The present disclosure relates generally to information display method and display navigation. More specifically, this disclosure relates to systems and methods for performing display navigation operations. Consistent with the disclosed embodiments, non-transitory computer-readable storage media may store program instructions, which may be executable by at least one processing device and perform any of the steps and/or methods described herein.
Operation of modern enterprises can be complicated and time consuming. In many cases, managing the operation of a single project requires integration of several employees, departments, and other resources of the entity. To manage the challenging operation, project management software applications may be used. Such software applications allow a user to organize, plan, and manage resources by providing project-related information in order to optimize the time and resources spent on each project. It would be useful to improve these software applications to increase operation management efficiency.
Operation of modern enterprises can be complicated and time-consuming. In many cases, managing the operation of a single project requires integration of several employees, departments, and other resources of the entity. To manage the challenging operation, project management software applications may be used. Such software applications allow a user to organize, plan, and manage resources by providing project-related information in order to optimize the time and resources spent on each project.
In addition, project management software applications often depend on the use of massive amounts of shared information, taking the form of documents, files, ledgers, spreadsheets, dashboards, or more generally a page. Most of the time, not all the content on a page can fit within the dimensions of a particular display device. This is especially true when a plurality of users is allowed to add information or when using a mobile display device with particularly limited dimensions. It is therefore essential to be able to quickly find one's way through this vast amount of information to ensure efficient operations. In these situations, many display devices rely on graphical user interface components, such as scroll bars, to allow a user to access different portions of the information.
One limitation of existing scrollbars is that they don't reflect the organization of the content of a page. Scrollbars typically include an elongated track representing the overall size of the page and a cursor anchored on or near the track at the relative position of the portion of the page being displayed. When scrolling occurs, by dragging the cursor, for example, there is no way of knowing which section of the page is being displayed and associating a particular position on the scroll bar with a particular group of information.
Embodiments consistent with the present disclosure provide systems and methods for performing and facilitating navigation operations. The disclosed embodiments may be implemented using a combination of conventional hardware and software as well as specialized hardware and software.
In an embodiment, a non-transitory computer-readable medium containing instructions that, when executed, cause at least one processor to perform display navigation operations is disclosed. The operations may comprise presenting a plurality of groups of information on a display, in the form of a page, each of the plurality of groups of information having an associated size, wherein a cumulative size of all of the groups of information is larger than at least one dimension of the display; receiving an initial scrolling signal for causing the presented page to scroll on the display; and augmenting the display with a scroll bar divided into sections of differing visual effects, wherein each section has a visual effect corresponding to a visual effect assigned to one group of the plurality of groups of information, a length of each section is proportional to the associated size of the one group relative to the cumulative size of all the groups, and an order of the visual effects in the scroll bar corresponds to an order of the groups of information in the page.
In an embodiment, a method for display navigation is disclosed. The method may comprise: presenting a plurality of groups of information on a display, in the form of a page, each of the plurality of groups of information having an associated size, wherein a cumulative size of all of the groups of information is larger than at least one dimension of the display; receiving an initial scrolling signal for causing the presented page to scroll on the display; and augmenting the display with a scroll bar divided into sections of differing visual effects, wherein each section has a visual effect corresponding to a visual effect assigned to one group of the plurality of groups of information, a length of each section is proportional to the associated size of the one group relative to the cumulative size of all the groups, and an order of the visual effects in the scroll bar corresponds to an order of the groups of information in the page.
In an embodiment, a system for performing display navigation operations on a display having dimensions smaller than a page presented on the display is disclosed. The system may comprise a memory storing instructions and at least one processor that executes the stored instructions to: present a plurality of groups of information on a display, in the form of a page, each of the plurality of groups of information having an associated size, wherein a cumulative size of all of the groups of information is larger than at least one dimension of the display; receive an initial scrolling signal for causing the presented page to scroll on the display; and augment the display with a scroll bar divided into sections of differing colors, wherein each section is colored in a color assigned to one group of the plurality of groups of information, a length of each section is proportional to the associated size of the one group relative to the cumulative size of all the groups, and an order of the colors in the scroll bar corresponds to an order of the groups of information in the presented page.
Other advantages of the invention are set forth in the appended claims which form an integral part hereof. The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claims.
The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various disclosed embodiments. In the drawings:
Disclosed embodiments provide improved display navigation mechanisms. Disclosed embodiments may generate and display a scroll bar depicting a “mini map” of a displayed page that is larger than the size of the computer display. In response to an interaction with the displayed mini map, a user may be able to quickly scroll through a board or a different section of the mini map.
Disclosed embodiments may be suitable for graphical user interface boards and tablature structure because they may enable users to interact with the scroll bar to quickly jump to different sections of the tablature without needing to scroll all the way through, while also providing an overview of each section of the tablature with groups of information showing relative sizes of indications. Such exemplary embodiments may be helpful in different display devices such as those found on mobile devices, computers, or any other 2D, 3D, AR, VR, or holographic displays. The indications of the groupings of information may be displayed vertically, horizontally, or any other orientation in the scroll bar according to user preference or according to a determined structure of the tablature. The indications of each section may be based on any characteristics of information in the table such as a shared status, person, data type (e.g., group all text column types together, all email columns together, and so on). For example, a scroll of a scroll bar mini map may result in displays of indications that may be relatively sized and colored according to statuses and the number of items sharing a particular status. In response to any interaction, such as a scroll, some disclosed embodiments may include displaying a mini map scroll of all group types found in tablature.
Exemplary embodiments are described with reference to the accompanying drawings. The figures are not necessarily drawn to scale. While examples and features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible without departing from the spirit and scope of the disclosed embodiments. Also, the words “comprising,” “having,” “containing,” and “including,” and other similar forms are intended to be equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items. It should also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
In the following description, various working examples are provided for illustrative purposes. However, is to be understood the present disclosure may be practiced without one or more of these details.
Throughout, this disclosure mentions “disclosed embodiments,” which refer to examples of inventive ideas, concepts, and/or manifestations described herein. Many related and unrelated embodiments are described throughout this disclosure. The fact that some “disclosed embodiments” are described as exhibiting a feature or characteristic does not mean that other disclosed embodiments necessarily share that feature or characteristic.
This disclosure presents various mechanisms for collaborative work systems. Such systems may involve software that enables multiple users to work collaboratively. By way of one example, workflow management software may enable various members of a team to cooperate via a common online platform. It is intended that one or more aspects of any mechanism may be combined with one or more aspect of any other mechanisms, and such combinations are within the scope of this disclosure.
This disclosure is constructed to provide a basic understanding of a few exemplary embodiments with the understanding that features of the exemplary embodiments may be combined with other disclosed features or may be incorporated into platforms or embodiments not described herein while still remaining within the scope of this disclosure. For convenience, and form of the word “embodiment” as used herein is intended to refer to a single embodiment or multiple embodiments of the disclosure.
Certain embodiments disclosed herein include devices, systems, and methods for collaborative work systems that may allow a user to interact with information in real time. To avoid repetition, the functionality of some embodiments is described herein solely in connection with a processor or at least one processor. It is to be understood that such exemplary descriptions of functionality apply equally to methods and computer readable media and constitutes a written description of systems, methods, and computer readable media. The underlying platform may allow a user to structure a systems, methods, or computer readable media in many ways using common building blocks, thereby permitting flexibility in constructing a product that suits desired needs. This may be accomplished through the use of boards. A board may be a table configured to contain items (e.g., individual items presented in horizontal rows) defining objects or entities that are managed in the platform (task, project, client, deal, etc.). Unless expressly noted otherwise, the terms “board” and “table” may be considered synonymous for purposes of this disclosure. In some embodiments, a board may contain information beyond which is displayed in a table. Boards may include sub-boards that may have a separate structure from a board. Sub-boards may be tables with sub-items that may be related to the items of a board. Columns intersecting with rows of items may together define cells in which data associated with each item may be maintained. Each column may have a heading or label defining an associated data type. When used herein in combination with a column, a row may be presented horizontally and a column vertically. However, in the broader generic sense as used herein, the term “row” may refer to one or more of a horizontal and/or a vertical presentation. A table or tablature as used herein, refers to data presented in horizontal and vertical rows, (e.g., horizontal rows and vertical columns) defining cells in which data is presented. Tablature may refer to any structure for presenting data in an organized manner, as previously discussed. such as cells presented in horizontal rows and vertical columns, vertical rows and horizontal columns, a tree data structure, a web chart, or any other structured representation, as explained throughout this disclosure. A cell may refer to a unit of information contained in the tablature defined by the structure of the tablature. For example, a cell may be defined as an intersection between a horizontal row with a vertical column in a tablature having rows and columns. A cell may also be defined as an intersection between a horizontal and a vertical row, or as an intersection between a horizontal and a vertical column. As a further example, a cell may be defined as a node on a web chart or a node on a tree data structure. As would be appreciated by a skilled artisan, however, the disclosed embodiments are not limited to any specific structure, but rather may be practiced in conjunction with any desired organizational arrangement. In addition, tablature may include any type of information, depending on intended use. When used in conjunction with a workflow management application, the tablature may include any information associated with one or more tasks, such as one or more status values, projects, countries, persons, teams, progress statuses, a combination thereof, or any other information related to a task.
While a table view may be one way to present and manage the data contained on a board, a table's or board's data may be presented in different ways. For example, in some embodiments, dashboards may be utilized to present or summarize data derived from one or more boards. A dashboard may be a non-table form of presenting data, using, for example, static or dynamic graphical representations. A dashboard may also include multiple non-table forms of presenting data. As discussed later in greater detail, such representations may include various forms of graphs or graphics. In some instances, dashboards (which may also be referred to more generically as “widgets”) may include tablature. Software links may interconnect one or more boards with one or more dashboards thereby enabling the dashboards to reflect data presented on the boards. This may allow, for example, data from multiple boards to be displayed and/or managed from a common location. These widgets may provide visualizations that allow a user to update data derived from one or more boards.
Boards (or the data associated with boards) may be stored in a local memory on a user device or may be stored in a local network repository. Boards may also be stored in a remote repository and may be accessed through a network. In some instances, permissions may be set to limit board access to the board's “owner” while in other embodiments a user's board may be accessed by other users through any of the networks described in this disclosure. When one user makes a change in a board, that change may be updated to the board stored in a memory or repository and may be pushed to the other user devices that access that same board. These changes may be made to cells, items, columns, boards, dashboard views, logical rules, or any other data associated with the boards. Similarly, when cells are tied together or are mirrored across multiple boards, a change in one board may cause a cascading change in the tied or mirrored boards or dashboards of the same or other owners.
Boards and widgets may be part of a platform that may enable users to interact with information in real time in collaborative work systems involving electronic collaborative word processing documents. Electronic collaborative word processing documents (and other variations of the term) as used herein are not limited to only digital files for word processing, but may include any other processing document such as presentation slides, tables, databases, graphics, sound files, video files or any other digital document or file. Electronic collaborative word processing documents may include any digital file that may provide for input, editing, formatting, display, and/or output of text, graphics, widgets, objects, tables, links, animations, dynamically updated elements, or any other data object that may be used in conjunction with the digital file. Any information stored on or displayed from an electronic collaborative word processing document may be organized into blocks. A block may include any organizational unit of information in a digital file, such as a single text character, word, sentence, paragraph, page, graphic, or any combination thereof. Blocks may include static or dynamic information, and may be linked to other sources of data for dynamic updates. Blocks may be automatically organized by the system, or may be manually selected by a user according to preference. In one embodiment, a user may select a segment of any information in an electronic word processing document and assign it as a particular block for input, editing, formatting, or any other further configuration.
An electronic collaborative word processing document may be stored in one or more repositories connected to a network accessible by one or more users through their computing devices. In one embodiment, one or more users may simultaneously edit an electronic collaborative word processing document. The one or more users may access the electronic collaborative word processing document through one or more user devices connected to a network. User access to an electronic collaborative word processing document may be managed through permission settings set by an author of the electronic collaborative word processing document. An electronic collaborative word processing document may include graphical user interface elements enabled to support the input, display, and management of multiple edits made by multiple users operating simultaneously within the same document.
Various embodiments are described herein with reference to a system, method, device, or computer readable medium. It is intended that the disclosure of one is a disclosure of all. For example, it is to be understood that disclosure of a computer readable medium described herein also constitutes a disclosure of methods implemented by the computer readable medium, and systems and devices for implementing those methods, via for example, at least one processor. It is to be understood that this form of disclosure is for ease of discussion only, and one or more aspects of one embodiment herein may be combined with one or more aspects of other embodiments herein, within the intended scope of this disclosure.
Embodiments described herein may refer to a non-transitory computer readable medium containing instructions that when executed by at least one processor, cause the at least one processor to perform a method. Non-transitory computer readable mediums may be any medium capable of storing data in any memory in a way that may be read by any computing device with a processor to carry out methods or any other instructions stored in the memory. The non-transitory computer readable medium may be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software may preferably be implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine may be implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described in this disclosure may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium may be any computer readable medium except for a transitory propagating signal.
As used herein, a non-transitory computer-readable storage medium refers to any type of physical memory on which information or data readable by at least one processor can be stored. Examples of memory include Random Access Memory (RAM), Read-Only Memory (ROM), volatile memory, nonvolatile memory, hard drives, CD ROMs, DVDs, flash drives, disks, any other optical data storage medium, any physical medium with patterns of holes, markers, or other readable elements, a PROM, an EPROM, a FLASH-EPROM or any other flash memory, NVRAM, a cache, a register, any other memory chip or cartridge, and networked versions of the same. The terms “memory” and “computer-readable storage medium” may refer to multiple structures, such as a plurality of memories or computer-readable storage mediums located within an input unit or at a remote location. Additionally, one or more computer-readable storage mediums can be utilized in implementing a computer-implemented method. The memory may include one or more separate storage devices collocated or disbursed, capable of storing data structures, instructions, or any other data. The memory may further include a memory portion containing instructions for the processor to execute. The memory may also be used as a working scratch pad for the processors or as a temporary storage Accordingly, the term computer-readable storage medium should be understood to include tangible items and exclude carrier waves and transient signals.
Some embodiments may involve at least one processor. Consistent with disclosed embodiments, “at least one processor” may constitute any physical device or group of devices having electric circuitry that performs a logic operation on an input or inputs. For example, the at least one processor may include one or more integrated circuits (IC), including application-specific integrated circuit (ASIC), microchips, microcontrollers, microprocessors, all or part of a central processing unit (CPU), graphics processing unit (GPU), digital signal processor (DSP), field-programmable gate array (FPGA), server, virtual server, or other circuits suitable for executing instructions or performing logic operations. The instructions executed by at least one processor may, for example, be pre-loaded into a memory integrated with or embedded into the controller or may be stored in a separate memory. The memory may include a Random Access Memory (RAM), a Read-Only Memory (ROM), a hard disk, an optical disk, a magnetic medium, a flash memory, other permanent, fixed, or volatile memory, or any other mechanism capable of storing instructions. In some embodiments, the at least one processor may include more than one processor. Each processor may have a similar construction or the processors may be of differing constructions that are electrically connected or disconnected from each other. For example, the processors may be separate circuits or integrated in a single circuit. When more than one processor is used, the processors may be configured to operate independently or collaboratively, and may be co-located or located remotely from each other. The processors may be coupled electrically, magnetically, optically, acoustically, mechanically or by other means that permit them to interact.
