 |
20090315926 | Yamanobe | Dec 2009 | A1 |
20090317555 | Hori | Dec 2009 | A1 |
20090318591 | Ageishi et al. | Dec 2009 | A1 |
20100012023 | Lefevre et al. | Jan 2010 | A1 |
20100053292 | Thayer et al. | Mar 2010 | A1 |
20100053293 | Thayer et al. | Mar 2010 | A1 |
20100066796 | Yanagi et al. | Mar 2010 | A1 |
20100075843 | Ikuno et al. | Mar 2010 | A1 |
20100086692 | Ohta et al. | Apr 2010 | A1 |
20100091064 | Araki et al. | Apr 2010 | A1 |
20100225695 | Fujikura | Sep 2010 | A1 |
20100231623 | Hirato | Sep 2010 | A1 |
20100239789 | Umeda | Sep 2010 | A1 |
20100245511 | Ageishi | Sep 2010 | A1 |
20100282100 | Okuda et al. | Nov 2010 | A1 |
20100285221 | Oki et al. | Nov 2010 | A1 |
20100303504 | Funamoto et al. | Dec 2010 | A1 |
20100310281 | Miura et al. | Dec 2010 | A1 |
20110044724 | Funamoto et al. | Feb 2011 | A1 |
20110058001 | Gila et al. | Mar 2011 | A1 |
20110058859 | Nakamatsu et al. | Mar 2011 | A1 |
20110085828 | Kosako et al. | Apr 2011 | A1 |
20110128300 | Gay et al. | Jun 2011 | A1 |
20110141188 | Morita | Jun 2011 | A1 |
20110149002 | Kessler | Jun 2011 | A1 |
20110150509 | Komiya | Jun 2011 | A1 |
20110150541 | Michibata | Jun 2011 | A1 |
20110169889 | Kojima et al. | Jul 2011 | A1 |
20110195260 | Lee et al. | Aug 2011 | A1 |
20110199414 | Lang | Aug 2011 | A1 |
20110234683 | Komatsu | Sep 2011 | A1 |
20110234689 | Saito | Sep 2011 | A1 |
20110249090 | Moore et al. | Oct 2011 | A1 |
20110269885 | Imai | Nov 2011 | A1 |
20110279554 | Dannhauser et al. | Nov 2011 | A1 |
20110304674 | Sambhy et al. | Dec 2011 | A1 |
20120013693 | Tasaka et al. | Jan 2012 | A1 |
20120013694 | Kanke | Jan 2012 | A1 |
20120013928 | Yoshida et al. | Jan 2012 | A1 |
20120026224 | Anthony et al. | Feb 2012 | A1 |
20120039647 | Brewington et al. | Feb 2012 | A1 |
20120094091 | Van et al. | Apr 2012 | A1 |
20120098882 | Onishi et al. | Apr 2012 | A1 |
20120105561 | Taniuchi et al. | May 2012 | A1 |
20120105562 | Sekiguchi et al. | May 2012 | A1 |
20120113180 | Tanaka et al. | May 2012 | A1 |
20120113203 | Kushida et al. | May 2012 | A1 |
20120127250 | Kanasugi et al. | May 2012 | A1 |
20120127251 | Tsuji et al. | May 2012 | A1 |
20120140009 | Kanasugi et al. | Jun 2012 | A1 |
20120156375 | Brust et al. | Jun 2012 | A1 |
20120156624 | Rondon et al. | Jun 2012 | A1 |
20120162302 | Oguchi et al. | Jun 2012 | A1 |
20120163846 | Andoh et al. | Jun 2012 | A1 |
20120194830 | Gaertner et al. | Aug 2012 | A1 |
20120237260 | Sengoku et al. | Sep 2012 | A1 |
20120287260 | Lu et al. | Nov 2012 | A1 |
20120301186 | Yang et al. | Nov 2012 | A1 |
20120314077 | Clavenna, II et al. | Dec 2012 | A1 |
20130017006 | Suda | Jan 2013 | A1 |
20130044188 | Nakamura et al. | Feb 2013 | A1 |
20130057603 | Gordon | Mar 2013 | A1 |
20130088543 | Tsuji et al. | Apr 2013 | A1 |
20130120513 | Thayer et al. | May 2013 | A1 |
20130201237 | Thomson et al. | Aug 2013 | A1 |
20130234080 | Torikoshi et al. | Sep 2013 | A1 |
20130242016 | Edwards et al. | Sep 2013 | A1 |
20130338273 | Shimanaka et al. | Dec 2013 | A1 |
20140001013 | Takifuji et al. | Jan 2014 | A1 |
20140011125 | Inoue et al. | Jan 2014 | A1 |
20140043398 | Butler et al. | Feb 2014 | A1 |
20140104360 | Häcker et al. | Apr 2014 | A1 |
20140168330 | Liu et al. | Jun 2014 | A1 |
20140175707 | Wolk et al. | Jun 2014 | A1 |
20140232782 | Mukai et al. | Aug 2014 | A1 |
20140267777 | Le et al. | Sep 2014 | A1 |
20140334855 | Onishi | Nov 2014 | A1 |
20140339056 | Iwakoshi et al. | Nov 2014 | A1 |
20150024648 | Landa et al. | Jan 2015 | A1 |
20150025179 | Landa et al. | Jan 2015 | A1 |
20150042736 | Landa | Feb 2015 | A1 |
20150072090 | Landa et al. | Mar 2015 | A1 |
20150085036 | Liu et al. | Mar 2015 | A1 |
20150085037 | Liu et al. | Mar 2015 | A1 |
20150116408 | Armbruster et al. | Apr 2015 | A1 |
20150118503 | Landa et al. | Apr 2015 | A1 |
20150195509 | Phipps | Jul 2015 | A1 |
20150210065 | Kelly et al. | Jul 2015 | A1 |
20150304531 | Rodriguez et al. | Oct 2015 | A1 |
20150336378 | Guttmann et al. | Nov 2015 | A1 |
20150361288 | Song et al. | Dec 2015 | A1 |
20160031246 | Sreekumar et al. | Feb 2016 | A1 |
20160222232 | Landa et al. | Aug 2016 | A1 |
20160286462 | Gohite et al. | Sep 2016 | A1 |
20160375680 | Nishitani et al. | Dec 2016 | A1 |
20170028688 | Dannhauser et al. | Feb 2017 | A1 |
20170104887 | Nomura | Apr 2017 | A1 |
20170192374 | Landa et al. | Jul 2017 | A1 |
20170244956 | Stiglic et al. | Aug 2017 | A1 |
