Embodiments consistent with the present disclosure include systems and methods for collaborative work systems. The disclosed systems and methods may be implemented using a combination of conventional hardware and software as well as specialized hardware and software, such as a machine constructed and/or programmed specifically for performing functions associated with the disclosed method steps. Consistent with other disclosed embodiments, non-transitory computer-readable storage media may store program instructions, which may be executable by at least one processing device and perform any of the steps and/or methods described herein.
Operation of modern enterprises can be complicated and time consuming. In many cases, managing the operation of a single project requires integration of several employees, departments, and other resources of the entity. To manage the challenging operation, project management software applications may be used. Such software applications allow a user to organize, plan, and manage resources by providing project-related information in order to optimize the time and resources spent on each project. It would be useful to improve these software applications to increase operation management efficiency.
Some embodiments consistent with the present disclosure include systems and methods for collaborative work systems. The disclosed systems and methods may be implemented using a combination of conventional hardware and software as well as specialized hardware and software, such as a machine constructed and/or programmed specifically for performing functions associated with the disclosed method steps. Consistent with other disclosed embodiments, non-transitory computer-readable storage media may store program instructions, which may be executable by at least one processing device and perform any of the steps and/or methods described herein.
Systems, methods, and computer readable media for implementing multi-table automation triggers are disclosed. They may include at least one processor that is configured to maintain a first table with rows and columns defining first cells, maintain a second table with rows and columns defining second cells, and display a joint logical sentence structure template including a first definable condition and a second definable condition. Input options for the first definable condition may be linked to the first table, input options for the second definable condition may be linked to the second table, and a joint rule may be generated for the first table and the second table by storing a first value for the first definable condition and storing a second value for the second definable condition. The joint rule may be applied across the first table and the second table and triggered when the first condition in the first table is met and the second condition in the second table is met.
Some embodiments consistent with the present disclosure include systems and methods for collaborative work systems. The disclosed systems and methods may be implemented using a combination of conventional hardware and software as well as specialized hardware and software, such as a machine constructed and/or programmed specifically for performing functions associated with the disclosed method steps. Consistent with other disclosed embodiments, non-transitory computer-readable storage media may store program instructions, which may be executable by at least one processing device and perform any of the steps and/or methods described herein.
Methods, computer readable media and systems employing self-configuring table automations are disclosed. Systems, methods, devices, and non-transitory computer readable media may include at least one processor that is configured to present a plurality of alternative automation packages for application to a table, wherein each package includes a plurality of automations, and wherein each automation is configured to cause an action in response to at least one condition detected in the table. A selection of a package from the plurality of packages may be identified, a first condition may be automatically configured in a particular automation in the selected package based on data in the table, a second undefined condition of the particular automation may be displayed, wherein the second undefined condition may require further configuration. An input may be received for configuring the second undefined condition, the second undefined condition may be configured using the input to cause the second undefined condition to become a second defined condition, and the particular automation may be applied to the table.
Exemplary embodiments are described with reference to the accompanying drawings. The figures are not necessarily drawn to scale. While examples and features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible without departing from the spirit and scope of the disclosed embodiments. Also, the words “comprising,” “having,” “containing,” and “including,” and other similar forms are intended to be equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items. It should also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
In the following description, various working examples are provided for illustrative purposes. However, is to be understood the present disclosure may be practiced without one or more of these details.
Throughout, this disclosure mentions “disclosed embodiments,” which refer to examples of inventive ideas, concepts, and/or manifestations described herein. Many related and unrelated embodiments are described throughout this disclosure. The fact that some “disclosed embodiments” are described as exhibiting a feature or characteristic does not mean that other disclosed embodiments necessarily share that feature or characteristic.
This disclosure presents various mechanisms for collaborative work systems. Such systems may involve software that enables multiple users to work collaboratively. By way of one example, workflow management software may enable various members of a team to cooperate via a common online platform. It is intended that one or more aspects of any mechanism may be combined with one or more aspect of any other mechanisms, and such combinations are within the scope of this disclosure.
This disclosure is provided for the convenience of the reader to provide a basic understanding of a few exemplary embodiments and does not wholly define the breadth of the disclosure. This disclosure is not an extensive overview of all contemplated embodiments and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some features of one or more embodiments in a simplified form as a prelude to the more detailed description presented later. For convenience, the term “certain embodiments” or “exemplary embodiment” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.
Certain embodiments disclosed herein include devices, systems, and methods for collaborative work systems that may allow a user to interact with information in real time. To avoid repetition, the functionality of some embodiments is described herein solely in connection with a processor or at least one processor. It is to be understood that such exemplary descriptions of functionality applies equally to methods and computer readable media and constitutes a written description of systems, methods, and computer readable media. The platform may allow a user to structure the system in many ways with the same building blocks to represent what the user wants to manage and how the user wants to manage it. This may be accomplished through the use of boards. A board may be a table with items (e.g., individual items presented in horizontal rows) defining objects or entities that are managed in the platform (task, project, client, deal, etc.). Unless expressly noted otherwise, the terms “board” and “table” may be considered synonymous for purposes of this disclosure. In some embodiments, a board may contain information beyond which is displayed in a table. Boards may include sub-boards that may have a separate structure from a board. Sub-boards may be tables with sub-items that may be related to the items of a board. Columns intersecting with rows of items may together define cells in which data associated with each item may be maintained. Each column may have a heading or label defining an associated data type. When used herein in combination with a column, a row may be presented horizontally and a column vertically. However, in the broader generic sense as used herein, the term “row” may refer to one or more of a horizontal and a vertical presentation. A table or tablature as used herein, refers to data presented in horizontal and vertical rows, (e.g., horizontal rows and vertical columns) defining cells in which data is presented. Tablature may refer to any structure for presenting data in an organized manner, as previously discussed. such as cells presented in horizontal rows and vertical columns, vertical rows and horizontal columns, a tree data structure, a web chart, or any other structured representation, as explained throughout this disclosure. A cell may refer to a unit of information contained in the tablature defined by the structure of the tablature. For example, a cell may be defined as an intersection between a horizontal row with a vertical column in a tablature having rows and columns. A cell may also be defined as an intersection between a horizontal and a vertical row, or an intersection between a horizontal and a vertical column. As a further example, a cell may be defined as a node on a web chart or a node on a tree data structure. As would be appreciated by a skilled artisan, however, the disclosed embodiments are not limited to any specific structure, but rather may be practiced in conjunction with any desired organizational arrangement. In addition, a tablature may include any suitable information. When used in conjunction with a workflow management application, the tablature may include any information associated with one or more tasks, such as one or more status values, projects, countries, persons, teams, progresses, a combination thereof, or any other information related to a task.