Consistent with the present disclosure, disclosed embodiments may involve a network. A network may constitute any type of physical or wireless computer networking arrangement used to exchange data. For example, a network may be the Internet, a private data network, a virtual private network using a public network, a Wi-Fi network, a LAN or WAN network, a combination of one or more of the forgoing, and/or other suitable connections that may enable information exchange among various components of the system. In some embodiments, a network may include one or more physical links used to exchange data, such as Ethernet, coaxial cables, twisted pair cables, fiber optics, or any other suitable physical medium for exchanging data. A network may also include a public switched telephone network (“PSTN”) and/or a wireless cellular network. A network may be a secured network or unsecured network. In other embodiments, one or more components of the system may communicate directly through a dedicated communication network. Direct communications may use any suitable technologies, including, for example, BLUETOOTH™, BLUETOOTH LE™ (BLE), Wi-Fi, near field communications (NFC), or other suitable communication methods that provide a medium for exchanging data and/or information between separate entities.
Certain embodiments disclosed herein may also include a computing device for generating features for work collaborative systems, the computing device may include processing circuitry communicatively connected to a network interface and to a memory, wherein the memory contains instructions that, when executed by the processing circuitry, configure the computing device to receive from a user device associated with a user account instruction to generate a new column of a single data type for a first data structure, wherein the first data structure may be a column oriented data structure, and store, based on the instructions, the new column within the column-oriented data structure repository, wherein the column-oriented data structure repository may be accessible and may be displayed as a display feature to the user and at least a second user account. The computing devices may be devices such as mobile devices, desktops, laptops, tablets, or any other devices capable of processing data. Such computing devices may include a display such as an LED display, augmented reality (AR), virtual reality (VR) display.
Disclosed embodiments may include and/or access a data structure. A data structure consistent with the present disclosure may include any collection of data values and relationships among them. The data may be stored linearly, horizontally, hierarchically, relationally, non-relationally, uni-dimensionally, multidimensionally, operationally, in an ordered manner, in an unordered manner, in an object-oriented manner, in a centralized manner, in a decentralized manner, in a distributed manner, in a custom manner, or in any manner enabling data access. By way of non-limiting examples, data structures may include an array, an associative array, a linked list, a binary tree, a balanced tree, a heap, a stack, a queue, a set, a hash table, a record, a tagged union, ER model, and a graph. For example, a data structure may include an XML database, an RDBMS database, an SQL database or NoSQL alternatives for data storage/search such as, for example, MongoDB, Redis, Couchbase, Datastax Enterprise Graph, Elastic Search, Splunk, Solr, Cassandra, Amazon DynamoDB, Scylla, HBase, and Neo4J. A data structure may be a component of the disclosed system or a remote computing component (e.g., a cloud-based data structure). Data in the data structure may be stored in contiguous or non-contiguous memory. Moreover, a data structure, as used herein, does not require information to be co-located. It may be distributed across multiple servers, for example, that may be owned or operated by the same or different entities. Thus, the term “data structure” as used herein in the singular is inclusive of plural data structures.
Certain embodiments disclosed herein may include a processor configured to perform methods that may include triggering an action in response to an input. The input may be from a user action or from a change of information contained in a user's table or board, in another table, across multiple tables, across multiple user devices, or from third-party applications. Triggering may be caused manually, such as through a user action, or may be caused automatically, such as through a logical rule, logical combination rule, or logical templates associated with a board. For example, a trigger may include an input of a data item that is recognized by at least one processor that brings about another action.
In some embodiments, the methods including triggering may cause an alteration of data and may also cause an alteration of display of data contained in a board or in memory. An alteration of data may include a recalculation of data, the addition of data, the subtraction of data, or a rearrangement of information. Further, triggering may also cause a communication to be sent to a user, other individuals, or groups of individuals. The communication may be a notification within the system or may be a notification outside of the system through a contact address such as by email, phone call, text message, video conferencing, or any other third-party communication application.
Some embodiments include one or more of automations, logical rules, logical sentence structures and logical (sentence structure) templates. While these terms are described herein in differing contexts, in a broadest sense, in each instance an automation may include a process that responds to a trigger or condition to produce an outcome; a logical rule may underly the automation in order to implement the automation via a set of instructions; a logical sentence structure is one way for a user to define an automation; and a logical template/logical sentence structure template may be a fill-in-the-blank tool used to construct a logical sentence structure. While all automations may have an underlying logical rule, all automations need not implement that rule through a logical sentence structure. Any other manner of defining a process that respond to a trigger or condition to produce an outcome may be used to construct an automation.
Other terms used throughout this disclosure in differing exemplary contexts may generally share the following common definitions.
In some embodiments, machine learning algorithms (also referred to as machine learning models or artificial intelligence in the present disclosure) may be trained using training examples, for example in the cases described below. Some non-limiting examples of such machine learning algorithms may include classification algorithms, data regressions algorithms, image segmentation algorithms, visual detection algorithms (such as object detectors, face detectors, person detectors, motion detectors, edge detectors, etc.), visual recognition algorithms (such as face recognition, person recognition, object recognition, etc.), speech recognition algorithms, mathematical embedding algorithms, natural language processing algorithms, support vector machines, random forests, nearest neighbors algorithms, deep learning algorithms, artificial neural network algorithms, convolutional neural network algorithms, recursive neural network algorithms, linear machine learning models, non-linear machine learning models, ensemble algorithms, and so forth. For example, a trained machine learning algorithm may comprise an inference model, such as a predictive model, a classification model, a regression model, a clustering model, a segmentation model, an artificial neural network (such as a deep neural network, a convolutional neural network, a recursive neural network, etc.), a random forest, a support vector machine, and so forth. In some examples, the training examples may include example inputs together with the desired outputs corresponding to the example inputs. Further, in some examples, training machine learning algorithms using the training examples may generate a trained machine learning algorithm, and the trained machine learning algorithm may be used to estimate outputs for inputs not included in the training examples. In some examples, engineers, scientists, processes and machines that train machine learning algorithms may further use validation examples and/or test examples. For example, validation examples and/or test examples may include example inputs together with the desired outputs corresponding to the example inputs, a trained machine learning algorithm and/or an intermediately trained machine learning algorithm may be used to estimate outputs for the example inputs of the validation examples and/or test examples, the estimated outputs may be compared to the corresponding desired outputs, and the trained machine learning algorithm and/or the intermediately trained machine learning algorithm may be evaluated based on a result of the comparison. In some examples, a machine learning algorithm may have parameters and hyper parameters, where the hyper parameters are set manually by a person or automatically by a process external to the machine learning algorithm (such as a hyper parameter search algorithm), and the parameters of the machine learning algorithm are set by the machine learning algorithm according to the training examples. In some implementations, the hyper-parameters are set according to the training examples and the validation examples, and the parameters are set according to the training examples and the selected hyper-parameters.
Above and throughout this disclosure, a “group of information” may refer to any type of data associated with a visual representation, such as text, images, numbers, lists, tables, diagrams, charts, graphics, drawings, or other types of graphical user interface components. Each group of information may have an associated size, such as a size that a group of information may have when presented on a display. In some embodiments, a “size” may be associated with a dimension of length, such as standard or metric units of length, or a number of pixels shown of the display. Multiple groups of information, considered together, may have a cumulative size corresponding to the total size of all the groups of information. A cumulative size of the plurality of groups of information may be larger than at least one dimension of the display.
As used in this disclosure, the term “display” may refer either to any physical device capable of providing a visual presentation of data or directly to a visual presentation of data. Examples of physical devices acting as displays include computer screens, smartphone screens, tablet screens, smartwatch screens, laptop screens, video walls, projectors, head-mounted displays or virtual reality headsets. Additionally, displays may utilize graphical user interfaces (GUIs) to permit user interaction with data. In many GUIs, a visual presentation of data is often provided using a graphical user interface component known as a window, or a page. Any visual presentation of a device or display may be characterized by dimensions, these dimensions are usually limited, so most of the time, any type of information cannot be completely presented by a display device or fit a presented page. For example, when a plurality of groups of information is arranged side by side, a cumulative size of the plurality of groups of information may be larger than at least one dimension of the display.
In step 104, the processor may receive an initial scrolling signal for causing the presented page to scroll on the display. In some embodiments, the initial scrolling signal may be received as a result of manipulating various controls associated with the scroll bar, or a particular movement made by the user that is interpreted by the processor as a command to scroll. In some embodiments, a scroll signal can be the result of moving a cursor docked on or near a scroll bar presented on the display, clicking on increment/decrement control interface buttons, detecting a touch motion or gesture associated with manipulating or attempting to move the presented page, or performing a swipe motion relative to the display. In the context of this description, an initial scrolling signal refers to a scrolling signal that may occur in advance of scrolling the page, and in advance of a later scrolling signal. In some embodiments, an initial scrolling signal may scroll the presented page over a distance less than, greater than, or equal to one of the dimensions of the display.
In some embodiments, the presented page may represent less than an entire page. In some embodiments, the entire page may include all the groups from the plurality of groups of information. Accordingly, the entire page may include one or more groups of information that are not displayed on the presented page. In some embodiments, the presented page may include at least a portion of all of the groups of information, but may not include a portion of a large group that extends beyond the presented page. In such embodiments, the entire page may include all of the groups of information in their entirety. Thus, the entire page may include the presented page and, in addition, one or more groups of information or portions of groups of information that are not fully displayed on the presented page. For example, the entire page may extend beyond the dimensions of the display, such that the scroll bar facilitates navigation to different parts of the presented page and also to portions of the entire page that are not yet presented. Such portions of the entire page may be presented during a scrolling action toward the portions. In some embodiments, an interaction with a particular location on the scroll bar may scroll the page to a corresponding particular location in the entire page. An interaction may refer to any type of user input related to a scrollbar component. For example, if a user is clicking on a particular location of the scroll bar, the page may be scrolled up to the corresponding particular location. Other examples of interactions with a particular location on the scroll bar may include persistently clicking on the particular location, touching the scroll bar at a particular location presented on a touchscreen, persistently touching the scroll bar at a particular location, performing a gesture such as double tapping a particular location on the scroll bar, or repeatedly tapping a particular location on the scroll bar.
In step 106, in response to receiving the initial scrolling signal, the display may be augmented with a scroll bar divided into sections of differing visual effects. The visual effects may serve to distinguish and differentiate between each group of information among the plurality of group information, thereby facilitating user navigation operations and increasing the efficiency and accuracy of navigation operations. In some embodiments, each portion of the scroll bar may be directly associated with each group of information using different visual effects.
As discussed herein, visual effects may refer to any type of enhancement or characteristic of a visual representation that distinguishes one group of information, or one section of the scroll bar, from another. In one embodiment, the differing visual effects may include a unique color associated with each group of the plurality of groups of information. For example, each of a first group of information can be associated with a section having a first color, a second group with a second color, and so on, such that the displayed colors all differ from each other. Different colors may differ by shade, hue, tone, brightness, coloration, or other characteristics that cause one color to differ visually from another. In some embodiments, the differing visual effects may include a unique combination of a color and a texture associated with each group of the plurality of groups of information. A texture may include a pattern or other visual appearance that may be combined with a color to further differentiate appearances of different sections in a scroll bar. Non-limiting examples of textures can include stippling patterns of various densities, or cross-hatching patterns. In such embodiments, a first group of information can be associated with a first combination of color and texture, a second group with the second combination of color and texture, and so on, so that the displayed combinations are all different from each other, even if multiple sections have the same or similar colors. In this situation, two or more groups of information can be associated with the same color but with a different texture, and conversely, two or more groups of information can be associated with the same texture but with different colors. Accordingly, each section of the scroll bar may have a visual effect corresponding to a visual effect assigned to one group of the plurality of groups of information, shown in
In some embodiments, a “scroll bar” may be a graphical user interface component or element that provides a visual representation of the groups of information in the entire page. In some embodiments, a scroll bar is an interactive horizontal or vertical bar at the side or bottom of the display, for moving around a page on the display. The scroll bar may include part or all of a mini map of all of the groups of information, using different visual effects to readily distinguish between each group of information. Graphical user interface components such as the scroll bar may include interactive capabilities, and permit a user to access a particular portion of the page via selection of a section in the scroll bar associated with a group of information corresponding to the particular portion of the page. The scroll bar may therefore permit a user to scroll and navigate in the page in an indicated direction based on characteristics of the received a scrolling signal.
In some embodiments, sections of the scroll bar may have attributes determined based on the groups of information in the entire page. For example, in a displayed scroll bar, a length of each section may be set proportional to an associated size of the one group relative to the cumulative size of all the groups, as shown in substep 108 of
In some embodiments, an order of the visual effects in the scroll bar may be set to correspond to an order of the groups of information in the page, as shown in substep 112. As a result, a user may scroll between groups of information simply by moving up or down along the scroll bar, and may quickly and efficiently navigate between groups of information in the page. In some embodiments, all of the sections may be presented on the display while the scroll bar is presented. In other embodiments, fewer than all of the sections may be presented on the display. The displayed sections may change depending on various factors such as a size of the page, a current position in the page, and one or more size constraints or capabilities of the display.
In some embodiments, the scroll bar may be configured to disappear from the display after a predetermined time, and after the initial scrolling signal is completed. For example, once the initial scrolling signal is received and over, the scroll bar may disappear from the display after 1, 2, or 5 seconds or any suitable time.
As shown in
In the examples shown, scroll bar 210 is divided into a plurality of sections (212a-d, 214a-d, 216a-d), and each section has a visual effect corresponding to the visual effect assigned to the group of the plurality of groups of information. The sections of scroll bar 210 are shown with lengths that are proportional to the associated sizes of each of the groups of information. For example, as shown in
Although
As discussed above, a length of each section may be proportional to an associated size of the one group relative to the cumulative size of all the groups. Furthermore, a one of the two dimensions (vertical or horizontal) of the scroll bar 210 may be proportional to the overall size of the page corresponding to the cumulative size of all the groups of information. In the context of this description, this dimension will be referred to as the “primary dimension” and the other dimension as the “secondary dimension.” In some embodiments, the primary dimension may be comparable to one of the dimensions of the display. For example, in
Although
Disclosed embodiments may provide different ways of identifying a visual effect assigned to a group of information. In some embodiments, a visual effect may be displayed in conjunction with a group of information such that when scrolling through the section corresponding to the group of information, the visual effect assigned to the group of information is always visible. For example, as shown in
In some embodiments, the differing visual effects may include a unique combination of a color and a texture associated with each group of the plurality of groups of information. In some embodiments, in response to a determination that a same color is assigned to more than one of the plurality of groups of information, a different texture may be assigned to each group of the plurality of groups of information having the same color. In some embodiments, textures may be assigned only one or more of the groups of information that are assigned the same color. In some embodiments, textures may be assigned to all groups of information associated with the same color. Such a situation may arise, for example, if a user manually assigns the same color to multiple groups, or as another example, if the number of groups of information exceeds a number of available, distinguishable colors.