20180093470 | Landa et al. | Apr 2018 | A1 |
20180259888 | Mitsui et al. | Sep 2018 | A1 |
20190016114 | Sugiyama et al. | Jan 2019 | A1 |
20190023000 | Landa et al. | Jan 2019 | A1 |
20190023919 | Landa et al. | Jan 2019 | A1 |
20190094727 | Landa et al. | Mar 2019 | A1 |
20190118530 | Landa et al. | Apr 2019 | A1 |
20190152218 | Stein et al. | May 2019 | A1 |
20190168502 | Shmaiser et al. | Jun 2019 | A1 |
20190193391 | Landa et al. | Jun 2019 | A1 |
20190202198 | Shmaiser et al. | Jul 2019 | A1 |
20190218411 | Landa et al. | Jul 2019 | A1 |
20190256724 | Landa et al. | Aug 2019 | A1 |
20200156366 | Shmaiser et al. | May 2020 | A1 |
20200171813 | Chechik et al. | Jun 2020 | A1 |
20200189264 | Landa et al. | Jun 2020 | A1 |
20200198322 | Landa et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
1121033 | Apr 1996 | CN |
1200085 | Nov 1998 | CN |
1212229 | Mar 1999 | CN |
1324901 | Dec 2001 | CN |
1493514 | May 2004 | CN |
1720187 | Jan 2006 | CN |
1261831 | Jun 2006 | CN |
1809460 | Jul 2006 | CN |
1289368 | Dec 2006 | CN |
101073937 | Nov 2007 | CN |
101177057 | May 2008 | CN |
101249768 | Aug 2008 | CN |
101344746 | Jan 2009 | CN |
101359210 | Feb 2009 | CN |
101508200 | Aug 2009 | CN |
101524916 | Sep 2009 | CN |
101544100 | Sep 2009 | CN |
101544101 | Sep 2009 | CN |
101607468 | Dec 2009 | CN |
201410787 | Feb 2010 | CN |
101835611 | Sep 2010 | CN |
101873982 | Oct 2010 | CN |
102248776 | Nov 2011 | CN |
102555450 | Jul 2012 | CN |
102648095 | Aug 2012 | CN |
102925002 | Feb 2013 | CN |
103045008 | Apr 2013 | CN |
103309213 | Sep 2013 | CN |
103991293 | Aug 2014 | CN |
104271356 | Jan 2015 | CN |
104284850 | Jan 2015 | CN |
104618642 | May 2015 | CN |
105058999 | Nov 2015 | CN |
102010060999 | Jun 2012 | DE |
0457551 | Nov 1991 | EP |
0499857 | Aug 1992 | EP |
0606490 | Jul 1994 | EP |
0609076 | Aug 1994 | EP |
0613791 | Sep 1994 | EP |
0530627 | Mar 1997 | EP |
0784244 | Jul 1997 | EP |
0835762 | Apr 1998 | EP |
0843236 | May 1998 | EP |
0854398 | Jul 1998 | EP |
1013466 | Jun 2000 | EP |
1146090 | Oct 2001 | EP |
1158029 | Nov 2001 | EP |
0825029 | May 2002 | EP |
1247821 | Oct 2002 | EP |
0867483 | Jun 2003 | EP |
0923007 | Mar 2004 | EP |
1454968 | Sep 2004 | EP |
1503326 | Feb 2005 | EP |
1777243 | Apr 2007 | EP |
2028238 | Feb 2009 | EP |
2042317 | Apr 2009 | EP |
2065194 | Jun 2009 | EP |
2228210 | Sep 2010 | EP |
2270070 | Jan 2011 | EP |
2042318 | Feb 2011 | EP |
2042325 | Feb 2012 | EP |
2634010 | Sep 2013 | EP |
2683556 | Jan 2014 | EP |
2075635 | Oct 2014 | EP |
748821 | May 1956 | GB |
1496016 | Dec 1977 | GB |
1520932 | Aug 1978 | GB |
1522175 | Aug 1978 | GB |
2321430 | Jul 1998 | GB |
S5578904 | Jun 1980 | JP |
S57121446 | Jul 1982 | JP |
S6076343 | Apr 1985 | JP |
S60199692 | Oct 1985 | JP |
S6223783 | Jan 1987 | JP |
H03248170 | Nov 1991 | JP |
H05147208 | Jun 1993 | JP |
H05192871 | Aug 1993 | JP |
H05297737 | Nov 1993 | JP |
H06954 | Jan 1994 | JP |
H06100807 | Apr 1994 | JP |
H06171076 | Jun 1994 | JP |
H06345284 | Dec 1994 | JP |
H07112841 | May 1995 | JP |
H07186453 | Jul 1995 | JP |
H07238243 | Sep 1995 | JP |
H0862999 | Mar 1996 | JP |
H08112970 | May 1996 | JP |
2529651 | Aug 1996 | JP |
H09123432 | May 1997 | JP |
H09157559 | Jun 1997 | JP |
H09281851 | Oct 1997 | JP |
H09314867 | Dec 1997 | JP |
H1142811 | Feb 1999 | JP |
H11503244 | Mar 1999 | JP |
H11106081 | Apr 1999 | JP |
H11245383 | Sep 1999 | JP |
2000108320 | Apr 2000 | JP |
2000108334 | Apr 2000 | JP |
2000141710 | May 2000 | JP |
2000168062 | Jun 2000 | JP |
2000169772 | Jun 2000 | JP |
2000206801 | Jul 2000 | JP |
2001088430 | Apr 2001 | JP |
2001098201 | Apr 2001 | JP |
2001139865 | May 2001 | JP |
3177985 | Jun 2001 | JP |
2001164165 | Jun 2001 | JP |
2001199150 | Jul 2001 | JP |
2001206522 | Jul 2001 | JP |
2002020666 | Jan 2002 | JP |
2002049211 | Feb 2002 | JP |
2002069346 | Mar 2002 | JP |
2002103598 | Apr 2002 | JP |
2002169383 | Jun 2002 | JP |
2002229276 | Aug 2002 | JP |
2002234243 | Aug 2002 | JP |
2002278365 | Sep 2002 | JP |
2002304066 | Oct 2002 | JP |
2002326733 | Nov 2002 | JP |
2002371208 | Dec 2002 | JP |
2003057967 | Feb 2003 | JP |
2003114558 | Apr 2003 | JP |
2003145914 | May 2003 | JP |
2003183557 | Jul 2003 | JP |
2003211770 | Jul 2003 | JP |
2003219271 | Jul 2003 | JP |
2003246135 | Sep 2003 | JP |
2003246484 | Sep 2003 | JP |
2003292855 | Oct 2003 | JP |
2003313466 | Nov 2003 | JP |