While a table view may be one way to present and manage the data contained on a board, a table's or board's data may be presented in different ways. For example, in some embodiments, dashboards may be utilized to present or summarize data derived from one or more boards. A dashboard may be a non-table form of presenting data, using for example static or dynamic graphical representations. A dashboard may also include multiple non-table forms of presenting data. As discussed later in greater detail, such representations may include various forms of graphs or graphics. In some instances, dashboards (which may also be referred to more generically as “widgets”) may include tablature. Software links may interconnect one or more boards with one or more dashboards thereby enabling the dashboards to reflect data presented on the boards. This may allow, for example, data from multiple boards to be displayed and/or managed from a common location. These widgets may provide visualizations that allow a user to update data derived from one or more boards.
Boards (or the data associated with boards) may be stored in a local memory on a user device or may be stored in a local network repository. Boards may also be stored in a remote repository and may be accessed through a network. In some instances, permissions may be set to limit board access to the board's “owner” while in other embodiments a user's board may be accessed by other users through any of the networks described in this disclosure. When one user makes a change in a board, that change may be updated to the board stored in a memory or repository and may be pushed to the other user devices that access that same board. These changes may be made to cells, items, columns, boards, dashboard views, logical rules, or any other data associated with the boards. Similarly, when cells are tied together or are mirrored across multiple boards, a change in one board may cause a cascading change in the tied or mirrored boards or dashboards of the same or other owners.
Various embodiments are described herein with reference to a system, method, device, or computer readable medium. It is intended that the disclosure of one is a disclosure of all. For example, it is to be understood that disclosure of a computer readable medium described herein also constitutes a disclosure of methods implemented by the computer readable medium, and systems and devices for implementing those methods, via for example, at least one processor. It is to be understood that this form of disclosure is for ease of discussion only, and one or more aspects of one embodiment herein may be combined with one or more aspects of other embodiments herein, within the intended scope of this disclosure.
Embodiments described herein may refer to a non-transitory computer readable medium containing instructions that when executed by at least one processor, cause the at least one processor to perform a method. Non-transitory computer readable mediums may be any medium capable of storing data in any memory in a way that may be read by any computing device with a processor to carry out methods or any other instructions stored in the memory. The non-transitory computer readable medium may be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software may preferably be implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine may be implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described in this disclosure may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium may be any computer readable medium except for a transitory propagating signal.
The memory may include a Random Access Memory (RAM), a Read-Only Memory (ROM), a hard disk, an optical disk, a magnetic medium, a flash memory, other permanent, fixed, volatile or non-volatile memory, or any other mechanism capable of storing instructions. The memory may include one or more separate storage devices collocated or disbursed, capable of storing data structures, instructions, or any other data. The memory may further include a memory portion containing instructions for the processor to execute. The memory may also be used as a working scratch pad for the processors or as a temporary storage.
Some embodiments may involve at least one processor. A processor may be any physical device or group of devices having electric circuitry that performs a logic operation on input or inputs. For example, the at least one processor may include one or more integrated circuits (IC), including application-specific integrated circuit (ASIC), microchips, microcontrollers, microprocessors, all or part of a central processing unit (CPU), graphics processing unit (GPU), digital signal processor (DSP), field-programmable gate array (FPGA), server, virtual server, or other circuits suitable for executing instructions or performing logic operations. The instructions executed by at least one processor may, for example, be pre-loaded into a memory integrated with or embedded into the controller or may be stored in a separate memory.
In some embodiments, the at least one processor may include more than one processor. Each processor may have a similar construction, or the processors may be of differing constructions that are electrically connected or disconnected from each other. For example, the processors may be separate circuits or integrated in a single circuit. When more than one processor is used, the processors may be configured to operate independently or collaboratively. The processors may be coupled electrically, magnetically, optically, acoustically, mechanically or by other means that permit them to interact.
Consistent with the present disclosure, disclosed embodiments may involve a network. A network may constitute any type of physical or wireless computer networking arrangement used to exchange data. For example, a network may be the Internet, a private data network, a virtual private network using a public network, a Wi-Fi network, a LAN or WAN network, and/or other suitable connections that may enable information exchange among various components of the system. In some embodiments, a network may include one or more physical links used to exchange data, such as Ethernet, coaxial cables, twisted pair cables, fiber optics, or any other suitable physical medium for exchanging data. A network may also include a public switched telephone network (“PSTN”) and/or a wireless cellular network. A network may be a secured network or unsecured network. In other embodiments, one or more components of the system may communicate directly through a dedicated communication network. Direct communications may use any suitable technologies, including, for example, BLUETOOTH™, BLUETOOTH LE™ (BLE), Wi-Fi, near field communications (NFC), or other suitable communication methods that provide a medium for exchanging data and/or information between separate entities.
Certain embodiments disclosed herein may also include a computing device for generating features for work collaborative systems, the computing device may include processing circuitry communicatively connected to a network interface and to a memory, wherein the memory contains instructions that, when executed by the processing circuitry, configure the computing device to receive from a user device associated with a user account instruction to generate a new column of a single data type for a first data structure, wherein the first data structure may be a column oriented data structure, and store, based on the instructions, the new column within the column-oriented data structure repository, wherein the column-oriented data structure repository may be accessible and may be displayed as a display feature to the user and at least a second user account. The computing devices may be devices such as mobile devices, desktops, laptops, tablets, or any other devices capable of processing data. Such computing devices may include a display such as an LED display, augmented reality (AR), virtual reality (VR) display.
Certain embodiments disclosed herein may include a processor configured to perform methods that may include triggering an action in response to an input. The input may be from a user action or from a change of information contained in a user's table, in another table, across multiple tables, across multiple user devices, or from third-party applications. Triggering may be caused manually, such as through a user action, or may be caused automatically, such as through a logical rule, logical combination rule, or logical templates associated with a board. For example, a trigger may include an input of a data item that is recognized by at least one processor that brings about another action.