Disclosed embodiments may provide different ways of assigning a visual effect to a group of information. In some embodiments, a visual effect may be assigned to a group of information in response to a user input. For example, at any time during a process of creating or editing a group of information, the processor may receive inputs from a user associated with choose a visual effect and assign it to the group of information. In some embodiments, the processor may receive an input from a user associated with modifying a visual effect assigned to the group of information at any time during a process of editing a group of information. In some embodiments, one or more processors may automatically assign a visual effect to a group of information based on information included in the group of information, such as based on a type of the information. For example, a first visual effect may be assigned to a first group of information corresponding to images, and a different second visual effect may be assigned to a second group of information corresponding to text. In some embodiments, a visual effect may be automatically assigned to a group of information when the group of information is created. Further, in some embodiments, each of the plurality of groups of information may have a predetermined visual effect. In some embodiments, all groups of information may be assigned predetermined visual effects, regardless of how the visual effect is assigned to the group of information. The assignment may occur, in some embodiments, prior to receiving the initial scroll signal.
In some embodiments, at least one processor may be configured to assign a random visual effect to at least one of the plurality of groups of information, in response to a determination that one of the plurality of groups of information was not assigned with a visual effect. In some embodiments, such a determination may be made prior to the scroll, or prior to receiving the initial scrolling signal. A “random” assignment may be made in a pseudorandom manner by employing a computerized randomizer or a random number generator that selects a visual effect in a manner where there is no visual effect more likely to be selected over other visual effects at a given time.
In some embodiments, assigning a random visual effect to one of the plurality of groups of information may include assigning a random visual effect that is different from all visual effects already assigned to the other groups of information of the plurality of groups of information. For example, if the visual effects correspond to a unique color associated with each group of the plurality of groups of information, a random color may be selected from all available colors on the display, minus the colors already assigned to the other groups of information. Additionally or alternatively, in some embodiments, assigning a random visual effect to one of the plurality of groups of information may include assigning a random visual effect that contrasts from other visual effects by at least a threshold amount difference in a visual characteristic from other visual effects assigned to the other groups of information. Such characteristics may include, for example, a threshold difference in hue, brightness, coloration, tint, tone, darkness, contrast, brightness, or any other measurable characteristic associated with visual impression and identity. For instance, in the example shown in
In some embodiments, in response to a determination that elements from different groups of information are combined to form a new group of information, at least one processor may assign to the new group of information a visual effect that corresponds to a combination of visual effects of the different groups of information from which the elements originate. As discussed herein, a new group of information may refer to a group of information that did not exist prior to an original assignment of visual effects, or existed as multiple separate groups. The new group of information may be considered part of the plurality of group of information, and an associated size of the new group of information may contribute to the cumulative size of all groups of information. In some embodiments, the cumulative size may remain constant, if the combined group does not differ in dimension from the sum of the groups of information that were combined.
In some embodiments, at least one processor may receive a continued scrolling signal following the initial scrolling signal, and in response to the continued scrolling signal, may cause the page to scroll on the display while maintaining a static position of the scroll bar on the display. In the context of this description, a continuous scrolling signal may refer to a scrolling signal received after an initial scrolling signal is completed. In some embodiments, the continuous scrolling signal may comprise a version of the initial scrolling signal that persists beyond a predetermined threshold period of time. In some embodiments, the continuous scrolling signal may cause a page currently presented on the display to scroll based on a direction of the received signal, so that the page presented on the display during the scroll differs from the page initially presented prior to the scroll. In some embodiments, a continuous scrolling signal may scroll the presented page over a distance less than, greater than, or equal to one of the dimensions of the display. Note that during the course of operations of disclosed processes, one or more continuous scrolling signals may be received, therefore a continuous scrolling signal may correspond to a scrolling signal received after a previous continuous scrolling signal is completed.
In some embodiments, the scroll bar may maintain a fixed and constant position on the display during a scroll, to maintain a static position. That is, a location of the scroll bar may remain unchanged and invariable. In some embodiments, the scroll bar may disappear from the display. The at least one processor may terminate display of the scroll bar in various scenarios, such as after a predetermined time after an initial scrolling signal is completed or no longer received, or after a predetermined time following the last receipt of a continuous scroll signal. In some embodiments, this predetermined time may be as small as zero seconds, such that the scroll bar disappears immediately after completion of the initial and/or continuous scrolling signals. In some embodiments, the scroll bar may remain on the display if a continuous scrolling signal is received after the initial scrolling signal is completed and before a predetermined time period elapses. For example, once the initial scrolling signal is received and completed, the scroll bar may remain on the display if a continuous scrolling signal is received before elapse of a time period of 1, 2, 5 seconds or any suitable time. In some other embodiments, the scroll bar may be configured to disappear from the display after a predetermined time just after a continuous scrolling signal is completed. For example, once the continuous scrolling signal is received and over, the scroll bar may disappear from the display after 1, 2, 5 seconds or any suitable time period. Additionally, in some embodiments, wherein a time between an end of one continuous scrolling signal and the receipt of another continuous scrolling signal is less than a predetermined time, the scroll bar may be configured to remain on the display. For example, if the delay between the completion of a first continuous scrolling signal and the reception of a second continuous scrolling signal is less than 1, 2, 5 seconds or any suitable time, the scroll bar may be configured to remain on the display.
In some embodiments, in response to the detection of the initial scrolling signal or the continuous scrolling signal, at least one processor may augment the display with a variable visual effect cursor located near the scroll bar. Furthermore, during scrolling within a particular group of information, the at least one processor may display a visual effect of the variable visual effect cursor that corresponds to the visual effect on the scroll bar associated with the particular group of information. A cursor may refer to an on-display indicator, icon, or other graphical element used to mark a position on a display. Additionally, a cursor may correspond to and indicate a position on a display that will be affected by a user input. Thus, the indicated position may be a place at which a user last interacted with the display, or a place on the display where at least one processor would effect a change in response to a received input.
In
In
As shown in
In some embodiments, the variable visual effect cursor (618a, 618b, 618c) may be configured to disappear from the display 608 after a predetermined time period. In some embodiments, scroll bar 610 may be configured to disappear from display 608 after a predetermined time just after an initial or a continuous scrolling signal is completed, and variable visual effect cursor (618a, 618b, 618c) may be configured to disappear from the display 608 after a time less than or equal to the predetermined time. For example, if scroll bar is configured to disappear from the display after 2 seconds following last receipt of a scrolling signal, the variable visual effect cursor may disappear after 1 second, 1.5 seconds, or at 2 seconds to disappear simultaneously with the scroll bar.
In some embodiments, in response to at least one of the initial scrolling signal or the continued scrolling signal, at least one processor may be configured to cause a pop-up window to appear displaying a name of one of the plurality of groups of information associated with a current position of scrolling. In some embodiments, a visual effect of the pop-up window may correspond to the visual effect on the scroll bar associated with the particular group of information. In some embodiments, the pop-up window may be displayed at a location near the scroll bar at a position corresponding to the presented page. For example, the pop-up window may be adjacent the scroll bar, at a position along the scroll bar corresponding to a positioning of a group of information in the presented page. In the context of this description, a pop-up window may refer to a visual element that appears an overlay that is above an existing presented page on a screen. In some embodiments, content in the presented page may be rearranged around the pop-up window, so that content is not obscured by the pop-up window. Pop-up windows may appear in various sizes and positions on a display. In addition, pop-ups may present information and correspond to a GUI component with possible user interactions. In some embodiments, a pop-up window may appear next to or in place of the variable visual effect cursor of
Although
In some embodiments, the pop-up window (718a, 718b) may be configured to disappear from the display 708 after a predetermined time. In some other embodiments, wherein the scroll bar 610 is configured to disappear from the display 708 after a predetermined time, the pop-up window (718a, 718b) may be configured to disappear from the display 708 after a time less than or equal to the predetermined time.
In some embodiments, a variable visual effect cursor, such as the one described above, may be displayed in conjunction with the pop-up window. For example, after receiving at least one of the initial scrolling signal or the continued scrolling signal, both a pop window and a variable effect cursor may be displayed. In some embodiments, an input associated with dragging the variable visual effect cursor (such as the cursor shown in
In some embodiments, in response to the detection of the initial scrolling signal or the continuous scrolling signal, at least one processor may trigger a haptic signal at a transition from one of the plurality of groups of information to an adjacent one of the plurality of groups of information. Haptic signals can include any type of communication signal related to the sense of touch. Haptic signals may be implemented in a device in many ways. For example, a device can interact with a user by applying tactile, vibrotactile, electro-tactile, thermal, force feedback, or any other type of feedback that can be felt by a user. Additionally, or alternatively, a sound effect may be triggered at the transitions from one of the groups of information to an adjacent group of information.
In some embodiments, at least one processor may determine that the length of one of the sections is smaller than a predetermined length threshold. During scrolling in the one of the sections, the at least one processor may cause display of an enlarged version of the one of the sections. In some embodiments, the enlarged version may be presented adjacent to the scroll bar. An enlarged version of a section may refer to a version of the section where at least one of the dimensions of the section has been increased beyond an original dimension of the section in the scroll bar as it was originally displayed. For example, an enlarged version of a section may correspond to the display of the section with either an increased length, width or both dimensions. In some embodiments, the predetermined threshold may include at least one of a predetermined percentage of a primary dimension of the scroll bar, a predetermined number of pixels of the display, or may be manually defined by a user input.
In
In response to a continuous scroll signal that scrolls past the second group 904 and into section 916 corresponding to the third group 906, enlarged version 914b may disappear or revert to section 914, as shown in
In some embodiments, a processor may determine that the length of one of the sections is smaller than a predetermined length threshold, and during scrolling in the one of the sections, may cause display of an enlarged version of the one of the sections within the scroll bar, rather than adjacent to the scroll bar. Referring to
In some embodiments, during scrolling of one of the sections, a processor may be configured to modify a visual appearance of the one of the sections, such as by increasing a width of the one of the sections. Modifying a visual appearance of a section may include changing any type of visual characteristics of the section resulting in a different visual representation of the section.
In some embodiments, one of the sections that is currently being scrolled through may have a modified visual appearance. In some embodiments such as the embodiment shown in
The memory 1220 may further include a memory portion 1222 that may contain instructions that when executed by the processing circuitry 1210, may perform the method described in more detail herein. The memory 1220 may be further used as a working scratch pad for the processing circuitry 1210, a temporary storage, and others, as the case may be. The memory 1220 may be a volatile memory such as, but not limited to, random access memory (RAM), or non-volatile memory (NVM), such as, but not limited to, flash memory. The processing circuitry 110 may be further connected to a network device 1240, such as a network interface card, for providing connectivity between the computing device 1200 and a network, such as a network 1310, discussed in more detail with respect to
The processing circuitry 1210 and/or the memory 1220 may also include machine-readable media for storing software. “Software” as used herein refers broadly to any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by the one or more processors, may cause the processing system to perform the various functions described in further detail herein.
In some embodiments, computing device 1200 may include one or more input and output devices (not shown in figure). Computing device may also include a display 1250, such as a touchscreen display or other display types discussed herein.
One or more user devices 1320-1 through user device 1320-m, where ‘m’ in an integer equal to or greater than 1, referred to individually as user device 1320 and collectively as user devices 1320, may be communicatively coupled with the computing device 1200 via the network 1310. A user device 1320 may be for example, a smart phone, a mobile phone, a laptop, a tablet computer, a wearable computing device, a personal computer (PC), a smart television and the like. A user device 1320 may be configured to send to and receive from the computing device 1200 data and/or metadata associated with a variety of elements associated with single data type column-oriented data structures, such as columns, rows, cells, schemas, and the like.
One or more data repositories 1330-1 through data repository 1330-n, where ‘n’ in an integer equal to or greater than 1, referred to individually as data repository 1330 and collectively as data repository 1330, may be communicatively coupled with the computing device 1200 via the network 1310, or embedded within the computing device 1200. Each data repository 1330 may be communicatively connected to the network 1310 through one or more database management services (DBMS) 1335-1 through DBMS 1335-n. The data repository 1330 may be for example, a storage device containing a database, a data warehouse, and the like, that may be used for storing data structures, data items, metadata, or any information, as further described below. In some embodiments, one or more of the repositories may be distributed over several physical storage devices, e.g., in a cloud-based computing environment. Any storage device may be a network accessible storage device, or a component of the computing device 1200.
The embodiments disclosed herein are exemplary and any other means for performing and facilitating display navigation operations may be consistent with this disclosure.
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to the precise forms or embodiments disclosed. Modifications and adaptations will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed embodiments.
Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those skilled in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application. The examples are to be construed as non-exclusive. Furthermore, the steps of the disclosed methods may be modified in any manner, including by reordering steps and/or inserting or deleting steps. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the following claims and their full scope of equivalents.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. The materials, methods, and examples provided herein are illustrative only and not intended to be limiting.
Implementation of the method and system of the present disclosure may involve performing or completing certain selected tasks or steps manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of preferred embodiments of the method and system of the present disclosure, several selected steps may be implemented by hardware (HW) or by software (SW) on any operating system of any firmware, or by a combination thereof. For example, as hardware, selected steps of the disclosure could be implemented as a chip or a circuit. As software or algorithm, selected steps of the disclosure could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In any case, selected steps of the method and system of the disclosure could be described as being performed by a data processor, such as a computing device for executing a plurality of instructions.
As used herein, the terms “machine-readable medium” “computer-readable medium” refers to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor.
Various implementations of the systems and techniques described here can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.
Although the present disclosure is described with regard to a “computing device”, a “computer”, or “mobile device”, it should be noted that optionally any device featuring a data processor and the ability to execute one or more instructions may be described as a computing device, including but not limited to any type of personal computer (PC), a server, a distributed server, a virtual server, a cloud computing platform, a cellular telephone, an IP telephone, a smartphone, a smart watch or a PDA (personal digital assistant). Any two or more of such devices in communication with each other may optionally comprise a “network” or a “computer network”.