2004009632 | Jan 2004 | JP |
2004019022 | Jan 2004 | JP |
2004025708 | Jan 2004 | JP |
2004034441 | Feb 2004 | JP |
2004077669 | Mar 2004 | JP |
2004114377 | Apr 2004 | JP |
2004114675 | Apr 2004 | JP |
2004148687 | May 2004 | JP |
2004231711 | Aug 2004 | JP |
2004524190 | Aug 2004 | JP |
2004261975 | Sep 2004 | JP |
2004325782 | Nov 2004 | JP |
2005014255 | Jan 2005 | JP |
2005014256 | Jan 2005 | JP |
2005114769 | Apr 2005 | JP |
2005215247 | Aug 2005 | JP |
2005307184 | Nov 2005 | JP |
2005319593 | Nov 2005 | JP |
2006001688 | Jan 2006 | JP |
2006023403 | Jan 2006 | JP |
2006095870 | Apr 2006 | JP |
2006102975 | Apr 2006 | JP |
2006137127 | Jun 2006 | JP |
2006143778 | Jun 2006 | JP |
2006152133 | Jun 2006 | JP |
2006224583 | Aug 2006 | JP |
2006231666 | Sep 2006 | JP |
2006234212 | Sep 2006 | JP |
2006243212 | Sep 2006 | JP |
2006263984 | Oct 2006 | JP |
2006347081 | Dec 2006 | JP |
2006347085 | Dec 2006 | JP |
2007025246 | Feb 2007 | JP |
2007041530 | Feb 2007 | JP |
2007069584 | Mar 2007 | JP |
2007079159 | Mar 2007 | JP |
2007083445 | Apr 2007 | JP |
2007190745 | Aug 2007 | JP |
2007216673 | Aug 2007 | JP |
2007253347 | Oct 2007 | JP |
2007334125 | Dec 2007 | JP |
2008006816 | Jan 2008 | JP |
2008018716 | Jan 2008 | JP |
2008019286 | Jan 2008 | JP |
2008036968 | Feb 2008 | JP |
2008137239 | Jun 2008 | JP |
2008139877 | Jun 2008 | JP |
2008142962 | Jun 2008 | JP |
2008183744 | Aug 2008 | JP |
2008194997 | Aug 2008 | JP |
2008532794 | Aug 2008 | JP |
2008201564 | Sep 2008 | JP |
2008238674 | Oct 2008 | JP |
2008246990 | Oct 2008 | JP |
2008254203 | Oct 2008 | JP |
2008255135 | Oct 2008 | JP |
2009040892 | Feb 2009 | JP |
2009045794 | Mar 2009 | JP |
2009045851 | Mar 2009 | JP |
2009045885 | Mar 2009 | JP |
2009083314 | Apr 2009 | JP |
2009083317 | Apr 2009 | JP |
2009083325 | Apr 2009 | JP |
2009096175 | May 2009 | JP |
2009148908 | Jul 2009 | JP |
2009154330 | Jul 2009 | JP |
2009190375 | Aug 2009 | JP |
2009202355 | Sep 2009 | JP |
2009214318 | Sep 2009 | JP |
2009214439 | Sep 2009 | JP |
2009226852 | Oct 2009 | JP |
2009226886 | Oct 2009 | JP |
2009233977 | Oct 2009 | JP |
2009234219 | Oct 2009 | JP |
2010005815 | Jan 2010 | JP |
2010054855 | Mar 2010 | JP |
2010510357 | Apr 2010 | JP |
2010105365 | May 2010 | JP |
2010173201 | Aug 2010 | JP |
2010184376 | Aug 2010 | JP |
2010214885 | Sep 2010 | JP |
2010228192 | Oct 2010 | JP |
2010228392 | Oct 2010 | JP |
2010234599 | Oct 2010 | JP |
2010234681 | Oct 2010 | JP |
2010241073 | Oct 2010 | JP |
2010247381 | Nov 2010 | JP |
2010247528 | Nov 2010 | JP |
2010258193 | Nov 2010 | JP |
2010260204 | Nov 2010 | JP |
2010260287 | Nov 2010 | JP |
2010260302 | Nov 2010 | JP |
2010286570 | Dec 2010 | JP |
2011002532 | Jan 2011 | JP |
2011025431 | Feb 2011 | JP |
2011037070 | Feb 2011 | JP |
2011067956 | Apr 2011 | JP |
2011126031 | Jun 2011 | JP |
2011133884 | Jul 2011 | JP |
2011144271 | Jul 2011 | JP |
2011523601 | Aug 2011 | JP |
2011173325 | Sep 2011 | JP |
2011173326 | Sep 2011 | JP |
2011186346 | Sep 2011 | JP |
2011189627 | Sep 2011 | JP |
2011201951 | Oct 2011 | JP |
2011224032 | Nov 2011 | JP |
2012042943 | Mar 2012 | JP |
2012086499 | May 2012 | JP |
2012111194 | Jun 2012 | JP |
2012126123 | Jul 2012 | JP |
2012139905 | Jul 2012 | JP |
2012196787 | Oct 2012 | JP |
2012201419 | Oct 2012 | JP |
2013001081 | Jan 2013 | JP |
2013060299 | Apr 2013 | JP |
2013103474 | May 2013 | JP |
2013121671 | Jun 2013 | JP |
2013129158 | Jul 2013 | JP |
2014047005 | Mar 2014 | JP |
2014094827 | May 2014 | JP |
2016185688 | Oct 2016 | JP |
2180675 | Mar 2002 | RU |
2282643 | Aug 2006 | RU |
WO-8600327 | Jan 1986 | WO |
WO-9307000 | Apr 1993 | WO |
WO-9604339 | Feb 1996 | WO |
WO-9631809 | Oct 1996 | WO |
WO-9707991 | Mar 1997 | WO |
WO-9736210 | Oct 1997 | WO |
WO-9821251 | May 1998 | WO |
WO-9855901 | Dec 1998 | WO |
WO-9912633 | Mar 1999 | WO |
WO-9942509 | Aug 1999 | WO |
WO-9943502 | Sep 1999 | WO |
WO-0064685 | Nov 2000 | WO |
WO-0154902 | Aug 2001 | WO |
WO-0170512 | Sep 2001 | WO |
WO-02068191 | Sep 2002 | WO |
WO-02078868 | Oct 2002 | WO |
WO-02094912 | Nov 2002 | WO |
WO-2004113082 | Dec 2004 | WO |
WO-2004113450 | Dec 2004 | WO |
WO-2006051733 | May 2006 | WO |
WO-2006069205 | Jun 2006 | WO |
WO-2006073696 | Jul 2006 | WO |
WO-2006091957 | Aug 2006 | WO |
WO-2007009871 | Jan 2007 | WO |
WO-2007145378 | Dec 2007 | WO |
WO-2008078841 | Jul 2008 | WO |
WO-2009025809 | Feb 2009 | WO |