In some embodiments, the methods including triggering may cause an alteration of data and may also cause an alteration of display of data contained in a board or in memory. An alteration of data may include a recalculation of data, the addition of data, the subtraction of data, or a rearrangement of information. Further, triggering may also cause a communication to be sent to a user, other individuals, or groups of individuals. The communication may be a notification within the system or may be a notification outside of the system through a contact address such as by email, phone call, text message, video conferencing, or any other third-party communication application.
Some embodiments include one or more of automations, logical rules, logical sentence structures and logical (sentence structure) templates. While these terms are described herein in differing contexts, in a broadest sense, in each instance an automation may include a process that responds to a trigger or condition to produce an outcome; a logical rule may underly the automation in order to implement the automation via a set of instructions; a logical sentence structure is one way for a user to define an automation; and a logical template/logical sentence structure template may be a fill-in-the-blank tool used to construct a logical sentence structure. While all automations may have an underlying logical rule, all automations need not implement that rule through a logical sentence structure. Any other manner of defining a process that respond to a trigger or condition to produce an outcome may be used to construct an automation.
Other terms used throughout this disclosure in differing exemplary contexts may generally share the following common definitions.
In some embodiments, machine learning algorithms (also referred to as machine learning models or artificial intelligence in the present disclosure) may be trained using training examples, for example in the cases described below. Some non-limiting examples of such machine learning algorithms may include classification algorithms, data regressions algorithms, image segmentation algorithms, visual detection algorithms (such as object detectors, face detectors, person detectors, motion detectors, edge detectors, etc.), visual recognition algorithms (such as face recognition, person recognition, object recognition, etc.), speech recognition algorithms, mathematical embedding algorithms, natural language processing algorithms, support vector machines, random forests, nearest neighbors algorithms, deep learning algorithms, artificial neural network algorithms, convolutional neural network algorithms, recursive neural network algorithms, linear machine learning models, non-linear machine learning models, ensemble algorithms, and so forth. For example, a trained machine learning algorithm may comprise an inference model, such as a predictive model, a classification model, a regression model, a clustering model, a segmentation model, an artificial neural network (such as a deep neural network, a convolutional neural network, a recursive neural network, etc.), a random forest, a support vector machine, and so forth. In some examples, the training examples may include example inputs together with the desired outputs corresponding to the example inputs. Further, in some examples, training machine learning algorithms using the training examples may generate a trained machine learning algorithm, and the trained machine learning algorithm may be used to estimate outputs for inputs not included in the training examples. In some examples, engineers, scientists, processes and machines that train machine learning algorithms may further use validation examples and/or test examples. For example, validation examples and/or test examples may include example inputs together with the desired outputs corresponding to the example inputs, a trained machine learning algorithm and/or an intermediately trained machine learning algorithm may be used to estimate outputs for the example inputs of the validation examples and/or test examples, the estimated outputs may be compared to the corresponding desired outputs, and the trained machine learning algorithm and/or the intermediately trained machine learning algorithm may be evaluated based on a result of the comparison. In some examples, a machine learning algorithm may have parameters and hyper parameters, where the hyper parameters are set manually by a person or automatically by a process external to the machine learning algorithm (such as a hyper parameter search algorithm), and the parameters of the machine learning algorithm are set by the machine learning algorithm according to the training examples. In some implementations, the hyper-parameters are set according to the training examples and the validation examples, and the parameters are set according to the training examples and the selected hyper-parameters.
The memory 120 may further include a memory portion 122 that may contain instructions that when executed by the processing circuitry 110, may perform the method described in more detail herein. The memory 120 may be further used as a working scratch pad for the processing circuitry 110, a temporary storage, and others, as the case may be. The memory 120 may be a volatile memory such as, but not limited to, random access memory (RAM), or non-volatile memory (NVM), such as, but not limited to, flash memory. The processing circuitry 110 may be further connected to a network device 140, such as a network interface card, for providing connectivity between the computing device 100 and a network, such as a network 210, discussed in more detail with respect to
The processing circuitry 110 and/or the memory 120 may also include machine-readable media for storing software. “Software” as used herein refers broadly to any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by the one or more processors, may cause the processing system to perform the various functions described in further detail herein.
One or more user devices 220-1 through user device 220-m, where ‘m’ in an integer equal to or greater than 1, referred to individually as user device 220 and collectively as user devices 220, may be communicatively coupled with the computing device 100 via the network 210. A user device 220 may be for example, a smart phone, a mobile phone, a laptop, a tablet computer, a wearable computing device, a personal computer (PC), a smart television and the like. A user device 220 may be configured to send to and receive from the computing device 100 data and/or metadata associated with a variety of elements associated with single data type column-oriented data structures, such as columns, rows, cells, schemas, and the like.
One or more data repositories 230-1 through data repository 230-n, where ‘n’ in an integer equal to or greater than 1, referred to individually as data repository 230 and collectively as data repository 230, may be communicatively coupled with the computing device 100 via the network 210, or embedded within the computing device 100. Each data repository 230 may be communicatively connected to the network 210 through one or more database management services (DBMS) 235-1 through DBMS 235-n. The data repository 230 may be for example, a storage device containing a database, a data warehouse, and the like, that may be used for storing data structures, data items, metadata, or any information, as further described below. In some embodiments, one or more of the repositories may be distributed over several physical storage devices, e.g., in a cloud-based computing environment. Any storage device may be a network accessible storage device, or a component of the computing device 100.