To provide for interaction with a user, the systems and techniques described here can be implemented on a computer having a display device (a LED (light-emitting diode), or OLED (organic LED), or LCD (liquid crystal display) monitor/screen) for displaying information to the user and a touch-sensitive layer such as a touchscreen, or keyboard and a pointing device (e.g., a mouse or a trackball), by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form, including acoustic, speech, or tactile input.
The systems and techniques described here can be implemented in a computing system that includes a back end component (e.g., as a data server), or that includes a middleware component (e.g., an application server), or that includes a front end component (e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the systems and techniques described here), or any combination of such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), and the Internet.
The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
It should be appreciated that the above described methods and apparatus may be varied in many ways, including omitting or adding steps, changing the order of steps and the type of devices used. It should be appreciated that different features may be combined in different ways. In particular, not all the features shown above in a particular embodiment or implementation are necessary in every embodiment or implementation of the invention. Further combinations of the above features and implementations are also considered to be within the scope of some embodiments or implementations of the invention.
While certain features of the described implementations have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the scope of the implementations. It should be understood that they have been presented by way of example only, not limitation, and various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The implementations described herein can include various combinations and/or sub-combinations of the functions, components and/or features of the different implementations described.
Systems and methods disclosed herein involve unconventional improvements over conventional approaches. Descriptions of the disclosed embodiments are not exhaustive and are not limited to the precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from consideration of the specification and practice of the disclosed embodiments. Additionally, the disclosed embodiments are not limited to the examples discussed herein.
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to the precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from consideration of the specification and practice of the disclosed embodiments. For example, the described implementations include hardware and software, but systems and methods consistent with the present disclosure may be implemented as hardware alone.
It is appreciated that the above described embodiments can be implemented by hardware, or software (program codes), or a combination of hardware and software. If implemented by software, it can be stored in the above-described computer-readable media. The software, when executed by the processor can perform the disclosed methods. The computing units and other functional units described in the present disclosure can be implemented by hardware, or software, or a combination of hardware and software. One of ordinary skill in the art will also understand that multiple ones of the above described modules/units can be combined as one module or unit, and each of the above described modules/units can be further divided into a plurality of sub-modules or sub-units.
The block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer hardware or software products according to various example embodiments of the present disclosure. In this regard, each block in a flowchart or block diagram may represent a module, segment, or portion of code, which includes one or more executable instructions for implementing the specified logical functions. It should be understood that in some alternative implementations, functions indicated in a block may occur out of order noted in the figures. For example, two blocks shown in succession may be executed or implemented substantially concurrently, or two blocks may sometimes be executed in reverse order, depending upon the functionality involved. Some blocks may also be omitted. It should also be understood that each block of the block diagrams, and combination of the blocks, may be implemented by special purpose hardware-based systems that perform the specified functions or acts, or by combinations of special purpose hardware and computer instructions.
In the foregoing specification, embodiments have been described with reference to numerous specific details that can vary from implementation to implementation. Certain adaptations and modifications of the described embodiments can be made. Other embodiments can be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as example only, with a true scope and spirit of the invention being indicated by the following claims. It is also intended that the sequence of steps shown in figures are only for illustrative purposes and are not intended to be limited to any particular sequence of steps. As such, those skilled in the art can appreciate that these steps can be performed in a different order while implementing the same method.
It will be appreciated that the embodiments of the present disclosure are not limited to the exact construction that has been described above and illustrated in the accompanying drawings, and that various modifications and changes may be made without departing from the scope thereof.
Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed embodiments disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims.
Computer programs based on the written description and methods of this specification are within the skill of a software developer. The various programs or program modules can be created using a variety of programming techniques. One or more of such software sections or modules can be integrated into a computer system, non-transitory computer readable media, or existing software.
This disclosure employs open-ended permissive language, indicating for example, that some embodiments “may” employ, involve, or include specific features. The use of the term “may” and other open-ended terminology is intended to indicate that although not every embodiment may employ the specific disclosed feature, at least one embodiment employs the specific disclosed feature.
Various terms used in the specification and claims may be defined or summarized differently when discussed in connection with differing disclosed embodiments. It is to be understood that the definitions, summaries and explanations of terminology in each instance apply to all instances, even when not repeated, unless the transitive definition, explanation or summary would result in inoperability of an embodiment.
Moreover, while illustrative embodiments have been described herein, the scope includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations or alterations based on the present disclosure. The elements in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application. These examples are to be construed as non-exclusive. Further, the steps of the disclosed methods can be modified in any manner, including by reordering steps or inserting or deleting steps. It is intended, therefore, that the specification and examples be considered as exemplary only, with a true scope and spirit being indicated by the following claims and their full scope of equivalents.
This application is based on and claims benefit of priority of U.S. Provisional Patent Application No. 63/273,453 filed on Oct. 29, 2021, the contents of all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4972314 | Getzinger et al. | Nov 1990 | A |
5220657 | Bly et al. | Jun 1993 | A |
5479602 | Baecker et al. | Dec 1995 | A |
5517663 | Kahn | May 1996 | A |
5632009 | Rao et al. | May 1997 | A |
5657437 | Bishop et al. | Aug 1997 | A |
5682469 | Linnett et al. | Oct 1997 | A |
5696702 | Skinner et al. | Dec 1997 | A |
5726701 | Needham | Mar 1998 | A |
5787411 | Groff et al. | Jul 1998 | A |
5880742 | Rao et al. | Mar 1999 | A |
5933145 | Meek | Aug 1999 | A |
6016438 | Wakayama | Jan 2000 | A |
6016553 | Schneider et al. | Jan 2000 | A |
6023695 | Osborn et al. | Feb 2000 | A |
6034681 | Miller et al. | Mar 2000 | A |
6049622 | Robb et al. | Apr 2000 | A |
6088707 | Bates et al. | Jul 2000 | A |
6108573 | Debbins et al. | Aug 2000 | A |
6111573 | McComb et al. | Aug 2000 | A |
6157381 | Bates | Dec 2000 | A |
6167405 | Rosensteel, Jr. et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6182127 | Cronin et al. | Jan 2001 | B1 |
6185582 | Zellweger et al. | Feb 2001 | B1 |
6195794 | Buxton | Feb 2001 | B1 |
6222541 | Bates | Apr 2001 | B1 |
6252594 | Xia | Jun 2001 | B1 |
6266067 | Owen et al. | Jul 2001 | B1 |
6275809 | Tamaki et al. | Aug 2001 | B1 |
6330022 | Seligmann | Dec 2001 | B1 |
6377965 | Hachamovitch et al. | Apr 2002 | B1 |
6385617 | Malik | May 2002 | B1 |
6460043 | Tabbara et al. | Oct 2002 | B1 |
6496832 | Chi et al. | Dec 2002 | B2 |
6509912 | Moran et al. | Jan 2003 | B1 |
6510459 | Cronin, III et al. | Jan 2003 | B2 |
6522347 | Tsuji et al. | Feb 2003 | B1 |
6527556 | Koskinen | Mar 2003 | B1 |
6567830 | Madduri | May 2003 | B1 |
6606740 | Lynn et al. | Aug 2003 | B1 |
6626959 | Moise et al. | Sep 2003 | B1 |
6636242 | Bowman-Amuah | Oct 2003 | B2 |
6647370 | Fu et al. | Nov 2003 | B1 |
6661431 | Stuart et al. | Dec 2003 | B1 |
6988248 | Tang et al. | Jan 2006 | B1 |
7027997 | Robinson et al. | Apr 2006 | B1 |
7034860 | Lia et al. | Apr 2006 | B2 |
7043529 | Simonoff | May 2006 | B1 |
7054891 | Cole | May 2006 | B2 |
7228492 | Graham | Jun 2007 | B1 |
7237188 | Leung | Jun 2007 | B1 |
7249042 | Doerr et al. | Jul 2007 | B1 |
7272637 | Himmelstein | Sep 2007 | B1 |
7274375 | David | Sep 2007 | B1 |
7379934 | Forman et al. | May 2008 | B1 |
7380202 | Lindhorst et al. | May 2008 | B1 |
7383320 | Silberstein et al. | Jun 2008 | B1 |
7389473 | Sawicki et al. | Jun 2008 | B1 |
7415664 | Aureglia et al. | Aug 2008 | B2 |
7417644 | Cooper et al. | Aug 2008 | B2 |
7461077 | Greenwood | Dec 2008 | B1 |
7489976 | Adra | Feb 2009 | B2 |
7565270 | Bramwell et al. | Jul 2009 | B2 |
7617443 | Mills et al. | Nov 2009 | B2 |
7685152 | Chivukula et al. | Mar 2010 | B2 |
7707514 | Forstall et al. | Apr 2010 | B2 |
7710290 | Johnson | May 2010 | B2 |
7747782 | Hunt et al. | Jun 2010 | B2 |
7770100 | Chamberlain et al. | Aug 2010 | B2 |
7827476 | Roberts et al. | Nov 2010 | B1 |
7827615 | Allababidi et al. | Nov 2010 | B1 |
7836408 | Ollmann | Nov 2010 | B1 |
7916157 | Kelley et al. | Mar 2011 | B1 |
7921360 | Sundermeyer et al. | Apr 2011 | B1 |
7933952 | Parker et al. | Apr 2011 | B2 |
7945622 | Pegg | May 2011 | B1 |
7954043 | Bera | May 2011 | B2 |
7954064 | Forstall et al. | May 2011 | B2 |
8046703 | Busch et al. | Oct 2011 | B2 |
8060518 | Timmons | Nov 2011 | B2 |
8078955 | Gupta | Dec 2011 | B1 |
8082274 | Steinglass et al. | Dec 2011 | B2 |
8108241 | Shukoor | Jan 2012 | B2 |
8136031 | Massand | Mar 2012 | B2 |
8151213 | Weitzman et al. | Apr 2012 | B2 |
8223172 | Miller et al. | Jul 2012 | B1 |
8286072 | Chamberlain et al. | Oct 2012 | B2 |
8365095 | Bansal et al. | Jan 2013 | B2 |
8375327 | Lorch et al. | Feb 2013 | B2 |