WO-2009134273 | Nov 2009 | WO |
WO-2010042784 | Jul 2010 | WO |
WO-2010073916 | Jul 2010 | WO |
WO-2011142404 | Nov 2011 | WO |
WO-2012014825 | Feb 2012 | WO |
WO-2012148421 | Nov 2012 | WO |
WO-2013060377 | May 2013 | WO |
WO-2013087249 | Jun 2013 | WO |
WO-2013132339 | Sep 2013 | WO |
WO-2013132340 | Sep 2013 | WO |
WO-2013132343 | Sep 2013 | WO |
WO-2013132345 | Sep 2013 | WO |
WO-2013132356 | Sep 2013 | WO |
WO-2013132418 | Sep 2013 | WO |
WO-2013132419 | Sep 2013 | WO |
WO-2013132420 | Sep 2013 | WO |
WO-2013132424 | Sep 2013 | WO |
WO-2013132432 | Sep 2013 | WO |
WO-2013132438 | Sep 2013 | WO |
WO-2013132439 | Sep 2013 | WO |
WO-2013136220 | Sep 2013 | WO |
WO-2015036864 | Mar 2015 | WO |
WO-2015036906 | Mar 2015 | WO |
WO-2015036960 | Mar 2015 | WO |
WO-2016166690 | Oct 2016 | WO |
WO-2017208246 | Dec 2017 | WO |
Entry |
---|
CN101073937A Machine Translation (by EPO and Google)—published Nov. 21, 2007; Werner Kaman Maschinen GMBH & [DE]. |
CN101249768A Machine Translation (by EPO and Google)—published Aug. 27, 2008; Shantou Xinxie Special Paper T [CN]. |
CN101344746A Machine Translation (by EPO and Google)—published Jan. 14, 2009; Ricoh KK [JP]. |
CN101359210A Machine Translation (by EPO and Google)—published Feb. 4, 2009; Canon KK [JP]. |
CN101524916A Machine Translation (by EPO and Google)—published Sep. 9, 2009; Fuji Xerox Co Ltd. |
CN101544100A Machine Translation (by EPO and Google)—published Sep. 30, 2009; Fuji Xerox Co Ltd. |
CN102648095A Machine Translation (by EPO and Google)—published Aug. 22, 2012; Mars Inc. |
CN103045008A Machine Translation (by EPO and Google)—published Apr. 17, 2013; Fuji Xerox Co Ltd. |
CN105058999A Machine Translation (by EPO and Google)—published Nov. 18, 2015; Zhuoli Imaging Technology Co Ltd. |
CN1121033A Machine Translation (by EPO and Google)—published Apr. 24, 1996; Kuehnle Manfred R [US]. |
CN1212229A Machine Translation (by EPO and Google)—published Mar. 31, 1999; Honta Industry Corp [JP]. |
CN201410787Y Machine Translation (by EPO and Google)—published Feb. 24, 2010; Zhejiang Chanx Wood Co Ltd. |
Co-pending U.S. Appl. No. 16/590,397, filed Oct. 2, 2019. |
Co-pending U.S. Appl. No. 16/649,177, filed Mar. 20, 2020. |
Co-pending U.S. Appl. No. 16/764,330, filed May 14, 2020. |
Co-pending U.S. Appl. No. 16/765,878, filed May 21, 2020. |
Co-pending U.S. Appl. No. 16/784,208, filed Feb. 6, 2020. |
Co-pending U.S. Appl. No. 16/793,995, filed Feb. 18, 2020. |
Co-pending U.S. Appl. No. 16/814,900, filed Mar. 11, 2020. |
Co-pending U.S. Appl. No. 16/850,229, filed Apr. 16, 2020. |
Co-pending U.S. Appl. No. 16/883,617, filed May 26, 2020. |
JP2000141710A Machine Translation (by EPO and Google)—published May 23, 2000; Brother Ind Ltd. |
JP2000168062A Machine Translation (by EPO and Google)—published Jun. 20, 2000; Brother Ind Ltd. |
JP2001088430A Machine Translation (by EPO and Google)—published Apr. 3, 2001; Kimoto KK. |
JP2001098201A Machine Translation (by EPO and Google)—published Apr. 10, 2001; Eastman Kodak Co. |
JP2001139865A Machine Translation (by EPO and Google)—published May 22, 2001; Sharp KK. |
JP2001164165A Machine Translation (by EPO and Google)—published Jun. 19, 2001; Dainippon Ink & Chemicals. |
JP2001199150A Machine Translation (by EPO and Google)—published Jul. 24, 2001; Canon KK. |
JP2002069346A Machine Translation (by EPO and Google)—published Mar. 8, 2002; Dainippon Ink & Chemicals. |
JP2002103598A Machine Translation (by EPO and Google)—published Apr. 9, 2002; Olympus Optical Co. |
JP2003145914A Machine Translation (by EPO and Google)—published May 21, 2003; Konishiroku Photo Ind. |
JP2003313466A Machine Translation (by EPO and Google)—published Nov. 6, 2003; Ricoh KK. |
JP2006023403A Machine Translation (by EPO and Google)—published Jan. 26, 2006; Ricoh KK. |
JP2006224583A Machine Translation (by EPO and Google)—published Aug. 31, 2006; Konica Minolta Holdings Inc. |
JP2006231666A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Seiko Epson Corp. |
JP2006234212A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Matsushita Electric Ind Co Ltd. |
JP2007025246A Machine Translation (by EPO and Google)—published Feb. 1, 2007; Seiko Epson Corp. |
JP2007083445A Machine Translation (by EPO and Google)—published Apr. 5, 2007; Fujifilm Corp. |
JP2008139877A Machine Translation (by EPO and Google)—published Jun. 19, 2008; Xerox Corp. |