Aspects of this disclosure may provide a technical solution to the challenging technical problem of project management of multiple entities on collaborative networks and may relate to a system for implementing multi-table automation triggers, including methods, systems, devices, and computer-readable media. For ease of discussion, some examples are described below with reference to methods, systems, devices, and/or computer-readable media, with the understanding that discussions of each apply equally to the others. For example, some aspects of methods may be implemented by a computing device or software running thereon. The computing device may include at least one processor. Consistent with disclosed embodiments, “at least one processor” may constitute any physical device or group of devices having electric circuitry that performs a logic operation on an input or inputs. For example, the at least one processor may include one or more integrated circuits (IC), including application-specific integrated circuit (ASIC), microchips, microcontrollers, microprocessors, all or part of a central processing unit (CPU), graphics processing unit (GPU), digital signal processor (DSP), field-programmable gate array (FPGA), server, virtual server, or other circuits suitable for executing instructions or performing logic operations. The instructions executed by at least one processor may, for example, be pre-loaded into a memory integrated with or embedded into the controller or may be stored in a separate memory. The memory may include a Random Access Memory (RAM), a Read-Only Memory (ROM), a hard disk, an optical disk, a magnetic medium, a flash memory, other permanent, fixed, or volatile memory, or any other mechanism capable of storing instructions. In some embodiments, the at least one processor may include more than one processor. Each processor may have a similar construction or the processors may be of differing constructions that are electrically connected or disconnected from each other. For example, the processors may be separate circuits or integrated in a single circuit. When more than one processor is used, the processors may be configured to operate independently or collaboratively, and may be co-located or located remotely from each other. The processors may be coupled electrically, magnetically, optically, acoustically, mechanically or by other means that permit them to interact.
Some disclosed embodiments may involve at least one processor configured to maintain datasets or tables, display logical sentence structure templates, link input options for definable conditions of a logical sentence structure to corresponding tables, generate rules, store input values, apply the generated rules, and implement and trigger the rules based on the conditions being met, among other functions.
An automation, also referred to as a logical sentence structure template may refer to a logical rule with one or more logical connectors, and configured to act on table data to produce an outcome. An automation may also be considered as a “recipe” having a logical organization of elements for implementing a conditional action.
The automation, for example, may be in the form of a recipe, a template, or a sentence including one or more triggering elements (also referred to herein as “triggers”) and one or more action elements (also referred to herein as “actions” hereinafter). An automation may be configured to cause an action in response to a trigger, such as an event or a condition, the occurrence or satisfaction of which may cause another event in the system, implemented by the automation. Triggers may occur as the result of one or more conditions in a single table or across multiple tables. Triggers further may also occur as the result of conditions being met across multiple tables and/or across multiple users or entities. An action of an automation may refer to a change of one or more components of the system. For example, the change may include addition, deletion, alteration, conversion, rearrangement, or any manner of manipulation of data stored in the system. As an example, in an automation or a logical sentence structure template such as “when a task is done, notify John,” notifying John may correspond to the action performed in response to the automation trigger or condition being met, i.e. task being done, and the logical connector “when.”. Automations may be broadly referred to as rules. In some embodiments, the rules may include a mathematical function, a conditional function, computer-readable instructions, or other executable functions.
Aspects of this disclosure may involve maintaining a first table with rows and columns defining first cells and maintaining a second table with rows and columns defining second cells. A table includes those items described herein in connection with the term “tablature,” and may include horizontal and vertical rows for presenting, displaying, or enabling access to information stored therein. A table may be presented on a screen associated with a computing device or via any electronic device that displays or projects information on a surface or virtually. An intersection of multiple rows may represent a cell. For example, a cell may be represented as an intersection of a horizontal row (or referred to as a “horizontal column”) and a vertical row (or referred to as a “vertical column”). A cell may contain a value, a color, a word, a graphic, a symbol, a GIF, a meme, any combination thereof, or any other data. In some embodiments, a table may be presented in two dimensions, three dimensions, or more. A table, a board, a workboard, a dashboard, or a part thereof, including digital data (e.g., computer readable data) may be populated via a data structure.
A data structure consistent with the present disclosure may include any collection of data values and relationships among them. The data may be stored linearly, horizontally, hierarchically, relationally, non-relationally, uni-dimensionally, multidimensionally, operationally, in an ordered manner, in an unordered manner, in an object-oriented manner, in a centralized manner, in a decentralized manner, in a distributed manner, in a custom manner, or in any manner enabling data access. By way of non-limiting examples, data structures may include an array, an associative array, a linked list, a binary tree, a balanced tree, a heap, a stack, a queue, a set, a hash table, a record, a tagged union, ER model, and a graph. For example, a data structure may include an XML database, an RDBMS database, an SQL database or NoSQL alternatives for data storage/search such as, for example, MongoDB, Redis, Couchbase, Datastax Enterprise Graph, Elastic Search, Splunk, Solr, Cassandra, Amazon DynamoDB, Scylla, HBase, and Neo4J. A data structure may be a component of the disclosed system or a remote computing component (e.g., a cloud-based data structure). Data in the data structure may be stored in contiguous or non-contiguous memory. Moreover, a data structure does not require information to be co-located. It may be distributed across multiple servers, for example, that may be owned or operated by the same or different entities. Thus, the term “data structure” in the singular is inclusive of plural data structures.
Maintaining a table may refer to one or more of storing information that may be used to populate a table, storing a table template that may be populated by data, or storing a link that associates stored data with a table form or template. For example, a system may store an object or the link to an object in a non-transitory computer-readable medium. In some embodiments, maintaining a table may include storing a form of table with vertical and/or horizontal row headers defining information to be contained in cells of such rows. Maintaining a table may also include storing values associated with the cells of such rows. In some embodiments, maintaining a table may include one or more of saving, storing, recording, updating, tracking, counting, editing, viewing, displaying, aggregating, combining, or otherwise retaining in a repository information for representation in a table.
By way of example with reference to
As illustrated in
As mentioned previously, consistent with some disclosed embodiments, at least one processor may be configured to maintain a second table with rows and columns defining second cells. A second table may include a sub-table of the first table, a sub-table of another table, a separate table associated with the same project as the first table, a separate table associated with a different project from the project of the first table, a table associated with a same project of a same entity, a table associated with a different project of the same entity, a table associated with a same project of different entity (e.g., a second user or a teammate), or any other combinations and permutations thereof. A second table may include tables as previously described above, including horizontal and vertical rows for presenting, displaying, or enabling access to information stored therein.
A relationship between the first and the second table may be hierarchical. A hierarchical relationship, as used in the context of this disclosure, may refer to a relationship based on degrees or levels of superordination and subordination. For example, in some embodiments, the first table may be a table associated with a task or a project and the second table may be a sub-table of the first table associated with the same project or a different project. In such a scenario, the first table may be considered a superordinate table and the second table may be considered a subordinate table.