8386960 | Eismann et al. | Feb 2013 | B1 |
8407217 | Zhang | Mar 2013 | B1 |
8413261 | Nemoy et al. | Apr 2013 | B2 |
8423909 | Zabielski | Apr 2013 | B2 |
8543566 | Weissman et al. | Sep 2013 | B2 |
8548997 | Wu | Oct 2013 | B1 |
8560942 | Fortes et al. | Oct 2013 | B2 |
8566732 | Louch et al. | Oct 2013 | B2 |
8572173 | Briere et al. | Oct 2013 | B2 |
8578399 | Khen et al. | Nov 2013 | B2 |
8601383 | Folting et al. | Dec 2013 | B2 |
8620703 | Kapoor et al. | Dec 2013 | B1 |
8621652 | Slater, Jr. | Dec 2013 | B2 |
8635520 | Christiansen et al. | Jan 2014 | B2 |
8677448 | Kauffman et al. | Mar 2014 | B1 |
8719071 | MacIntyre et al. | May 2014 | B2 |
8738414 | Nagar et al. | May 2014 | B1 |
8812471 | Akita | Aug 2014 | B2 |
8819042 | Samudrala et al. | Aug 2014 | B2 |
8825758 | Bailor et al. | Sep 2014 | B2 |
8838533 | Kwiatkowski et al. | Sep 2014 | B2 |
8862979 | Hawking | Oct 2014 | B2 |
8863022 | Rhodes et al. | Oct 2014 | B2 |
8869027 | Louch et al. | Oct 2014 | B2 |
8937627 | Otero et al. | Jan 2015 | B1 |
8938465 | Messer | Jan 2015 | B2 |
8954871 | Louch et al. | Feb 2015 | B2 |
9007405 | Eldar et al. | Apr 2015 | B1 |
9015716 | Fletcher et al. | Apr 2015 | B2 |
9021118 | John et al. | Apr 2015 | B2 |
9026897 | Zarras | May 2015 | B2 |
9043362 | Weissman et al. | May 2015 | B2 |
9063958 | Müller et al. | Jun 2015 | B2 |
9129234 | Campbell et al. | Sep 2015 | B2 |
9159246 | Rodriguez et al. | Oct 2015 | B2 |
9172738 | daCosta | Oct 2015 | B1 |
9177238 | Windmueller et al. | Nov 2015 | B2 |
9183303 | Goel et al. | Nov 2015 | B1 |
9223770 | Ledet | Dec 2015 | B1 |
9239719 | Feinstein et al. | Jan 2016 | B1 |
9244917 | Sharma et al. | Jan 2016 | B1 |
9253130 | Zaveri | Feb 2016 | B2 |
9286246 | Saito et al. | Mar 2016 | B2 |
9286475 | Li et al. | Mar 2016 | B2 |
9292587 | Kann et al. | Mar 2016 | B2 |
9336502 | Mohammad et al. | May 2016 | B2 |
9342579 | Cao et al. | May 2016 | B2 |
9361287 | Simon et al. | Jun 2016 | B1 |
9390059 | Gur et al. | Jul 2016 | B1 |
9424287 | Schroth | Aug 2016 | B2 |
9424333 | Bisignani et al. | Aug 2016 | B1 |
9424545 | Lee | Aug 2016 | B1 |
9430458 | Rhee et al. | Aug 2016 | B2 |
9449031 | Barrus et al. | Sep 2016 | B2 |
9495386 | Tapley et al. | Nov 2016 | B2 |
9519699 | Kulkarni et al. | Dec 2016 | B1 |
9558172 | Rampson et al. | Jan 2017 | B2 |
9569511 | Morin | Feb 2017 | B2 |
9613086 | Sherman | Apr 2017 | B1 |
9635091 | Laukkanen et al. | Apr 2017 | B1 |
9659284 | Wilson et al. | May 2017 | B1 |
9679456 | East | Jun 2017 | B2 |
9720602 | Chen et al. | Aug 2017 | B1 |
9727376 | Bills et al. | Aug 2017 | B1 |
9760271 | Persaud | Sep 2017 | B2 |
9794256 | Kiang et al. | Oct 2017 | B2 |
9798829 | Baisley | Oct 2017 | B1 |
9811676 | Gauvin | Nov 2017 | B1 |
9866561 | Psenka et al. | Jan 2018 | B2 |
9870136 | Pourshahid | Jan 2018 | B2 |
10001908 | Grieve et al. | Jun 2018 | B2 |
10043296 | Li | Aug 2018 | B2 |
10067928 | Krappe | Sep 2018 | B1 |
10078668 | Woodrow et al. | Sep 2018 | B1 |
10169306 | O'Shaughnessy et al. | Jan 2019 | B2 |
10176154 | Ben-Aharon et al. | Jan 2019 | B2 |
10235441 | Makhlin et al. | Mar 2019 | B1 |
10255609 | Kinkead et al. | Apr 2019 | B2 |
10282405 | Silk et al. | May 2019 | B1 |
10282406 | Bissantz | May 2019 | B2 |
10311080 | Folting et al. | Jun 2019 | B2 |
10318624 | Rosner et al. | Jun 2019 | B1 |
10327712 | Beymer et al. | Jun 2019 | B2 |
10347017 | Ruble et al. | Jul 2019 | B2 |
10372706 | Chavan et al. | Aug 2019 | B2 |
10380140 | Sherman | Aug 2019 | B2 |
10423758 | Kido et al. | Sep 2019 | B2 |
10445702 | Hunt | Oct 2019 | B1 |
10452360 | Burman et al. | Oct 2019 | B1 |
10453118 | Smith et al. | Oct 2019 | B2 |
10474317 | Ramanathan et al. | Nov 2019 | B2 |
10489391 | Tomlin | Nov 2019 | B1 |
10489462 | Rogynskyy et al. | Nov 2019 | B1 |
10496737 | Sayre et al. | Dec 2019 | B1 |
10505825 | Bettaiah et al. | Dec 2019 | B1 |
10528599 | Pandis et al. | Jan 2020 | B1 |
10534507 | Laukkanen et al. | Jan 2020 | B1 |
10540152 | Krishnaswamy et al. | Jan 2020 | B1 |
10540434 | Migeon et al. | Jan 2020 | B2 |
10546001 | Nguyen et al. | Jan 2020 | B1 |
10564622 | Dean et al. | Feb 2020 | B1 |
10573407 | Ginsburg | Feb 2020 | B2 |
10579724 | Campbell et al. | Mar 2020 | B2 |
10587714 | Kulkarni et al. | Mar 2020 | B1 |
10628002 | Kang et al. | Apr 2020 | B1 |
10698594 | Sanches et al. | Jun 2020 | B2 |
10706061 | Sherman et al. | Jul 2020 | B2 |
10719220 | Ouellet et al. | Jul 2020 | B2 |
10733256 | Fickenscher et al. | Aug 2020 | B2 |
10740117 | Ording et al. | Aug 2020 | B2 |
10747764 | Plenderleith | Aug 2020 | B1 |
10747950 | Dang et al. | Aug 2020 | B2 |
10748312 | Ruble et al. | Aug 2020 | B2 |
10754688 | Powell | Aug 2020 | B2 |
10761691 | Anzures et al. | Sep 2020 | B2 |
10795555 | Burke et al. | Oct 2020 | B2 |
10809696 | Principato | Oct 2020 | B1 |
10817660 | Rampson et al. | Oct 2020 | B2 |
D910077 | Naroshevitch et al. | Feb 2021 | S |
10963578 | More et al. | Mar 2021 | B2 |
11010371 | Slomka et al. | May 2021 | B1 |
11030259 | Mullins et al. | Jun 2021 | B2 |
11042363 | Krishnaswamy et al. | Jun 2021 | B1 |
11042699 | Sayre et al. | Jun 2021 | B1 |
11048714 | Sherman et al. | Jun 2021 | B2 |
11086894 | Srivastava et al. | Aug 2021 | B1 |
11144854 | Mouawad | Oct 2021 | B1 |
11222167 | Gehrmann et al. | Jan 2022 | B2 |
11243688 | Remy et al. | Feb 2022 | B1 |
11429384 | Navert et al. | Aug 2022 | B1 |
11443390 | Caligaris et al. | Sep 2022 | B1 |
11620615 | Jiang et al. | Apr 2023 | B2 |
11682091 | Sukman et al. | Jun 2023 | B2 |
20010008998 | Tamaki et al. | Jul 2001 | A1 |
20010032248 | Krafchin | Oct 2001 | A1 |
20010039551 | Saito et al. | Nov 2001 | A1 |
20020002459 | Lewis et al. | Jan 2002 | A1 |
20020065848 | Walker et al. | May 2002 | A1 |
20020065849 | Ferguson et al. | May 2002 | A1 |
20020065880 | Hasegawa et al. | May 2002 | A1 |
20020069207 | Alexander et al. | Jun 2002 | A1 |
20020075309 | Michelman et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020099777 | Gupta et al. | Jul 2002 | A1 |
20020138528 | Gong et al. | Sep 2002 | A1 |
20030033196 | Tomlin | Feb 2003 | A1 |
20030041113 | Larsen | Feb 2003 | A1 |
20030051377 | Chirafesi, Jr. | Mar 2003 | A1 |
20030052912 | Bowman et al. | Mar 2003 | A1 |
20030058277 | Bowman-Amuah | Mar 2003 | A1 |
20030065662 | Cosic | Apr 2003 | A1 |
20030093408 | Brown et al. | May 2003 | A1 |
20030101416 | McInnes et al. | May 2003 | A1 |
20030135558 | Bellotti et al. | Jul 2003 | A1 |
20030137536 | Hugh | Jul 2003 | A1 |
20030187864 | McGoveran | Oct 2003 | A1 |
20030200215 | Chen et al. | Oct 2003 | A1 |
20030204490 | Kasriel | Oct 2003 | A1 |
20030233224 | Marchisio et al. | Dec 2003 | A1 |
20040032432 | Baynger | Feb 2004 | A1 |
20040078373 | Ghoneimy et al. | Apr 2004 | A1 |
20040098284 | Petito et al. | May 2004 | A1 |
20040133441 | Brady et al. | Jul 2004 | A1 |
20040138939 | Theiler | Jul 2004 | A1 |
20040139400 | Allam et al. | Jul 2004 | A1 |
20040162833 | Jones et al. | Aug 2004 | A1 |
20040172592 | Collie et al. | Sep 2004 | A1 |
20040212615 | Uthe | Oct 2004 | A1 |
20040215443 | Hatton | Oct 2004 | A1 |
20040230940 | Cooper et al. | Nov 2004 | A1 |
20040268227 | Brid | Dec 2004 | A1 |
20050034058 | Mills et al. | Feb 2005 | A1 |
20050034064 | Meyers et al. | Feb 2005 | A1 |
20050039001 | Hudis et al. | Feb 2005 | A1 |
20050039033 | Meyers et al. | Feb 2005 | A1 |
20050044486 | Kotler et al. | Feb 2005 | A1 |
20050063615 | Siegel et al. | Mar 2005 | A1 |
20050066306 | Diab | Mar 2005 | A1 |
20050086360 | Mamou et al. | Apr 2005 | A1 |
20050091314 | Blagsvedt et al. | Apr 2005 | A1 |
20050091596 | Anthony et al. | Apr 2005 | A1 |
20050096973 | Heyse et al. | May 2005 | A1 |
20050114305 | Haynes et al. | May 2005 | A1 |
20050125395 | Boettiger | Jun 2005 | A1 |
20050165600 | Kasravi et al. | Jul 2005 | A1 |
20050171881 | Ghassemieh et al. | Aug 2005 | A1 |
20050210371 | Pollock et al. | Sep 2005 | A1 |
20050216830 | Turner et al. | Sep 2005 | A1 |
20050228250 | Bitter et al. | Oct 2005 | A1 |
20050251021 | Kaufman et al. | Nov 2005 | A1 |
20050257204 | Bryant et al. | Nov 2005 | A1 |
20050278297 | Nelson | Dec 2005 | A1 |
20050289170 | Brown et al. | Dec 2005 | A1 |
20050289342 | Needham et al. | Dec 2005 | A1 |
20050289453 | Segal et al. | Dec 2005 | A1 |
20060009960 | Valencot et al. | Jan 2006 | A1 |
20060013462 | Sadikali | Jan 2006 | A1 |
20060015499 | Clissold et al. | Jan 2006 | A1 |
20060015806 | Wallace | Jan 2006 | A1 |
20060031148 | O'Dell et al. | Feb 2006 | A1 |
20060031764 | Keyser et al. | Feb 2006 | A1 |
20060036568 | Moore et al. | Feb 2006 | A1 |
20060047811 | Lau et al. | Mar 2006 | A1 |
20060053096 | Subramanian et al. | Mar 2006 | A1 |
20060053194 | Schneider et al. | Mar 2006 | A1 |
20060069604 | Leukart et al. | Mar 2006 | A1 |
20060069635 | Ram et al. | Mar 2006 | A1 |
20060080594 | Chavoustie et al. | Apr 2006 | A1 |
20060085744 | Hays et al. | Apr 2006 | A1 |
20060090169 | Daniels et al. | Apr 2006 | A1 |
20060101324 | Goldberg et al. | May 2006 | A1 |
20060106642 | Reicher et al. | May 2006 | A1 |
20060107196 | Thanu et al. | May 2006 | A1 |
20060111953 | Setya | May 2006 | A1 |
20060129415 | Thukral et al. | Jun 2006 | A1 |
20060129913 | Vigesaa et al. | Jun 2006 | A1 |
20060136828 | Asano | Jun 2006 | A1 |
20060150090 | Swamidass | Jul 2006 | A1 |
20060173908 | Browning et al. | Aug 2006 | A1 |
20060190313 | Lu | Aug 2006 | A1 |
20060212299 | Law | Sep 2006 | A1 |
20060224542 | Yalamanchi | Oct 2006 | A1 |
20060224568 | Debrito | Oct 2006 | A1 |
20060224946 | Barrett et al. | Oct 2006 | A1 |
20060236246 | Bono et al. | Oct 2006 | A1 |
20060250369 | Keim | Nov 2006 | A1 |
20060253205 | Gardiner | Nov 2006 | A1 |
20060271574 | Villaron et al. | Nov 2006 | A1 |
20060287998 | Folting et al. | Dec 2006 | A1 |
20060294451 | Kelkar et al. | Dec 2006 | A1 |
20070027932 | Thibeault | Feb 2007 | A1 |
20070032993 | Yamaguchi et al. | Feb 2007 | A1 |
20070033531 | Marsh | Feb 2007 | A1 |
20070050322 | Vigesaa et al. | Mar 2007 | A1 |
20070050379 | Day et al. | Mar 2007 | A1 |
20070073899 | Judge et al. | Mar 2007 | A1 |
20070092048 | Chelstrom et al. | Apr 2007 | A1 |
20070094607 | Morgan et al. | Apr 2007 | A1 |
20070101291 | Forstall et al. | May 2007 | A1 |
20070106754 | Moore | May 2007 | A1 |
20070118527 | Winje et al. | May 2007 | A1 |
20070118813 | Forstall et al. | May 2007 | A1 |
20070143169 | Grant et al. | Jun 2007 | A1 |
20070150389 | Aamodt et al. | Jun 2007 | A1 |
20070168861 | Bell et al. | Jul 2007 | A1 |
20070174228 | Folting et al. | Jul 2007 | A1 |
20070174760 | Chamberlain et al. | Jul 2007 | A1 |
20070186173 | Both et al. | Aug 2007 | A1 |
20070192729 | Downs | Aug 2007 | A1 |
20070220119 | Himmelstein | Sep 2007 | A1 |
20070233647 | Rawat et al. | Oct 2007 | A1 |
20070239746 | Masselle et al. | Oct 2007 | A1 |
20070256043 | Peters et al. | Nov 2007 | A1 |
20070282522 | Geelen | Dec 2007 | A1 |
20070282627 | Greenstein et al. | Dec 2007 | A1 |
20070283259 | Barry et al. | Dec 2007 | A1 |
20070294235 | Millett | Dec 2007 | A1 |
20070299795 | Macbeth et al. | Dec 2007 | A1 |
20070300174 | Macbeth et al. | Dec 2007 | A1 |
20070300185 | Macbeth et al. | Dec 2007 | A1 |
20080004929 | Raffel et al. | Jan 2008 | A9 |
20080005235 | Hegde et al. | Jan 2008 | A1 |
20080033777 | Shukoor | Feb 2008 | A1 |
20080034307 | Cisler et al. | Feb 2008 | A1 |
20080034314 | Louch et al. | Feb 2008 | A1 |
20080052291 | Bender | Feb 2008 | A1 |
20080059312 | Gern et al. | Mar 2008 | A1 |