JP2008183744A Machine Translation (by EPO and Google)—published Aug. 14, 2008, Fuji Xerox Co Ltd. |
JP2008194997A Machine Translation (by EPO and Google)—published Aug. 28, 2008; Fuji Xerox Co Ltd. |
JP2008238674A Machine Translation (by EPO and Google)—published Oct. 9, 2008; Brother Ind Ltd. |
JP2008254203A Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp. |
JP2010228392A Machine Translation (by EPO and Google)—published Oct. 14, 2010; Jujo Paper Co Ltd. |
JP2010234599A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Duplo Seiko Corp et al. |
JP2011037070A Machine Translation (by EPO and Google)—published Feb. 24, 2011; Riso Kagaku Corp. |
JP2011067956A Machine Translation (by EPO and Google)—published Apr. 7, 2011; Fuji Xerox Co Ltd. |
JP2012196787A Machine Translation (by EPO and Google)—published Oct. 18, 2012; Seiko Epson Corp. |
JP2012201419A Machine Translation (by EPO and Google)—published Oct. 22, 2012, Seiko Epson Corp. |
JP2014047005A Machine Translation (by EPO and Google)—published Mar. 17, 2014; Ricoh Co Ltd. |
JP2014094827A Machine Translation (by EPO and Google)—published May 22, 2014; Panasonic Corp. |
JP2016185688A Machine Translation (by EPO and Google)—published Oct. 27, 2016; Hitachi Industry Equipment Systems Co Ltd. |
JPH03248170A Machine Translation (by EPO and Google)—published Nov. 6, 1991; Fujitsu Ltd. |
JPH06954A Machine Translation (by EPO and Google)—published Jan. 11, 1994; Seiko Epson Corp. |
JPH09157559A Machine Translation (by EPO and Google)—published Jun. 17, 1997; Toyo Ink Mfg Co. |
JPH11245383A Machine Translation (by EPO and Google)—published Sep. 14, 1999; Xerox Corp. |
JPS6223783A Machine Translation (by EPO and Google)—published Jan. 31, 1987; Canon KK. |
Larostat 264 A Quaternary Ammonium Compound, Technical Bulletin, BASF Corporation, Dec. 2002, p. 1. |
Flexicon., “Bulk Handling Equipment and Systems: Carbon Black,” 2018, 2 pages. |
JP2004524190A Machine Translation (by EPO and Google)—published Aug. 12, 2004; Avery Dennison Corp. |
JP2010234681A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Riso Kagaku Corp. |
JP2010260302A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Riso Kagaku Corp. |
JPH06171076A Machine Translation (by PlatPat English machine translation)—published Jun. 21, 1994, Seiko Epson Corp. |
JPS60199692A Machine Translation (by EPO and Google)—published Oct. 9, 1985; Suwa Seikosha KK. |
Montuori G.M., et al., “Geometrical Patterns for Diagrid Buildings: Exploring Alternative Design Strategies From the Structural Point of View,” Engineering Structures, Jul. 2014, vol. 71, pp. 112-127. |
Technical Information Lupasol Types, Sep. 2010, 10 pages. |
The Engineering Toolbox., “Dynamic Viscosity of Common Liquids,” 2018, 4 pages. |
WO2006051733A1 Machine Translation (by EPO and Google)—published May 18, 2006; Konica Minolta Med & Graphic. |
WO2010073916A1 Machine Translation (by EPO and Google)—published Jul. 1, 2010; Nihon Parkerizing [JP] et al. |
“Amino Functional Silicone Polymers”, in Xiameter.COPYRGT. 2009 Dow Corning Corporation. |
“Solubility of Alcohol”, in http://www.solubilityoflhings.com/water/alcohol; downloaded on Nov. 30, 2017. |
BASF , “Joncryl 537”, Datasheet , Retrieved from the internet : Mar. 23, 2007 p. 1. |
Clariant., “Ultrafine Pigment Dispersion for Design and Creative Materials: Hostafine Pigment Preparation” Jun. 19, 2008. Retrieved from the Internet: [URL: http://www.clariant.com/C125720D002B963C/4352D0BC052E90CEC1257479002707D9/$FILE/DP6208E_0608_FL_Hostafinefordesignandcreativematerials.pdf]. |
CN101177057 Machine Translation (by EPO and Google)—published May 14, 2008—Hangzhou Yuanyang Industry Co. |
CN101873982A Machine Translation (by EPO and Google)—published Oct. 27, 2010; Habasit AG, Delair et al. |
CN102555450A Machine Translation (by EPO and Google)—published Jul. 11, 2012; Fuji Xerox Co., Ltd, Motoharu et al. |
CN102925002 Machine Translation (by EPO and Google)—published Feb. 13, 2013; Jiangnan University, Fu et al. |
CN103991293A Machine Translation (by EPO and Google)—published Aug. 20, 2014; Miyakoshi Printing Machinery Co., Ltd, Junichi et al. |
CN104618642 Machine Translation (by EPO and Google); published on May 13, 2015, Yulong Comp Comm Tech Shenzhen. |
CN1493514A Machine Translation (by EPO and Google)—published May 5, 2004; GD Spa, Boderi et al. |
CN1809460A Machine Translation (by EPO and Google)—published Jul. 26, 2006; Canon KK. |