Other examples of hierarchical relationships between a first and a second table are described herein. In some embodiments, an entity may be associated with one or more projects, and the first table may be a table associated with a first project of the entity, and the second table may be a table associated with a second project of the entity. In such a case, the first table may be the superordinate table and the second table may be the subordinate table. Alternatively, the first table may be the subordinate table and the second table may be the superordinate table. In some embodiments, the first table and the second table may be tables or sub-tables associated with different entities, different projects of a same entity, different projects of different entities, or other combinations thereof.
In some disclosed embodiments, the first and the second tables may be associated with or may be a part of a workflow. A workflow may refer to a series of operations or tasks performed sequentially or in parallel to achieve an outcome. A workflow process may involve managing information stored in tables associated with one or more entities, one or more projects within an entity, or projects across multiple entities. In an exemplary workflow process, a freelancer may create an invoice and send it to a client, the client may forward the invoice to the finance department, the finance department may approve the invoice and process the payment, the customer relations department may pay the freelancer. Similarly, the workflow process may involve sending a notification from the freelancer to the client in response to a status of the invoice being “Done,” mirroring the received invoice to the finance department, updating a status (e.g., not yet paid, in process, approved, and so on) of the invoice processing, and updating a status in response to payment transmitted to the freelancer.
By way of example,
Consistent with some disclosed embodiments, some exemplary relationships between the first and the second table are described herein with reference to
Consistent with some disclosed embodiments, at least one processor of the system may be configured to display a joint logical sentence structure template including a first definable condition and a second definable condition. A logical sentence structure template or a logical template (sometimes referred to as a “recipe” or an “automation”) may include a logical organization of elements for implementing a conditional action. In some embodiments, the logical organization of elements may be a semantic statement or a rule (e.g., a logical sentence). A joint logical sentence structure template, also referred to herein as a joint logical template may include an automation recipe, elements of which may be mapped to more than one table, such as a first table and a second table. A joint logical template may include one or more user-definable, or configurable elements. A definable condition may be a requirement that may be configured or altered based on a user input or selection. The user-definable element may be a triggering element or an action element, activated or deactivated as a whole, or may be activated with configuration or alteration in accordance with user inputs. A first definable condition may include a triggering element or an action element associated with a first table, and a second definable condition may include a triggering element or an action element associated with a second table.
A definable condition may be presented in any manner such as being displayed in bold, underlining, or any other differentiating manner, representing that it is user-definable. In some embodiments, a definable condition may be dynamic such that input of at least one definable condition may be configured to cause a change in the joint logical template. A dynamic definable condition of a joint logical template may include a user-definable condition, that when altered, can cause a change in the joint logical template. A change of the joint logical template may refer to a change in structure or elements (e.g., triggers and actions, or predefined requirements and user-definable conditions).
In some embodiments, the joint logical template may be implemented as program codes or instructions stored in a non-transitory computer-readable medium of the system. The at least one processor of the system may execute the program codes or instructions to perform the conditional action in accordance with the joint logical template.
Aspects of this disclosure may display a joint logical template, for example, via a display screen associated with a computing device such as a PC, laptop, tablet, projector, cell phone, or a personal wearable device. A logical template may also be presented virtually through AR or VR glasses, or through a holographic display. Other mechanisms of presenting may also be used to enable a user to visually comprehend presented information and provide input through an interface (e.g., a touch screen, keyboard, mouse, and more). In some embodiments, the logical template may be displayed in a user interface. The user interface, as referred to herein, may be a presentation of a web page, a mobile-application interface, a software interface, or any graphical interface (GUI) that enables interactions between a human and a machine via the interactive element. The user interface may include, for example, a webpage element that overlays an underlying webpage. In some embodiments, a computing device that implements the operations may provide the user interface that includes an interactive element. The interactive element may be a mouse cursor, a touchable area (as on a touchscreen), an application program interface (API) that receives a keyboard input, or any hardware or software component that may receive user inputs.
Consistent with some disclosed embodiments, at least one processor of the system may be configured to link input options for a first definable condition to a first table and link input options for a second definable condition to a second table. Linking may refer to associating or establishing a relationship or connection between two things (e.g., objects, data, interfaces, and more). For example, if the two or more things are stored as digital data in a non-transitory computer-readable medium (e.g., a memory or a storage device), the relationship or connection may be established by linking the two or more things, or by assigning a common code, address, or other designation to the two or more things in the non-transitory computer-readable medium.
Linking input options may refer to enabling input for the definable conditions into a selected joint logical template. An input for a definable condition may refer to any data, information, or indication to be used for configuring the definable condition. The input options for a definable condition may be linked or “mapped” to a table or cells of a table that have information stored therein. In some embodiments, one or more rows or columns of a table may be linked as input options based on the definable condition. For example, if the joint logical template includes a first definable condition preceded by a “when,” the input options may be linked to a particular column or a row including relevant trigger data. In some embodiments, the input options may include an entire table.
The input options for the first and the second definable conditions may be linked to the first table and the second table, respectively. As previously described, the second table may be a sub-table of the first table, a different table associated with the same project, a different table associated with a different project, a table associated with the same entity as the first table, or a table associated with a different entity, or combinations thereof.
In some embodiments, input options for a definable condition may be based on authorization or permission to access data within a linked table. For example, a table may include restricted, confidential, or privileged information stored in cells that may only be accessed by entities such as an administrator, a project manager, an investor, a particular team or entity, or other authorized individuals or entities. In such a case, linking the input options may include requiring a password or authentication to access the desired information.
In some disclosed embodiments, linking input options for a first definable condition to a first table may include selecting as a default a current table being accessed by an entity. A user or an entity may frequently access a table for reviewing, modifying, updating, or storing information in cells. The frequently accessed table may be a master table where all the information may be stored and updated dynamically, or periodically, or based on a schedule. In some embodiments, a table being accessed by a user or an entity may be the master table or another table that the user may be updating, modifying, configuring, or reviewing. The current table being accessed by the user or the entity may be selected as a default input option for linking with the first definable condition based on the frequency of access, relevance, size, authorized users, content, or other characteristics of the table. The current table may be determined based on the entity's most recently accessed table. Selecting a table as a default may include automatically or manually mapping or associating the table for an input option or for a definable variable. For example, the system may be configured to automatically grant access to the table based on a user's profile, historical records, projects, location, qualification, or preferences. In another example, the system may be configured to receive a selection of a table to assign the table as a default for an input option or for a definable variable.