20080059539 | Chin et al. | Mar 2008 | A1 |
20080065460 | Raynor | Mar 2008 | A1 |
20080077530 | Banas et al. | Mar 2008 | A1 |
20080097748 | Haley et al. | Apr 2008 | A1 |
20080104091 | Chin | May 2008 | A1 |
20080126389 | Mush et al. | May 2008 | A1 |
20080133736 | Wensley et al. | Jun 2008 | A1 |
20080148140 | Nakano | Jun 2008 | A1 |
20080155547 | Weber et al. | Jun 2008 | A1 |
20080163075 | Beck et al. | Jul 2008 | A1 |
20080183593 | Dierks | Jul 2008 | A1 |
20080195948 | Bauer | Aug 2008 | A1 |
20080209318 | Allsop et al. | Aug 2008 | A1 |
20080216022 | Lorch et al. | Sep 2008 | A1 |
20080222192 | Hughes | Sep 2008 | A1 |
20080256014 | Gould et al. | Oct 2008 | A1 |
20080256429 | Penner et al. | Oct 2008 | A1 |
20080270597 | Tenenti | Oct 2008 | A1 |
20080282189 | Hofmann et al. | Nov 2008 | A1 |
20080295038 | Helfman et al. | Nov 2008 | A1 |
20080301237 | Parsons | Dec 2008 | A1 |
20090006171 | Blatchley et al. | Jan 2009 | A1 |
20090006283 | Labrie et al. | Jan 2009 | A1 |
20090007157 | Ward et al. | Jan 2009 | A1 |
20090013244 | Cudich et al. | Jan 2009 | A1 |
20090019383 | Riley et al. | Jan 2009 | A1 |
20090024944 | Louch et al. | Jan 2009 | A1 |
20090043814 | Faris et al. | Feb 2009 | A1 |
20090044090 | Gur et al. | Feb 2009 | A1 |
20090048896 | Anandan | Feb 2009 | A1 |
20090049372 | Goldberg | Feb 2009 | A1 |
20090075694 | Kim | Mar 2009 | A1 |
20090077164 | Phillips et al. | Mar 2009 | A1 |
20090077217 | McFarland et al. | Mar 2009 | A1 |
20090083140 | Phan | Mar 2009 | A1 |
20090094514 | Dargahi et al. | Apr 2009 | A1 |
20090113310 | Appleyard et al. | Apr 2009 | A1 |
20090129596 | Chavez et al. | May 2009 | A1 |
20090132331 | Cartledge et al. | May 2009 | A1 |
20090132470 | Vignet | May 2009 | A1 |
20090150813 | Chang et al. | Jun 2009 | A1 |
20090174680 | Anzures et al. | Jul 2009 | A1 |
20090192787 | Roon | Jul 2009 | A1 |
20090198715 | Barbarek | Aug 2009 | A1 |
20090222760 | Halverson et al. | Sep 2009 | A1 |
20090248710 | McCormack et al. | Oct 2009 | A1 |
20090256972 | Ramaswamy et al. | Oct 2009 | A1 |
20090262690 | Breuer et al. | Oct 2009 | A1 |
20090271696 | Bailor et al. | Oct 2009 | A1 |
20090276692 | Rosner | Nov 2009 | A1 |
20090292690 | Culbert | Nov 2009 | A1 |
20090313201 | Huelsman et al. | Dec 2009 | A1 |
20090313537 | Fu et al. | Dec 2009 | A1 |
20090313570 | Po et al. | Dec 2009 | A1 |
20090319623 | Srinivasan et al. | Dec 2009 | A1 |
20090319882 | Morrison et al. | Dec 2009 | A1 |
20090327240 | Meehan et al. | Dec 2009 | A1 |
20090327301 | Lees et al. | Dec 2009 | A1 |
20090327851 | Raposo | Dec 2009 | A1 |
20090327875 | Kinkoh | Dec 2009 | A1 |
20100017699 | Farrell et al. | Jan 2010 | A1 |
20100031135 | Naghshin et al. | Feb 2010 | A1 |
20100070845 | Facemire et al. | Mar 2010 | A1 |
20100070895 | Messer | Mar 2010 | A1 |
20100082705 | Ramesh et al. | Apr 2010 | A1 |
20100083164 | Martin et al. | Apr 2010 | A1 |
20100088636 | Yerkes et al. | Apr 2010 | A1 |
20100095219 | Stachowiak et al. | Apr 2010 | A1 |
20100095298 | Seshadrinathan et al. | Apr 2010 | A1 |
20100100427 | McKeown et al. | Apr 2010 | A1 |
20100100463 | Molotsi et al. | Apr 2010 | A1 |
20100114926 | Agrawal et al. | May 2010 | A1 |
20100149005 | Yoon et al. | Jun 2010 | A1 |
20100174678 | Massand | Jul 2010 | A1 |
20100205521 | Folting | Aug 2010 | A1 |
20100228752 | Folting et al. | Sep 2010 | A1 |
20100241477 | Nylander et al. | Sep 2010 | A1 |
20100241948 | Andeen et al. | Sep 2010 | A1 |
20100241968 | Tarara et al. | Sep 2010 | A1 |
20100241972 | Spataro et al. | Sep 2010 | A1 |
20100241990 | Gabriel et al. | Sep 2010 | A1 |
20100251090 | Chamberlain et al. | Sep 2010 | A1 |
20100251386 | Gilzean et al. | Sep 2010 | A1 |
20100257015 | Molander | Oct 2010 | A1 |
20100262625 | Pittenger | Oct 2010 | A1 |
20100268705 | Douglas et al. | Oct 2010 | A1 |
20100268773 | Hunt et al. | Oct 2010 | A1 |
20100287163 | Sridhar et al. | Nov 2010 | A1 |
20100287221 | Battepati et al. | Nov 2010 | A1 |
20100313119 | Baldwin et al. | Dec 2010 | A1 |
20100324964 | Callanan et al. | Dec 2010 | A1 |
20100332973 | Kloiber et al. | Dec 2010 | A1 |
20110010340 | Hung et al. | Jan 2011 | A1 |
20110016432 | Helfman | Jan 2011 | A1 |
20110028138 | Davies-Moore et al. | Feb 2011 | A1 |
20110047484 | Mount et al. | Feb 2011 | A1 |
20110055177 | Chakra et al. | Mar 2011 | A1 |
20110066933 | Ludwig | Mar 2011 | A1 |
20110071869 | O'Brien et al. | Mar 2011 | A1 |
20110106636 | Spear et al. | May 2011 | A1 |
20110119352 | Perov et al. | May 2011 | A1 |
20110154192 | Yang et al. | Jun 2011 | A1 |
20110179371 | Kopycinski et al. | Jul 2011 | A1 |
20110205231 | Hartley et al. | Aug 2011 | A1 |
20110208324 | Fukatsu | Aug 2011 | A1 |
20110208732 | Melton et al. | Aug 2011 | A1 |
20110209150 | Hammond et al. | Aug 2011 | A1 |
20110219321 | Gonzalez Veron et al. | Sep 2011 | A1 |
20110225525 | Chasman et al. | Sep 2011 | A1 |
20110231273 | Buchheit | Sep 2011 | A1 |
20110238716 | Amir et al. | Sep 2011 | A1 |
20110258040 | Gnanasambandam | Oct 2011 | A1 |
20110288900 | McQueen et al. | Nov 2011 | A1 |
20110289397 | Eastmond et al. | Nov 2011 | A1 |
20110289439 | Jugel | Nov 2011 | A1 |
20110298618 | Stahl et al. | Dec 2011 | A1 |
20110302003 | Shirish et al. | Dec 2011 | A1 |
20120029962 | Podgurny et al. | Feb 2012 | A1 |
20120035974 | Seybold | Feb 2012 | A1 |
20120036423 | Haynes et al. | Feb 2012 | A1 |
20120036462 | Schwartz et al. | Feb 2012 | A1 |
20120050802 | Masuda | Mar 2012 | A1 |
20120066587 | Zhou et al. | Mar 2012 | A1 |
20120072821 | Bowling | Mar 2012 | A1 |
20120079408 | Rohwer | Mar 2012 | A1 |
20120081762 | Yamada | Apr 2012 | A1 |
20120084798 | Reeves et al. | Apr 2012 | A1 |
20120086716 | Reeves et al. | Apr 2012 | A1 |
20120086717 | Liu | Apr 2012 | A1 |
20120089610 | Agrawal et al. | Apr 2012 | A1 |
20120089914 | Holt et al. | Apr 2012 | A1 |
20120089992 | Reeves et al. | Apr 2012 | A1 |
20120096389 | Flam et al. | Apr 2012 | A1 |
20120096392 | Ording et al. | Apr 2012 | A1 |
20120102432 | Breedvelt-Schouten et al. | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120110515 | Abramoff et al. | May 2012 | A1 |
20120116834 | Pope et al. | May 2012 | A1 |
20120116835 | Pope et al. | May 2012 | A1 |
20120124749 | Lewman | May 2012 | A1 |
20120130907 | Thompson et al. | May 2012 | A1 |
20120131445 | Oyarzabal et al. | May 2012 | A1 |
20120151173 | Shirley et al. | Jun 2012 | A1 |
20120158744 | Tseng et al. | Jun 2012 | A1 |
20120192050 | Campbell et al. | Jul 2012 | A1 |
20120198322 | Gulwani et al. | Aug 2012 | A1 |
20120210252 | Fedoseyeva et al. | Aug 2012 | A1 |
20120215574 | Driessnack et al. | Aug 2012 | A1 |
20120215578 | Swierz, III et al. | Aug 2012 | A1 |
20120229867 | Takagi | Sep 2012 | A1 |
20120233150 | Naim et al. | Sep 2012 | A1 |
20120233533 | Yücel et al. | Sep 2012 | A1 |
20120234907 | Clark et al. | Sep 2012 | A1 |
20120236368 | Uchida et al. | Sep 2012 | A1 |
20120239454 | Taix et al. | Sep 2012 | A1 |
20120244891 | Appleton | Sep 2012 | A1 |
20120246170 | Lantorno | Sep 2012 | A1 |
20120254252 | Jin et al. | Oct 2012 | A1 |
20120254770 | Ophir | Oct 2012 | A1 |
20120260190 | Berger et al. | Oct 2012 | A1 |
20120278117 | Nguyen et al. | Nov 2012 | A1 |
20120284197 | Strick et al. | Nov 2012 | A1 |
20120297307 | Rider et al. | Nov 2012 | A1 |
20120300931 | Ollikainen et al. | Nov 2012 | A1 |
20120303262 | Alam et al. | Nov 2012 | A1 |
20120304098 | Kuulusa | Nov 2012 | A1 |
20120311496 | Cao et al. | Dec 2012 | A1 |
20120311672 | Connor et al. | Dec 2012 | A1 |
20120324348 | Rounthwaite | Dec 2012 | A1 |
20130015954 | Thorne et al. | Jan 2013 | A1 |
20130018952 | McConnell et al. | Jan 2013 | A1 |
20130018953 | McConnell et al. | Jan 2013 | A1 |
20130018960 | Knysz et al. | Jan 2013 | A1 |
20130024418 | Strick et al. | Jan 2013 | A1 |
20130024760 | Vogel et al. | Jan 2013 | A1 |
20130036369 | Mitchell et al. | Feb 2013 | A1 |
20130041958 | Post et al. | Feb 2013 | A1 |
20130054514 | Barrett-Kahn et al. | Feb 2013 | A1 |
20130055113 | Chazin et al. | Feb 2013 | A1 |
20130059598 | Miyagi et al. | Mar 2013 | A1 |
20130063490 | Zaman et al. | Mar 2013 | A1 |
20130086460 | Folting et al. | Apr 2013 | A1 |
20130090969 | Rivere | Apr 2013 | A1 |
20130097490 | Kotler et al. | Apr 2013 | A1 |
20130103417 | Seto et al. | Apr 2013 | A1 |
20130104035 | Wagner et al. | Apr 2013 | A1 |
20130111320 | Campbell et al. | May 2013 | A1 |
20130117268 | Smith et al. | May 2013 | A1 |
20130159832 | Ingargiola et al. | Jun 2013 | A1 |
20130159907 | Brosche et al. | Jun 2013 | A1 |
20130179209 | Milosevich | Jul 2013 | A1 |
20130211866 | Gordon et al. | Aug 2013 | A1 |
20130212197 | Karlson | Aug 2013 | A1 |
20130212234 | Bartlett et al. | Aug 2013 | A1 |
20130215475 | Noguchi | Aug 2013 | A1 |
20130238363 | Ohta et al. | Sep 2013 | A1 |
20130238968 | Barrus | Sep 2013 | A1 |
20130246384 | Victor | Sep 2013 | A1 |
20130262527 | Hunter | Oct 2013 | A1 |
20130268331 | Bitz et al. | Oct 2013 | A1 |
20130297468 | Hirsch et al. | Nov 2013 | A1 |
20130307997 | O'Keefe et al. | Nov 2013 | A1 |
20130318424 | Boyd | Nov 2013 | A1 |
20130339051 | Dobrean | Dec 2013 | A1 |
20140002863 | Hasegawa et al. | Jan 2014 | A1 |
20140006326 | Bazanov | Jan 2014 | A1 |
20140012616 | Moshenek | Jan 2014 | A1 |
20140019842 | Montagna et al. | Jan 2014 | A1 |
20140033307 | Schmidtler | Jan 2014 | A1 |
20140043331 | Makinen et al. | Feb 2014 | A1 |
20140046638 | Peloski | Feb 2014 | A1 |
20140052749 | Rissanen | Feb 2014 | A1 |
20140058801 | Deodhar et al. | Feb 2014 | A1 |
20140059017 | Chaney et al. | Feb 2014 | A1 |
20140068403 | Bhargav et al. | Mar 2014 | A1 |
20140074545 | Minder et al. | Mar 2014 | A1 |
20140075301 | Mihara | Mar 2014 | A1 |
20140078557 | Hasegawa et al. | Mar 2014 | A1 |
20140082525 | Kass et al. | Mar 2014 | A1 |
20140095237 | Ehrler et al. | Apr 2014 | A1 |
20140101527 | Suciu | Apr 2014 | A1 |
20140108985 | Scott et al. | Apr 2014 | A1 |
20140109012 | Choudhary et al. | Apr 2014 | A1 |
20140111516 | Hall et al. | Apr 2014 | A1 |
20140115515 | Adams et al. | Apr 2014 | A1 |
20140115518 | Abdukalykov et al. | Apr 2014 | A1 |
20140129960 | Wang et al. | May 2014 | A1 |
20140136972 | Rodgers et al. | May 2014 | A1 |
20140137003 | Peters et al. | May 2014 | A1 |
20140137144 | Järvenpääet al. | May 2014 | A1 |
20140172475 | Olliphant et al. | Jun 2014 | A1 |
20140173401 | Oshlag et al. | Jun 2014 | A1 |
20140181155 | Homsany | Jun 2014 | A1 |
20140188748 | Cavoue et al. | Jul 2014 | A1 |
20140195933 | Rao DV | Jul 2014 | A1 |
20140214404 | Kalia et al. | Jul 2014 | A1 |
20140215303 | Grigorovitch et al. | Jul 2014 | A1 |
20140229816 | Yakub | Aug 2014 | A1 |
20140240735 | Salgado | Aug 2014 | A1 |
20140249877 | Hull et al. | Sep 2014 | A1 |
20140257568 | Czaja et al. | Sep 2014 | A1 |
20140278638 | Kreuzkamp et al. | Sep 2014 | A1 |
20140278720 | Taguchi | Sep 2014 | A1 |
20140280287 | Ganti et al. | Sep 2014 | A1 |
20140280377 | Frew | Sep 2014 | A1 |
20140281868 | Vogel et al. | Sep 2014 | A1 |
20140281869 | Yob | Sep 2014 | A1 |
20140289223 | Colwell et al. | Sep 2014 | A1 |
20140304174 | Scott et al. | Oct 2014 | A1 |
20140306837 | Hauck, III | Oct 2014 | A1 |
20140310345 | Megiddo et al. | Oct 2014 | A1 |
20140324497 | Verma et al. | Oct 2014 | A1 |
20140324501 | Davidow et al. | Oct 2014 | A1 |
20140325552 | Evans et al. | Oct 2014 | A1 |
20140365938 | Black et al. | Dec 2014 | A1 |
20140372856 | Radakovitz et al. | Dec 2014 | A1 |
20140372932 | Rutherford et al. | Dec 2014 | A1 |