Co-pending U.S. Appl. No. 16/303,613, filed Nov. 20, 2018. |
Co-pending U.S. Appl. No. 16/303,615, filed Nov. 20, 2018. |
Co-pending U.S. Appl. No. 16/303,631, filed Nov. 20, 2018. |
Co-pending U.S. Appl. No. 16/432,934, filed Jun. 6, 2019. |
Co-pending U.S. Appl. No. 16/433,970, filed Jun. 6, 2019. |
Co-pending U.S. Appl. No. 16/542,362, filed Aug. 16, 2019. |
DE102010060999 Machine Translation (by EPO and Google)—published Jun. 6, 2012; Wolf, Roland, Dr.-Ing. |
Epomin Polyment, product information from Nippon Shokubai, dated Feb. 28, 2014. |
Handbook of Print Media, 2001, Springer Verlag, Berlin/Heidelberg/New York, pp. 127-136,748—With English Translation. |
IP.com Search, 2018, 2 pages. |
IP.com Search, 2019, 1 page. |
JP2000108320 Machine Translation (by PlatPat English machine translation)—published Apr. 18, 2000 Brother Ind. Ltd. |
JP2000108334A Machine Translation (by EPO and Google)—published Apr. 18, 2000; Brother Ind Ltd. |
JP2000169772 Machine Translation (by EPO and Google)—published Jun. 20, 2000; Tokyo Ink Mfg Co Ltd. |
JP2000206801 Machine Translation (by PlatPat English machine translation); published on Jul. 28, 2000, Canon KK, Kobayashi et al. |
JP2001206522 Machine Translation (by EPO, PlatPat and Google)—published Jul. 31, 2001; Nitto Denko Corp, Kato et al. |
JP2002169383 Machine Translation (by EPO, PlatPat and Google)—published Jun. 14, 2002 Richo KK. |
JP2002234243 Machine Translation (by EPO and Google)—published Aug. 20, 2002; Hitachi Koki Co Ltd. |
JP2002278365 Machine Translation (by PlatPat English machine translation)—published Sep. 27, 2002 Katsuaki, Ricoh KK. |
JP2002304066A Machine Translation (by EPO and Google)—published Oct. 18, 2002; PFU Ltd. |
JP2002326733 Machine Translation (by EPO, PlatPat and Google)—published Nov. 12, 2002; Kyocera Mita Corp. |
JP2002371208 Machine Translation (by EPO and Google)—published Dec. 26, 2002; Canon Inc. |
JP2003114558 Machine Translation (by EPO, PlatPat and Google)—published Apr. 18, 2003 Mitsubishi Chem Corp, Yuka Denshi Co Ltd, et al. |
JP2003211770 Machine Translation (by EPO and Google)—published Jul. 29, 2003 Hitachi Printing Solutions. |
JP2003219271 Machine Translation (by EPO and Google); published on Jul. 31, 2003, Japan Broadcasting. |
JP2003246135 Machine Translation (by PlatPat English machine translation)—published Sep. 2, 2003 Ricoh KK, Morohoshi et al. |
JP2003246484 Machine Translation (English machine translation)—published Sep. 2, 2003 Kyocera Corp. |
JP2003292855A Machine Translation (by EPO and Google)—published Oct. 15, 2003; Konishiroku Photo Ind. |
JP2004009632A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Konica Minolta Holdings Inc. |
JP2004019022 Machine Translation (by EPO and Google)—published Jan. 22, 2004; Yamano et al. |
JP2004025708A Machine Translation (by EPO and Google)—published Jan. 29, 2004; Konica Minolta Holdings Inc. |
JP2004034441A Machine Translation (by EPO and Google)—published Feb. 5, 2004; Konica Minolta Holdings Inc. |
JP2004077669 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2004 Fuji Xerox Co Ltd. |
JP2004114377(A) Machine Translation (by EPO and Google)—published Apr. 15, 2004; Konica Minolta Holdings Inc, et al. |
JP2004114675 Machine Translation (by EPO and Google)—published Apr. 15, 2004; Canon Inc. |
JP2004148687A Machine Translation (by EPO and Google)—published May 27, 2014; Mitsubishi Heavy Ind Ltd. |
JP2004231711 Machine Translation (by EPO and Google)—published Aug. 19, 2004; Seiko Epson Corp. |
JP2004261975 Machine Translation (by EPO, PlatPat and Google); published on Sep. 24, 2004, Seiko Epson Corp, Kataoka et al. |
JP2004325782A Machine Translation (by EPO and Google)—published Nov. 18, 2004; Canon KK. |
JP2005014255 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc. |
JP2005014256 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc. |
JP2005114769 Machine Translation (by PlatPat English machine translation)—published Apr. 28, 2005 Ricoh KK. |
JP2005215247A Machine Translation (by EPO and Google)—published Aug. 11, 2005; Toshiba Corp. |
JP2005319593 Machine Translation (by EPO and Google)—published Nov. 17, 2005, Jujo Paper Co Ltd. |
JP2006001688 Machine Translation (by PlatPat English machine translation)—published Jan. 5, 2006 Ricoh KK. |
JP2006095870A Machine Translation (by EPO and Google)—published Apr. 13, 2006; Fuji Photo Film Co Ltd. |