In some embodiments, at least one processor of the system may be configured to generate a joint rule for a first table and a second table by storing a first value for a first definable condition and storing a second value for a second definable condition. A joint rule may refer to a joint logical template in which all or some of the conditions or the elements have been defined. Generating a joint rule may include defining or populating the first and the second definable conditions. In some embodiments, the joint rule may be generated by storing values for the first and the second definable condition. The first value for the first definable condition may be linked to a cell, a row, a column, or a portion of the first table. The second value for the second definable condition may be linked to a cell, a row, a column, or a portion of the second table. In some embodiments, a joint rule generated by defining the first and the second conditions may form a predefined joint logical template or a predefined automation recipe which can be implemented on a table, or across multiple tables associated with different projects and entities, or at any level of a hierarchical arrangement of tables. A user may create any number of joint rules and store the joint rules in a memory, storage device, or data server. Alternatively, the joint rules may be stored locally on a computing device, or on a webpage, or an allocated space on another board. For example, the joint rules may be stored in a common storage space on a website or a portal, such as an “automation marketplace.” As referred to herein, an automation marketplace may refer to a webpage, a portal, a website, or an allocated space on a user-interface, where the joint rules may be stored.
Consistent with some disclosed embodiments, at least one processor of the system may be configured to apply a joint rule across a first table and a second table. A joint rule may be applied to any combination of one or more tables (e.g., boards), sub-tables, groupings, tables associated with projects, tables associated with entities, or any other table in a collaborative workspace. For example, a joint rule may be applied to any number of tables or boards within a project, across projects, associated with an entity, or associated with multiple entities. In some embodiments, one or more joint rules may be applied to a board, or a joint rule may be applied to one or more boards. In some embodiments, a joint rule stored in a common storage space may be accessed by a user and may be applied to one or more boards simultaneously. The application of a joint rule on a board may be activated and/or de-activated based on a user input. For example, during a phase of a project, a user may simultaneously apply a joint rule to four boards associated with the project and upon completion of the phase, may deactivate the joint rule on one or more of the four boards originally selected. Alternatively, a user may select the board from a list of available boards to which a joint rule may be applied.
Consistent with some disclosed embodiments, at least one processor of the system may be configured to trigger a joint rule when a first condition in a first table is met and a second condition in a second table is met. The triggering event may include an occurrence where the conditions of a joint rule have been satisfied. “Triggering” may refer to invoking or activating a joint rule to be implemented when the condition of the rule is satisfied and may be defined as a triggering event. The triggering may occur as a response to an input such that the input satisfies the first condition in the first table and the second condition in the second table. The input may be from a user action or from a change of information contained in a user's table, in another table, across multiple tables, across multiple user devices, or from third-party applications, as previously discussed above. Triggering may be caused manually, such as through a user action, or may be caused automatically, such as through a logical rule, logical combination rule, or logical templates associated with a table, or a joint rule. For example, a trigger may include an input of a data item that is recognized by at least one processor that brings about another action.
In some embodiments, a joint rule may include an outcome of altering at least one of a first table, a second table, or a third table as a result of the triggering. Altering a table or tablature displays may refer to any procedure or process of changing a visual presentation form of a display of a table in a collaborative work system, as previously described. The procedures or processes for altering the tablature displays may involve, for example, any combination of modification, addition, or removal operated on a color, a font, a typeface, a shape, a size, a column-row arrangement, or any visual effect of a visible object in the table. The visible object may include a table cell, a table border line, a table header, or any table elements, and may further include a number, a text, a symbol, a mark, a character, a date, a time, an icon, an avatar, a hyperlink, a picture, a video, an animation, or any visible item included in any table element. In some embodiments, altering a first table or a second table may include altering the information stored in the first cells or the second cells, altering a presentation of data in the first or the second cells, altering a visual effect of a visual object.
In some disclosed embodiments, triggering of a joint rule may include an outcome of establishing or altering a third table for storing data associated with the trigger of the joint rule. Establishing a third table may include generating a new, independent table, or may include presenting new information within the first or second tables. A third table, in some embodiments, may refer to a hidden table such as an archive or an addition to an existing database of tables. For example, the trigger may be that “a task is overdue” to cause a presentation of an exclamation mark as a graphical indicator of a task being overdue. In some joint rules, the trigger may result in an indicator that graphically presents the remaining time for a task, an indicator that a task is done, or any other graphical, alphanumeric, or combination of graphical and alphanumeric indication regarding the item or task. In some embodiments, the third table may be established as an independent sub-table (e.g., added as a new sub-table). In some embodiments, the third table may be established as a part of an existing table. The established third table may not be linked or associated with the joint rule that connects the first and the second tables. In yet another example, the third table may already exist and be altered in response to the activation of the joint rule. For example, a joint rule may monitor conditions from a first table (employee 1) and from a second table (employee 2). As a result of a condition being “done” in both the first and second tables, a third table (supervisor) may be altered to provide an indication that both conditions are “done” in the first and second tables. In this way, projects with multiple dependencies may be managed.
Consistent with some disclosed embodiments, linking input options for a second definable condition to a second table may include linking the second table to a first table via a joint rule. The joint rule may enable a user to connect or associate the first and the second tables such that the data in the first and the second tables may be duplicated. Duplicating the information stored may allow the user to link input options for the first definable condition to the second table in addition to the first table, or link input options for the second definable condition to the first table in addition to the second table. In some embodiments, the at least one processor may be further configured to employ the joint rule to alter information in at least one of the first cells based on information in at least one of the second cells. The first and the second tables may be linked through the joint rule such that the joint rule, when triggered, may alter the information stored in the first cells associated with the first table based on information stored in the second cells. For example, the first table including the first cells may store information associated with a software production team of a project, and the second table including the second cells may store information associated with a software testing team of the project. The joint rule may be constructed such that when the software testing team (information in the second cells) has successfully completed their tests, the software production team (information in the first cells) may be notified by creation of a “status” column in the first table, indicating that the software production team may proceed based on the information of the software testing results. As an example, if the software testing team is debugging the code related with some features of an application, the status column in the first table may indicate “debugging,” or “waiting.”