20150032686 | Kuchoor | Jan 2015 | A1 |
20150033131 | Peev et al. | Jan 2015 | A1 |
20150033149 | Kuchoor | Jan 2015 | A1 |
20150035918 | Matsumoto et al. | Feb 2015 | A1 |
20150039387 | Akahoshi et al. | Feb 2015 | A1 |
20150046209 | Choe | Feb 2015 | A1 |
20150067556 | Tibrewal et al. | Mar 2015 | A1 |
20150074721 | Fishman et al. | Mar 2015 | A1 |
20150074728 | Chai et al. | Mar 2015 | A1 |
20150088822 | Raja et al. | Mar 2015 | A1 |
20150095752 | Studer et al. | Apr 2015 | A1 |
20150106736 | Torman et al. | Apr 2015 | A1 |
20150125834 | Mendoza | May 2015 | A1 |
20150142676 | McGinnis et al. | May 2015 | A1 |
20150142829 | Lee et al. | May 2015 | A1 |
20150153943 | Wang | Jun 2015 | A1 |
20150154660 | Weald et al. | Jun 2015 | A1 |
20150169514 | Sah et al. | Jun 2015 | A1 |
20150169531 | Campbell et al. | Jun 2015 | A1 |
20150178657 | Kleehammer et al. | Jun 2015 | A1 |
20150188964 | Sharma et al. | Jul 2015 | A1 |
20150205830 | Bastide et al. | Jul 2015 | A1 |
20150212717 | Nair et al. | Jul 2015 | A1 |
20150220491 | Cochrane et al. | Aug 2015 | A1 |
20150234887 | Greene et al. | Aug 2015 | A1 |
20150242091 | Lu et al. | Aug 2015 | A1 |
20150249864 | Tang et al. | Sep 2015 | A1 |
20150261796 | Gould et al. | Sep 2015 | A1 |
20150262121 | Riel-Dalpe et al. | Sep 2015 | A1 |
20150278699 | Danielsson | Oct 2015 | A1 |
20150281292 | Murayama et al. | Oct 2015 | A1 |
20150295877 | Roman | Oct 2015 | A1 |
20150310126 | Steiner et al. | Oct 2015 | A1 |
20150317590 | Karlson | Nov 2015 | A1 |
20150324453 | Werner | Nov 2015 | A1 |
20150331846 | Guggilla et al. | Nov 2015 | A1 |
20150363478 | Haynes | Dec 2015 | A1 |
20150370540 | Coslovi et al. | Dec 2015 | A1 |
20150370776 | New | Dec 2015 | A1 |
20150370904 | Joshi et al. | Dec 2015 | A1 |
20150378542 | Saito et al. | Dec 2015 | A1 |
20150378711 | Cameron et al. | Dec 2015 | A1 |
20150378979 | Hirzel et al. | Dec 2015 | A1 |
20150379472 | Gilmour et al. | Dec 2015 | A1 |
20160012111 | Pattabhiraman et al. | Jan 2016 | A1 |
20160018962 | Low et al. | Jan 2016 | A1 |
20160026939 | Schiffer et al. | Jan 2016 | A1 |
20160027076 | Jackson et al. | Jan 2016 | A1 |
20160035546 | Platt et al. | Feb 2016 | A1 |
20160041736 | Schulz | Feb 2016 | A1 |
20160055134 | Sathish et al. | Feb 2016 | A1 |
20160055374 | Zhang et al. | Feb 2016 | A1 |
20160063435 | Shah et al. | Mar 2016 | A1 |
20160068960 | Jung et al. | Mar 2016 | A1 |
20160078368 | Kakhandiki et al. | Mar 2016 | A1 |
20160088480 | Chen et al. | Mar 2016 | A1 |
20160092557 | Stojanovic et al. | Mar 2016 | A1 |
20160098574 | Bargagni | Apr 2016 | A1 |
20160117308 | Haider et al. | Apr 2016 | A1 |
20160170586 | Gallo | Jun 2016 | A1 |
20160173122 | Akitomi et al. | Jun 2016 | A1 |
20160196310 | Dutta | Jul 2016 | A1 |
20160210572 | Shaaban et al. | Jul 2016 | A1 |
20160224532 | Miller et al. | Aug 2016 | A1 |
20160224676 | Miller et al. | Aug 2016 | A1 |
20160224939 | Chen et al. | Aug 2016 | A1 |
20160231915 | Nhan et al. | Aug 2016 | A1 |
20160232489 | Skaaksrud | Aug 2016 | A1 |
20160246490 | Cabral | Aug 2016 | A1 |
20160253982 | Cheung et al. | Sep 2016 | A1 |
20160259856 | Ananthapur et al. | Sep 2016 | A1 |
20160275150 | Bournonnais et al. | Sep 2016 | A1 |
20160292206 | Ruiz Velazquez et al. | Oct 2016 | A1 |
20160299655 | Migos et al. | Oct 2016 | A1 |
20160308963 | Kung | Oct 2016 | A1 |
20160321235 | He et al. | Nov 2016 | A1 |
20160321604 | Imaeda et al. | Nov 2016 | A1 |
20160335302 | Teodorescu et al. | Nov 2016 | A1 |
20160335303 | Madhalam et al. | Nov 2016 | A1 |
20160335604 | Reminick et al. | Nov 2016 | A1 |
20160335731 | Hall | Nov 2016 | A1 |
20160335903 | Mendoza | Nov 2016 | A1 |
20160344828 | Häusler et al. | Nov 2016 | A1 |
20160350950 | Ritchie et al. | Dec 2016 | A1 |
20160381099 | Keslin et al. | Dec 2016 | A1 |
20170017779 | Huang et al. | Jan 2017 | A1 |
20170031967 | Chavan et al. | Feb 2017 | A1 |
20170041296 | Ford et al. | Feb 2017 | A1 |
20170052937 | Sirven et al. | Feb 2017 | A1 |
20170061342 | Lore et al. | Mar 2017 | A1 |
20170061360 | Rucker et al. | Mar 2017 | A1 |
20170061820 | Firoozbakhsh | Mar 2017 | A1 |
20170063722 | Cropper et al. | Mar 2017 | A1 |
20170075557 | Noble et al. | Mar 2017 | A1 |
20170076101 | Kochhar et al. | Mar 2017 | A1 |
20170090734 | Fitzpatrick | Mar 2017 | A1 |
20170090736 | King et al. | Mar 2017 | A1 |
20170091337 | Patterson | Mar 2017 | A1 |
20170093876 | Feng et al. | Mar 2017 | A1 |
20170109499 | Doshi et al. | Apr 2017 | A1 |
20170111327 | Wu | Apr 2017 | A1 |
20170116552 | Deodhar et al. | Apr 2017 | A1 |
20170124042 | Campbell et al. | May 2017 | A1 |
20170124048 | Campbell et al. | May 2017 | A1 |
20170124055 | Radakovitz et al. | May 2017 | A1 |
20170124740 | Campbell et al. | May 2017 | A1 |
20170126772 | Campbell et al. | May 2017 | A1 |
20170132296 | Ding | May 2017 | A1 |
20170132652 | Kedzlie et al. | May 2017 | A1 |
20170139874 | Chin | May 2017 | A1 |
20170139884 | Bendig et al. | May 2017 | A1 |
20170139891 | Ah-Soon et al. | May 2017 | A1 |
20170139992 | Morin | May 2017 | A1 |
20170140047 | Bendig et al. | May 2017 | A1 |
20170140219 | King et al. | May 2017 | A1 |
20170153771 | Chu | Jun 2017 | A1 |
20170161246 | Klima | Jun 2017 | A1 |
20170177556 | Fay | Jun 2017 | A1 |
20170177888 | Arora et al. | Jun 2017 | A1 |
20170185575 | Sood et al. | Jun 2017 | A1 |
20170185668 | Convertino et al. | Jun 2017 | A1 |
20170200122 | Edson et al. | Jul 2017 | A1 |
20170206366 | Fay | Jul 2017 | A1 |
20170212924 | Semlani et al. | Jul 2017 | A1 |
20170220813 | Mullins et al. | Aug 2017 | A1 |
20170221072 | AthuluruTlrumala et al. | Aug 2017 | A1 |
20170228421 | Sharma et al. | Aug 2017 | A1 |
20170228445 | Chiu et al. | Aug 2017 | A1 |
20170228460 | Amel et al. | Aug 2017 | A1 |
20170229152 | Loganathan et al. | Aug 2017 | A1 |
20170236081 | Grady Smith et al. | Aug 2017 | A1 |
20170242921 | Rota | Aug 2017 | A1 |
20170257517 | Panda | Sep 2017 | A1 |
20170262786 | Khasis | Sep 2017 | A1 |
20170270970 | Ho et al. | Sep 2017 | A1 |
20170272316 | Johnson et al. | Sep 2017 | A1 |
20170272331 | Lissack | Sep 2017 | A1 |
20170277620 | Kadioglu | Sep 2017 | A1 |
20170277669 | Sekharan | Sep 2017 | A1 |
20170285879 | Pilkington et al. | Oct 2017 | A1 |
20170285890 | Dolman | Oct 2017 | A1 |
20170289619 | Xu et al. | Oct 2017 | A1 |
20170301039 | Dyer et al. | Oct 2017 | A1 |
20170315683 | Boucher et al. | Nov 2017 | A1 |
20170315974 | Kong et al. | Nov 2017 | A1 |
20170315979 | Boucher et al. | Nov 2017 | A1 |
20170322963 | Ramamurthi et al. | Nov 2017 | A1 |
20170324692 | Zhou | Nov 2017 | A1 |
20170329479 | Rauschenbach et al. | Nov 2017 | A1 |
20170351252 | Kleifges et al. | Dec 2017 | A1 |
20170372442 | Mejias | Dec 2017 | A1 |
20170374205 | Panda | Dec 2017 | A1 |
20180011827 | Avery et al. | Jan 2018 | A1 |
20180025084 | Conlan et al. | Jan 2018 | A1 |
20180026954 | Toepke et al. | Jan 2018 | A1 |
20180032492 | Altshuller et al. | Feb 2018 | A1 |
20180032570 | Miller et al. | Feb 2018 | A1 |
20180039651 | Tobin et al. | Feb 2018 | A1 |
20180055434 | Cheung et al. | Mar 2018 | A1 |
20180075104 | Oberbreckling et al. | Mar 2018 | A1 |
20180075115 | Murray et al. | Mar 2018 | A1 |
20180075413 | Culver et al. | Mar 2018 | A1 |
20180075560 | Thukral et al. | Mar 2018 | A1 |
20180081505 | Ron et al. | Mar 2018 | A1 |
20180081863 | Bathla | Mar 2018 | A1 |
20180081868 | Willcock et al. | Mar 2018 | A1 |
20180088753 | Viégas et al. | Mar 2018 | A1 |
20180088989 | Nield et al. | Mar 2018 | A1 |
20180089299 | Collins et al. | Mar 2018 | A1 |
20180095938 | Monte | Apr 2018 | A1 |
20180096417 | Cook et al. | Apr 2018 | A1 |
20180109760 | Metter et al. | Apr 2018 | A1 |
20180121028 | Kuscher | May 2018 | A1 |
20180121994 | Matsunaga et al. | May 2018 | A1 |
20180128636 | Zhou | May 2018 | A1 |
20180129651 | Latvala et al. | May 2018 | A1 |
20180157455 | Troy et al. | Jun 2018 | A1 |
20180157467 | Stachura | Jun 2018 | A1 |
20180157468 | Stachura | Jun 2018 | A1 |
20180157633 | He et al. | Jun 2018 | A1 |
20180173715 | Dunne | Jun 2018 | A1 |
20180181650 | Komatsuda et al. | Jun 2018 | A1 |
20180181716 | Mander et al. | Jun 2018 | A1 |
20180189734 | Newhouse et al. | Jul 2018 | A1 |
20180210936 | Reynolds et al. | Jul 2018 | A1 |
20180225270 | Bhide et al. | Aug 2018 | A1 |
20180260371 | Theodore et al. | Sep 2018 | A1 |
20180260435 | Xu | Sep 2018 | A1 |
20180262705 | Park et al. | Sep 2018 | A1 |
20180276417 | Cerezo | Sep 2018 | A1 |
20180285918 | Staggs | Oct 2018 | A1 |
20180293217 | Callaghan | Oct 2018 | A1 |
20180293587 | Oda | Oct 2018 | A1 |
20180293669 | Jackson et al. | Oct 2018 | A1 |
20180329930 | Eberlein et al. | Nov 2018 | A1 |
20180330320 | Kohli | Nov 2018 | A1 |
20180357305 | Kinast et al. | Dec 2018 | A1 |
20180365429 | Segal | Dec 2018 | A1 |
20180367484 | Rodriguez et al. | Dec 2018 | A1 |
20180373434 | Switzer et al. | Dec 2018 | A1 |
20180373757 | Schukovets et al. | Dec 2018 | A1 |
20190005094 | Yi et al. | Jan 2019 | A1 |
20190011310 | Turnbull et al. | Jan 2019 | A1 |
20190012342 | Cohn | Jan 2019 | A1 |
20190034395 | Curry et al. | Jan 2019 | A1 |
20190036989 | Eirinberg et al. | Jan 2019 | A1 |
20190042628 | Rajpara | Feb 2019 | A1 |
20190050445 | Griffith et al. | Feb 2019 | A1 |
20190050466 | Kim et al. | Feb 2019 | A1 |
20190050812 | Boileau | Feb 2019 | A1 |
20190056856 | Simmons et al. | Feb 2019 | A1 |
20190065545 | Hazel et al. | Feb 2019 | A1 |
20190068703 | Vora et al. | Feb 2019 | A1 |
20190073350 | Shiotani | Mar 2019 | A1 |
20190095413 | Davis et al. | Mar 2019 | A1 |
20190097909 | Puri et al. | Mar 2019 | A1 |
20190108046 | Spencer-Harper et al. | Apr 2019 | A1 |
20190113935 | Kuo et al. | Apr 2019 | A1 |
20190114308 | Hancock | Apr 2019 | A1 |
20190114589 | Voss et al. | Apr 2019 | A1 |
20190123924 | Embiricos et al. | Apr 2019 | A1 |
20190130611 | Black et al. | May 2019 | A1 |
20190138583 | Silk et al. | May 2019 | A1 |
20190138588 | Silk et al. | May 2019 | A1 |
20190138653 | Roller et al. | May 2019 | A1 |
20190147030 | Stein et al. | May 2019 | A1 |
20190155821 | Dirisala | May 2019 | A1 |
20190179501 | Seeley et al. | Jun 2019 | A1 |
20190199823 | Underwood et al. | Jun 2019 | A1 |
20190208058 | Dvorkin et al. | Jul 2019 | A1 |
20190213557 | Dotan-Cohen et al. | Jul 2019 | A1 |
20190220161 | Loftus et al. | Jul 2019 | A1 |
20190236188 | McKenna | Aug 2019 | A1 |
20190243879 | Harley et al. | Aug 2019 | A1 |
20190251884 | Burns et al. | Aug 2019 | A1 |
20190258461 | Li et al. | Aug 2019 | A1 |
20190258706 | Li et al. | Aug 2019 | A1 |
20190286839 | Mutha et al. | Sep 2019 | A1 |
20190306009 | Makovsky et al. | Oct 2019 | A1 |
20190324840 | Malamut et al. | Oct 2019 | A1 |
20190325012 | Delaney et al. | Oct 2019 | A1 |
20190327294 | Subramani Nadar et al. | Oct 2019 | A1 |
20190340550 | Denger et al. | Nov 2019 | A1 |
20190347077 | Huebra | Nov 2019 | A1 |
20190361879 | Rogynskyy et al. | Nov 2019 | A1 |
20190361971 | Zenger et al. | Nov 2019 | A1 |
20190364009 | Joseph et al. | Nov 2019 | A1 |
20190371442 | Schoenberg | Dec 2019 | A1 |
20190377791 | Abou Mahmoud et al. | Dec 2019 | A1 |
20190391707 | Ristow et al. | Dec 2019 | A1 |
20200005248 | Gerzi et al. | Jan 2020 | A1 |
20200005295 | Murphy | Jan 2020 | A1 |
20200012629 | Lereya et al. | Jan 2020 | A1 |
20200019548 | Agnew et al. | Jan 2020 | A1 |
20200019595 | Azua | Jan 2020 | A1 |
20200026352 | Wang et al. | Jan 2020 | A1 |
20200026397 | Wohlstadter et al. | Jan 2020 | A1 |
20200042648 | Rao | Feb 2020 | A1 |