JP2006102975 Machine Translation (by EPO and Google)—published Apr. 20, 2006; Fuji Photo Film Co Ltd. |
JP2006137127 Machine Translation (by EPO and Google)—published Jun. 1, 2006; Konica Minolta Med & Graphic. |
JP2006143778 Machine Translation (by EPO, PlatPat and Google)—published Jun. 8, 2006 Sun Bijutsu Insatsu KK et al. |
JP2006152133 Machine Translation (by EPO, PlatPat and Google)—published Jun. 15, 2006 Seiko Epson Corp. |
JP2006243212 Machine Translation (by PlatPat English machine translation)—published Sep. 14, 2006 Fuji Xerox Co Ltd. |
JP2006263984 Machine Translation (by EPO, PlatPat and Google)—published Oct. 5, 2006 Fuji Photo Film Co Ltd. |
JP2006347081 Machine Translation (by EPO and Google)—published Dec. 28, 2006; Fuji Xerox Co Ltd. |
JP2006347085 Machine Translation (by EPO and Google)—published Dec. 28, 2006 Fuji Xerox Co Ltd. |
JP2007041530A Machine Translation (by EPO and Google)—published Feb. 15, 2007; Fuji Xerox Co Ltd. |
JP2007069584 Machine Translation (by EPO and Google)—published Mar. 22, 2007 Fujifilm. |
JP2007216673 Machine Translation (by EPO and Google)—published Aug. 30, 2007 Brother Ind. |
JP2007253347A Machine Translation (by EPO and Google)—published Oct. 4, 2007; Ricoh KK, Matsuo et al. |
JP2008006816 Machine Translation (by EPO and Google)—published Jan. 17, 2008; Fujifilm Corp. |
JP2008018716 Machine Translation (by EPO and Google)—published Jan. 31, 2008; Canon Inc. |
JP2008137239A Machine Translation (by EPO and Google); published on Jun. 19, 2008, Kyocera Mita Corp. |
JP2008142962 Machine Translation (by EPO and Google)—published Jun. 26, 2008; Fuji Xerox Co Ltd. |
JP2008201564 Machine Translation (English machine translation)—published Sep. 4, 2008 Fuji Xerox Co Ltd. |
JP2008246990 Machine Translation (by EPO and Google)—published Oct. 16, 2008, Jujo Paper Co Ltd. |
JP2008255135 Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp. |
JP2009045794 Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fujifilm Corp. |
JP2009045851A Machine Translation (by EPO and Google); published on Mar. 5, 2009, Fujifilm Corp. |
JP2009045885A Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fuji Xerox Co Ltd. |
JP2009083314 Machine Translation (by EPO, PlatPat and Google)—published Apr. 23, 2009 Fujifilm Corp. |
JP2009083317 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009; Fuji Film Corp. |
JP2009083325 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009 Fujifilm. |
JP2009096175 Machine Translation (EPO, PlatPat and Google) published on May 7, 2009 Fujifilm Corp. |
JP2009148908A Machine Translation (by EPO and Google)—published Jul. 9, 2009; Fuji Xerox Co Ltd. |
JP2009154330 Machine Translation (by EPO and Google)—published Jul. 16, 2009; Seiko Epson Corp. |
JP2009190375 Machine Translation (by EPO and Google)—published Aug. 27, 2009; Fuji Xerox Co Ltd. |
JP2009202355 Machine Translation (by EPO and Google)—published Sep. 10, 2009; Fuji Xerox Co Ltd. |
JP2009214318 Machine Translation (by EPO and Google)—published Sep. 24, 2009 Fuji Xerox Co Ltd. |
JP2009214439 Machine Translation (by PlatPat English machine translation)—published Sep. 24, 2009 Fujifilm Corp. |
JP2009226852 Machine Translation (by EPO and Google)—published Oct. 8, 2009; Hirato Katsuyuki, Fujifilm Corp. |
JP2009233977 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fuji Xerox Co Ltd. |
JP2009234219 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fujifilm Corp. |
JP2010054855 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2010 Itatsu, Fuji Xerox Co. |
JP2010105365 Machine Translation (by EPO and Google)—published May 13, 2010; Fuji Xerox Co Ltd. |
JP2010173201 Abstract; Machine Translation (by EPO and Google)—published Aug. 12, 2010; Richo Co Ltd. |
JP2010184376 Machine Translation (by EPO, PlatPat and Google)—published Aug. 26, 2010 Fujifilm Corp. |
JP2010214885A Machine Translation (by EPO and Google)—published Sep. 30, 2010; Mitsubishi Heavy Ind Ltd. |
JP2010228192 Machine Translation (by PlatPat English machine translation)—published Oct. 14, 2010 Fuji Xerox. |
JP2010241073 Machine Translation (by EPO and Google)—published Oct. 28, 2010; Canon Inc. |
JP2010247381A Machine Translation (by EPO and Google); published on Nov. 4, 2010, Ricoh Co Ltd. |
JP2010258193 Machine Translation (by EPO and Google)—published Nov. 11, 2010; Seiko Epson Corp. |
JP2010260204A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Canon KK. |