In some embodiments, a joint rule may include an outcome of sending a notification as a result of a triggering. A computing device configured to implement the joint rule may send a notification when the joint rule is triggered, as previously discussed above. The notification may include an email, a text message, a phone call, an application push notification, a prompt, or any combination of any form of notifications. The notification may be sent, for example, to an email address, a phone number, a mobile application interface, within the application, or any combination of any device or user interface to which the user has access. By doing so, in some exemplary embodiments, a user may be notified of the statuses of the tasks of a project in real-time or at a scheduled time. For example, the joint rule may state that, when a task is overdue, not only a display a change in the first, second, or the third table, but also send a notification to a particular person or persons.
In some embodiments, the joint rule may be a communications rule. A communications rule may include any logical rule associated with sending a communication. The logical rule may be presented as an automation or a logical sentence structure as described previously. The communications rule may monitor the table for certain conditions to trigger the activation of the communications rule and send the notification. Owners or users of a board may generate and customize communication rules incorporating their preferences for receiving or sending notifications relating to the table, group of items, or individual items. For example, a user may specify to only send notifications by email regarding certain items and to send a text message for other items. For example, the user may specify to send alerts regarding a commentary thread by email, but specify to send text messages regarding status changes. Additionally, the user may customize the system to send summary notifications for certain items such as sending only a single notification with the summary of changes made to an item for a predefined period of time on a periodic basis. For example, user may set up his or her notification to be sent at specific times (e.g., only on Mondays at 9 am). The user may also enable multiple communications rules for a single table, or may enable one or more communications rules applicable to a plurality of tables.
In some embodiments, a joint rule may include activating a control for an external device, as a result of the triggering. An external device may refer to a cellphone, a personal computer, a laptop, a tablet, a monitor, a wearable device, a display screen, heads-up display, virtual reality (VR) and augmented reality (AR) devices, a dispenser, or any device capable of processing and/or displaying data. The joint rule may be constructed such that when the first and the second definable conditions are satisfied, the joint rule, upon triggering, may activate a control of the external device. For example, triggering of the joint rule may initiate a communications application on the external device. A communications application may include an internal or external website or program that performs a particular task or set of tasks. (e.g., Outlook™, Gmail™, SMS, Whatsapp™, Slack™, Facebook Messenger™, a proprietary application of the system, or any other medium that enables communication. In other words, the communications application may be an integrated (or accessed) third-party-provider application or an internal automated application. The communications application may be predefined or may be selected by a user. For example, the rule may provide the user with access to picklist permitting the user to specify, in defining the rule, which communications application will serve as the transmission mechanism for the message. Or, the rule template may predefine the communications application that may be used. In either scenario, automatic triggering may include accessing the defined communications application. In some embodiments, the joint rule may be predefined to enable sending an email, initiating a phone call, initiating a video conference call, sending text messages or any form of notification.
At block 602, processing circuitry 110 may maintain a first table with rows and columns defining first cells. As discussed in greater detail earlier, maintaining a first table may include storing a form of table, or storing values associated with the first cells, or may generally include one or more of saving, storing, recording, updating, tracking, counting, editing, viewing, displaying, aggregating, combining, or otherwise retaining in a repository information for representation in a table.
At block 604, processing circuitry 110 may maintain a second table with rows and columns defining second cells. The second table may be a sub-table of the first table, a different table within a project, a table associated with another project of the same entity, or a table associated with a different project of a different entity.
At block 606, processing circuitry 110 may be configured to display a joint logical sentence structure template including a first definable condition and a second definable condition. A definable condition may be a requirement that may be configured or altered based on a user input. The user-definable element may be a triggering element or an action element, activated or deactivated as a whole, or may be activated with configuration or alteration in accordance with user inputs.
At block 608, processing circuitry 110 may link input options for the first definable condition to the first table and link input options for the second definable condition to the second table. For example, the values for the first definable condition may be linked with the first table associated with a project of an entity, and the values for the second definable condition may be linked with a second table associated with another project of the entity.
At block 610, processing circuitry 110 may generate a joint rule for the first table and the second table by storing a first value for the first definable condition and storing a second value for the second definable condition. A joint rule may be generated by defining the first and the second conditions from different tables and may be implemented across multiple tables associated with different projects and entities.
At block 612, processing circuitry 110 may apply the joint rule across the first table and the second table. A joint rule may be applied to any combination of two or more tables, sub-tables, boards, groupings, tables associated with projects, tables associated with entities, or any other table in a collaborative workspace. For example, a joint rule may be applied to any number of tables or boards within a project, across projects, associated with an entity, or associated with multiple entities.
In some embodiments, the application of a joint rule on a board may be activated and/or de-activated based on a user input. For example, during a phase of a project, a user may simultaneously apply a joint rule to four boards associated with the project and upon completion of the phase, may deactivate the joint rule on one or more of the four boards originally selected. Alternatively, a user may select the board from a list of available boards to which a joint rule may be applied.
At block 614, processing circuitry 110 may trigger the joint rule when the first condition in the first table is met and the second condition in the second table is met. Triggering the joint rule may be caused manually, such as through a user action, or may be caused automatically, such as through a logical rule, logical combination rule, or logical templates associated with a board. For example, a trigger may include an input of a data item that is recognized by at least one processor that brings about another action.
Although there may be available tools for implementing tables with logical rules, there is a lack of technical solutions to provide systems, methods, devices, and computer-readable media for employing self-configuring table automations catered to specific vocations.
There is a need or unconventional systems, methods, devices, and computer-readable media for presenting a plurality of alternative automation packages for application to a table, wherein each package includes a plurality of automations, and wherein each automation is configured to cause an action in response to at least one condition detected in the table; identify a selection of a package from the plurality of packages; automatically configure a first condition in a particular automation in the selected package based on data in the table; display a second undefined condition of the particular automation, wherein the second undefined condition requires further configuration; receive an input for configuring the second undefined condition; configure the second undefined condition using the input to cause the second undefined condition to become a second defined condition; and apply the particular automation to the table. Some embodiments provide advantages over prior systems that merely provide tables with conditional rules by providing targeted solution packages based on vacations to improve system processing to more efficiently initialize set up and process information based on specific scenarios.