20200050696 | Mowatt et al. | Feb 2020 | A1 |
20200053176 | Jimenez et al. | Feb 2020 | A1 |
20200125574 | Ghoshal et al. | Apr 2020 | A1 |
20200134002 | Tung et al. | Apr 2020 | A1 |
20200142546 | Breedvelt-Schouten et al. | May 2020 | A1 |
20200151630 | Shakhnovich | May 2020 | A1 |
20200159558 | Bak et al. | May 2020 | A1 |
20200175094 | Palmer | Jun 2020 | A1 |
20200176089 | Jones et al. | Jun 2020 | A1 |
20200192785 | Chen | Jun 2020 | A1 |
20200193388 | Tran-Kiem et al. | Jun 2020 | A1 |
20200247661 | Rao et al. | Aug 2020 | A1 |
20200265112 | Fox et al. | Aug 2020 | A1 |
20200279315 | Manggala | Sep 2020 | A1 |
20200293616 | Nelson et al. | Sep 2020 | A1 |
20200301678 | Burman et al. | Sep 2020 | A1 |
20200301902 | Maloy et al. | Sep 2020 | A1 |
20200310835 | Momchilov | Oct 2020 | A1 |
20200326824 | Alonso | Oct 2020 | A1 |
20200327244 | Blass et al. | Oct 2020 | A1 |
20200334019 | Bosworth et al. | Oct 2020 | A1 |
20200348809 | Drescher | Nov 2020 | A1 |
20200349320 | Owens | Nov 2020 | A1 |
20200356740 | Principato | Nov 2020 | A1 |
20200356873 | Nawrocke et al. | Nov 2020 | A1 |
20200374146 | Chhabra et al. | Nov 2020 | A1 |
20200380212 | Butler et al. | Dec 2020 | A1 |
20200380449 | Choi | Dec 2020 | A1 |
20200387664 | Kusumura et al. | Dec 2020 | A1 |
20200401581 | Eubank et al. | Dec 2020 | A1 |
20200409949 | Saxena et al. | Dec 2020 | A1 |
20200410395 | Ray et al. | Dec 2020 | A1 |
20210014136 | Rath | Jan 2021 | A1 |
20210019287 | Prasad et al. | Jan 2021 | A1 |
20210021603 | Gibbons | Jan 2021 | A1 |
20210034058 | Subramanian et al. | Feb 2021 | A1 |
20210035069 | Parikh | Feb 2021 | A1 |
20210042796 | Khoury et al. | Feb 2021 | A1 |
20210049524 | Nachum et al. | Feb 2021 | A1 |
20210049555 | Shor | Feb 2021 | A1 |
20210055955 | Yankelevich et al. | Feb 2021 | A1 |
20210056509 | Lindy | Feb 2021 | A1 |
20210065203 | Billigmeier et al. | Mar 2021 | A1 |
20210072883 | Migunova et al. | Mar 2021 | A1 |
20210073526 | Zeng et al. | Mar 2021 | A1 |
20210084120 | Fisher et al. | Mar 2021 | A1 |
20210124749 | Suzuki et al. | Apr 2021 | A1 |
20210124872 | Lereya | Apr 2021 | A1 |
20210136027 | Barbitta et al. | May 2021 | A1 |
20210149553 | Lereya et al. | May 2021 | A1 |
20210149688 | Newell et al. | May 2021 | A1 |
20210149925 | Mann et al. | May 2021 | A1 |
20210150489 | Haramati et al. | May 2021 | A1 |
20210165782 | Deshpande et al. | Jun 2021 | A1 |
20210166196 | Lereya et al. | Jun 2021 | A1 |
20210166339 | Mann et al. | Jun 2021 | A1 |
20210173682 | Chakraborti et al. | Jun 2021 | A1 |
20210174006 | Stokes | Jun 2021 | A1 |
20210192126 | Gehrmann et al. | Jun 2021 | A1 |
20210248311 | Helft et al. | Aug 2021 | A1 |
20210257065 | Mander et al. | Aug 2021 | A1 |
20210264220 | Wei et al. | Aug 2021 | A1 |
20210326519 | Lin et al. | Oct 2021 | A1 |
20210328888 | Rath | Oct 2021 | A1 |
20210342785 | Mann et al. | Nov 2021 | A1 |
20210365446 | Srivastava et al. | Nov 2021 | A1 |
20210397585 | Seward | Dec 2021 | A1 |
20220099454 | Decrop | Mar 2022 | A1 |
20220121325 | Roberts | Apr 2022 | A1 |
20220121478 | Chivukula et al. | Apr 2022 | A1 |
20220221591 | Smith et al. | Jul 2022 | A1 |
20220291666 | Cella et al. | Sep 2022 | A1 |
20230153651 | Bi et al. | May 2023 | A1 |
20230316382 | Faricy et al. | Oct 2023 | A1 |
20230419161 | Dines | Dec 2023 | A1 |
20240046142 | Marks et al. | Feb 2024 | A1 |
20240053727 | Timisescu et al. | Feb 2024 | A1 |
Number | Date | Country |
---|---|---|
2828011 | Sep 2012 | CA |
103064833 | Apr 2013 | CN |
107123424 | Sep 2017 | CN |
107422666 | Dec 2017 | CN |
107623596 | Jan 2018 | CN |
107885656 | Apr 2018 | CN |
108717428 | Oct 2018 | CN |
112929172 | Jun 2021 | CN |
3443466 | Dec 2021 | EP |
20150100760 | Sep 2015 | KR |
20220016276 | Feb 2022 | KR |
WO 2004100015 | Nov 2004 | WO |
WO 2006116580 | Nov 2006 | WO |
WO 2008109541 | Sep 2008 | WO |
2014088393 | Jun 2014 | WO |
WO 2017202159 | Nov 2017 | WO |
2018023798 | Feb 2018 | WO |
2018042424 | Mar 2018 | WO |
2020139865 | Jul 2020 | WO |
WO 2020187408 | Sep 2020 | WO |
WO 2021096944 | May 2021 | WO |
WO 2021144656 | Jul 2021 | WO |
WO 2021161104 | Aug 2021 | WO |
WO 2021220058 | Nov 2021 | WO |
2022153122 | Jul 2022 | WO |
Entry |
---|
D'Elessio et al., Monday.com Walkthrough 2018\All Features, Platforms & Thoughts, Mar. 1, 2018, pp. 1-55, 2018. |
Rordigo et al., Project Management with Monday.com: a 101 Introduction; Jul. 22, 2019, pp. 1-21, 2019. |
International Search Report and Written Opinion of the International Searching Authority in PCT/IB2020/000658, mailed Nov. 11, 2020 (12 pages). |
International Search Report in PCT/IB2020/000974, mailed May 3, 2021 (19 pages). |
International Search Report in PCT/1B2021/000090 dated Jul. 27, 2021. |
ShowMyPC, “Switch Presenter While Using ShowMyPC”; web archive.org; Aug. 20, 2016. |
International Search Report and Written Opinion of the International Search Authority in PCT/1B2020/000024, mailed May 3, 2021 (13 pages). |
“Pivot table—Wikipedia”; URL: https://en.wikepedia .org/w/index.php?title=Pivot_table&oldid=857163289, originally retrieve on Oct. 23, 2019; retrieved on Jul. 16, 2021. |
Vishal Singh, “A Theoretical Framework of a BIM-based Multi-Disciplinary Collaboration Platform”, Nov. 5, 2020, Automation in Construction, 20 (2011), pp. 134-144 (Year: 2011). |
Edward A. Stohr, Workflow Automation: Overview and Research Issues, 2001, Information Systems Frontiers 3:3, pp. 281-296 (Year: 2001). |
International Search Report and Written Opinion of the International Search Authority in PCT/1B2021/000297, mailed Oct. 12, 2021 (20 pages). |
Dapulse.com “features”.extracted from web.archive.or/web/2014091818421/https://dapulse.com/features; Sep. 2014 (Year: 2014). |
Stephen Larson et al., Introducing Data Mining Concepts Using Microsoft Excel's Table Analysis Tools, Oct. 2015, [Retrieved on Nov. 19, 2021], Retrieved from the internet: <URL: https://dl.acm.org/doi/pdf/10.5555/2831373.2831394> 3 Pages (127-129) (Year: 2015). |
Isaiah Pinchas et al., Lexical Analysis Tool, May 2004, [Retrieved on Nov. 19, 2021], Retrieved from the internet: <URL: https:// dl.acm.org/doi/pdf/10.1145/997140.997147> 9 Pages (66-74) (Year: 2004). |
Sajjad Bahrebar et al., “A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application”, Energies, 11, 721, pp. 1-16, Mar. 22, 2018. |
Pedersen et al., “Tivoli: an electronic whiteboard for informal workgroup meetings”, Conference on Human Factors in Computing Systems: Proceedings of the Interact '93 and CHI '93 conference on Human factors in computing systems; Apr. 24-29, 1993:391-398. (Year 1993). |
Kollmann, Franz, “Realizing Fine-Granular Read and Write Rights on Tree Structured Documents.” in The Second International Conference on Availability, Reliability and Security (ARES'07), pp. 517-523. IEEE, 2007. (Year: 2007). |
Baarslag, “Negotiation as an Interaction Mechanism for Deciding App Permissions.” In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 2012-2019. 2016 (Year: 2016). |
Peltier, “Clustered and Stacked col. and Bar Charts”, Aug. 2011, Peltier Technical Services, Inc., pp. 1-128; (Year: 2011). |
Beate List, “An Evaluation of Conceptual Business Process Modelling Languages”, 2006, SAC'06, Apr. 23-27, pp. 1532-1539 (Year: 2006). |
“Demonstracion en espanol de Monday.com”, published Feb. 20, 2019. https://www.youtube.com/watch?v=z0qydTgof1A (Year: 2019). |
Desmedt, Yvo, and Arash Shaghaghi, “Function-Based Access Control (FBAC) From Access Control Matrix to Access Control Tensor.” In Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats, pp. 89-92. (2016). |
Anupam, V., et al., “Personalizing the Web Using Site Descriptions”, Proceedings of the Tenth International Workshop on Database and Expert Systems Applications, ISBN: 0-7695-0281-4, DOI: 10.1109/DEXA.1999.795275, Jan. 1, 1999, pp. 732-738. (Year: 1999). |
Gutwin, C. et al., “Supporting Informal Collaboration in Shared-Workspace Groupware”, J. Univers. Comput. Sci., 14(9), 1411-1434 (2008). |
Barai, S., et al., “Image Annotation System Using Visual and Textual Features”, In: Proceedings of the 16th International Conference on Distributed Multi-media Systems, pp. 289-296 (2010). |
B. Ionescu, C. Gadea, B. Solomon, M. Trifan, D. Ionescu and V. Stoicu-Tivadar, “Achat-centric collaborative environment for web-based real-time collaboration,” 2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2015, pp. 105-110 (Year: 2015). |
Susanne Hupfer, Li-Te Cheng, Steven Ross, and John Patterson. 2004. Introducing collaboration into an application development environment. In Proceedings of the 2004 ACM conference on Computer supported cooperative work (CSCW '04). Association for Computing Machinery, New York, NY, USA, 21-24 (Year: 2004). |
Abor Jr, C., “Low-Code and No-Code AI: New AI Development—What is code anymore?!?!” (as retrieved from https://www.linkedin.com/pulse/ low-code-no-code-ai-new-development-what-code-anymore-c-l-abor-jr); Jul. 15, 2023 (Year: 2023). |
Aylward, Grant, “Drag-and-Drop AI Enables Digital Workforce Deployment at Scale Share” (as retrieved from https://www.blueprism.com/resources/ blog/drag-and-drop-ai-enables-digital-workforce-deployment-at-scale/); Mar. 19, 202 (Year: 2020). |
Chen et al., “Artificial Intelligence in Education: A Review,” IEEEAccess vol. 8, pp. 75264-75278 (Year: 2020). |
Dapulse.com, “High Level Overview”, Extracted from https://web.archive.org/web/20161104170936/https://dapulse.com (Year: 2016). |
Donath, “Interfaces Make Meaning” chapter from The Social Machine: Designs for Living Online, pp. 41-76, copyright 2014. (Year: 2014). |
Dorn et al., “Efficient Full-Field Vibration Measurements and Operational Modal Analysis Using Neuromorphic Event-Based Imaging,” Journal of Engineering Mechanics, vol. 144, No. 7, Jul. 1, 2018 (Year: 2018). |
Freund, K., “SiMa.ai Creates Drag-And-Drop Platform For Building AI Workflows” (as retrieved from https://www.forbes.com/sites/karlfreund/2023/09/12/simaal-creates-drag-and-drop-platform-for-building-ai-workflows/?sh=789de8466046); Sep. 12, 2023 (Year: 2023). |
Monday.com et al., “Basic Walkthrough”, https://www.youtube.com/watch?v=VpbgWyPf74g; Aug. 9, 2019. (Year: 2019). |
Sreenath et al., “Agent-based service selection,” Journal of Web Semantics 1.3, pp. 261-279 (Year: 2004). |
Stancu et al., “SecCollab-Improving Confidentiality for Existing Cloud-Based Collaborative Editors.” In 2017 21st International Conferences on Control Systems and Computer Scient (CSCS), pp. 324-331. IEEE,2017. (Year: 2017). |
“Using Filters in Overview,” published Mar. 7, 2017. https://www.youtube.com/watch?v=hycANhz7gww (Year: 2017). |
Wilson et al., “Beyond Social Graphs: User Interactions in Online Social Networks and their Implications,” ACM Transactions on the Web, vol. 6, No. 4, Article 17, Nov. 2012 (Year: 2012). |
Zhang et al., “Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking,” Automation in Construction, vol. 73, 2017, pp. 45-57, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2016.08.027. |
Zhenjiang et al., “Asynchronous Event-Based Visual Shape Tracking for Stable Haptic Feedback in Microrobotics,” IEEE Transactions on Robotics, IEEE Service Center, Piscataway, NJ, vol. 28, No. 5, Oct. 1, 2012, pp. 1081-1089 (Year: 2012). |
Ziheng, G., “Advanced Cyberinfrastructure for Managing Hybrid Geoscientific AI Workflows” (Year: 2019). |
Number | Date | Country | |
---|---|---|---|
20230333728 A1 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
63273453 | Oct 2021 | US |