JP2010260287 Machine Translation (by EPO and Google)—published Nov. 18, 2010, Canon KK. |
JP2011002532 Machine Translation (by PlatPat English machine translation)—published Jun. 1, 2011 Seiko Epson Corp. |
JP2011025431 Machine Translation (by EPO and Google)—published Feb. 10, 2011; Fuji Xerox Co Ltd. |
JP2011126031A Machine Translation (by EPO and Google); published on Jun. 30, 2011, Kao Corp. |
JP2011144271 Machine Translation (by EPO and Google)—published Jun. 28, 2011 Toyo Ink SC Holdings Co Ltd. |
JP2011173325 Abstract; Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc. |
JP2011173326 Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc. |
JP2011186346 Machine Translation (by PlatPat English machine translation)—published Sep. 22, 2011 Seiko Epson Corp, Nishimura et al. |
JP2011189627 Machine Translation (by Google Patents)—published Sep. 29, 2011; Canon KK. |
JP2011201951A Machine Translation (by PlatPat English machine translation); published on Oct. 13, 2011, Shin-Etsu Chemical Co Ltd, Todoroki et al. |
JP2011224032 Machine Translation (by EPO and Google)—published Jul. 5, 2012 Canon KK. |
JP2012086499 Machine Translation (by EPO and Google)—published May 10, 2012; Canon Inc. |
JP2012111194 Machine Translation (by EPO and Google)—published Jun. 14, 2012; Konica Minolta. |
JP2013001081 Machine Translation (by EPO and Google)—published Jan. 7, 2013; Kao Corp. |
JP2013060299 Machine Translation (by EPO and Google)—published Apr. 4, 2013; Ricoh Co Ltd. |
JP2013103474 Machine Translation (by EPO and Google)—published May 30, 2013; Ricoh Co Ltd. |
JP2013121671 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Fuji Xerox Co Ltd. |
JP2013129158 Machine Translation (by EPO and Google)—published Jul. 4, 2013; Fuji Xerox Co Ltd. |
JP2529651 B2 Machine Translation (by EPO and Google)—issued Aug. 28, 1996;Osaka Sealing Insatsu KK. |
JPH05147208 Machine Translation (by EPO and Google)—published Jun. 15, 1993—Mita Industrial Co Ltd. |
JPH06100807 Machine Translation (by EPO and Google)—published Apr. 12, 1994; Seiko Instr Inc. |
JPH06345284A Machine Translation (by EPO and Google); published on Dec. 20, 1994, Seiko Epson Corp. |
JPH07186453A Machine Translation (by EPO and Google)—published Jul. 25, 1995; Toshiba Corp. |
JPH07238243A Machine Translation (by EPO and Google)—published Sep. 12, 1995; Seiko Instr Inc. |
JPH08112970 Machine Translation (by EPO and Google)—published May 7, 1996; Fuji Photo Film Co Ltd. |
JPH0862999A Machine Translation (by EPO & Google)—published Mar. 8, 1996 Toray Industries, Yoshida, Tomoyuki. |
JPH09123432 Machine Translation (by EPO and Google)—published May 13, 1997, Mita Industrial Co Ltd. |
JPH09281851A Machine Translation (by EPO and Google)—published Oct. 31, 1997; Seiko Epson Corp. |
JPH09314867A Machine Translation (by PlatPat English machine translation)—published Dec. 9, 1997, Toshiba Corp. |
JPH11106081A Machine Translation (by EPO and Google)—published Apr. 20, 1999; Ricoh KK. |
JPH5297737 Machine Translation (by EPO & Google machine translation)—published Nov. 12, 1993 Fuji Xerox Co Ltd. |
JPS5578904A Machine Translation (by EPO and Google)—published Jun. 14, 1980; Yokoyama Haruo. |
JPS57121446U Machine Translation (by EPO and Google)—published Jul. 28, 1982. |
JPS6076343A Machine Translation (by EPO and Google)—published Apr. 30, 1985; Toray Industries. |
Machine Translation (by EPO and Google) of JPH07112841 published on May 2, 1995 Canon KK. |
Marconi Studios, Virtual SET Real Time; http://www.marconistudios.il/pp./virtualset_en.php. |
Poly(vinyl acetate) data sheet. PolymerProcessing.com. Copyright 2010. http://polymerprocessing.com/polymers/PV AC.html. |
Royal Television Society, The Flight of the Phoenix; https://rts.org.uk/article/flight-phoenix, Jan. 27, 2011. |
RU2180675 Machine Translation (by EPO and Google)—published Mar. 20, 2002; Zao Rezinotekhnika. |
RU2282643 Machine Translation (by EPO and Google)—published Aug. 27, 2006; Balakovorezinotekhnika Aoot. |
Thomas E. F., “CRC Handbook of Food Additives, Second Edition, vol. 1” CRC Press LLC, 1972, p. 434. |
Units of Viscosity published by Hydramotion Ltd. 1 York Road Park, Malton, York Y017 6YA, England; downloaded from www.hydramotion.com website on Jun. 19, 2017. |
WO2013087249 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Koenig & Bauer AG. |
Number | Date | Country | |
---|---|---|---|
62713632 | Aug 2018 | US |