Aspects of this disclosure may provide a technical solution to the challenging technical problem of project management on collaborative work systems and may relate to a system employing self-configuring table automations. For ease of discussion, some examples are described below with reference to systems, devices, methods, and/or computer-readable media, with the understanding that discussions of each apply equally to the others. For example, some aspects of methods may be implemented by a computing device or software running thereon. The computing device may include at least one processor. Consistent with some disclosed embodiments, “at least one processor” may constitute any physical device or group of devices having electric circuitry that performs a logic operation on an input or inputs. For example, the at least one processor may include one or more integrated circuits (IC), including application-specific integrated circuit (ASIC), microchips, microcontrollers, microprocessors, all or part of a central processing unit (CPU), graphics processing unit (GPU), digital signal processor (DSP), field-programmable gate array (FPGA), server, virtual server, or other circuits suitable for executing instructions or performing logic operations. The instructions executed by at least one processor may, for example, be pre-loaded into a memory integrated with or embedded into the controller or may be stored in a separate memory. The memory may include a Random Access Memory (RAM), a Read-Only Memory (ROM), a hard disk, an optical disk, a magnetic medium, a flash memory, other permanent, fixed, or volatile memory, or any other mechanism capable of storing instructions. In some embodiments, the at least one processor may include more than one processor. Each processor may have a similar construction or the processors may be of differing constructions that are electrically connected or disconnected from each other. For example, the processors may be separate circuits or integrated in a single circuit. When more than one processor is used, the processors may be configured to operate independently or collaboratively, and may be co-located or located remotely from each other. The processors may be coupled electrically, magnetically, optically, acoustically, mechanically or by other means that permit them to interact.
Some disclosed embodiments may involve at least one processor configured to present a plurality of alternative automation packages, identify a selection of a package, automatically configure a first condition in a particular automation, display a second undefined condition of the particular automation, receive an input, configure the second undefined condition, apply a particular automation to a table, among other functions.
An automation, which, by way of example, may be implemented via a logical sentence structure template, may be a process that responds to a trigger or condition to produce an outcome. A logical rule may underly the automation, the logical rule including one or more logical connectors, and configured to act on table data to produce an outcome. An automation may also be considered as a “recipe” having a logical organization of elements for implementing a conditional action. The automation, for example, may be implemented via a recipe, a template, or a sentence including one or more triggering elements (also referred to herein as “triggers”) and one or more action elements (also referred to herein as “actions” hereinafter). An automation may be configured to cause an action in response to a trigger, such as an event or a condition, the occurrence or satisfaction of which may cause another event in the system, implemented by the automation. Triggers may occur as the result of one or more conditions in a single table or across multiple tables. Triggers further may also occur as the result of conditions being met across multiple tables and/or across multiple users or entities. An action of an automation may refer to a change of one or more components of the system. For example, the change may include addition, deletion, alteration, conversion, rearrangement, or any manner of manipulation of data stored in the system. As an example, in an automation or a logical sentence structure template such as “when a task is done, notify John,” notifying John may correspond to the action performed in response to the automation trigger or condition being met, i.e. task being done, and the logical connector “when.” Automations may be broadly referred to as processes governed by rules. In some embodiments, the rules may include a mathematical function, a conditional function, computer-readable instructions, or other executable functions. Self-configuring table automations may include automations that automatically seek information from tables to auto-populate conditions and fields of the automations.
An automation package may refer to a single automation or a group of automations configured to perform an action when a condition is met. One or more automations of an automation package may be associated with a table or table data. “Associating,” in this example and as used in this context, may refer to processes or procedures of establishing a relationship or connection between at least an automation and at least a table. The relationship or connection may be established by linking the automation and the table, or by assigning a common code, address, or other designation to the automation and the table. One or more automations in an automation package may be customized for a profession, a vocation, an industry, a technology, an occupation, a business, or other entities having collaborative workspaces. One or more automations in an automation package may also be customized based on specific use cases for certain tasks, such as tracking project progress, enabling communications between remote individuals, or managing files between teams.
Aspects of this disclosure may involve presenting a plurality of alternative automation packages for application to a table, wherein each package may include a plurality of automations, and wherein each automation may be configured to cause an action in response to at least one condition detected in the table. A table may include those items described herein in connection with the term “tablature,” and may include horizontal and vertical rows for presenting, displaying, or enabling access to information stored therein. A table may be presented on a screen associated with a computing device or via any electronic device that displays or projects information on a surface or virtually. An intersection of multiple rows (and/or columns) may represent a cell. For example, a cell may be represented as an intersection of a horizontal row (or referred to as a “horizontal column”) and a vertical row (or referred to as a “vertical column”). A cell may contain a value, a color, a word, a graphic, a symbol, a GIF, a meme, any combination thereof, or any other data. In some embodiments, a table may be presented in two dimensions, three dimensions, or more. A table, a board, a workboard, a dashboard, or a part thereof, including digital data (e.g., computer readable data) may be populated via a data structure.
A data structure consistent with the present disclosure may include any collection of data values and relationships among them. The data may be stored linearly, horizontally, hierarchically, relationally, non-relationally, uni-dimensionally, multidimensionally, operationally, in an ordered manner, in an unordered manner, in an object-oriented manner, in a centralized manner, in a decentralized manner, in a distributed manner, in a custom manner, or in any manner enabling data access. By way of non-limiting examples, data structures may include an array, an associative array, a linked list, a binary tree, a balanced tree, a heap, a stack, a queue, a set, a hash table, a record, a tagged union, ER model, and a graph. For example, a data structure may include an XML database, an RDBMS database, an SQL database or NoSQL alternatives for data storage/search such as, for example, MongoDB, Redis, Couchbase, Datastax Enterprise Graph, Elastic Search, Splunk, Solr, Cassandra, Amazon DynamoDB, Scylla, HBase, and Neo4J. A data structure may be a component of the disclosed system or a remote computing component (e.g., a cloud-based data structure). Data in the data structure may be stored in contiguous or non-contiguous memory. Moreover, a data structure does not require information to be co-located. It may be distributed across multiple servers, for example, that may be owned or operated by the same or different entities. Thus, the term “data structure” in the singular is inclusive of plural data structures.
Presenting a plurality of alternative automation packages may refer to one or more of displaying or projecting a visual representation of automation packages available, or displaying one or more automations associated with an automation package, or displaying automation packages in a pop-up menu, a drop-down list, a pick list, or any suitable interface to allow a user to select an alternative automation package. The alternative automation packages may be displayed via a display screen associated with a computing device such as a PC, laptop, tablet, projector, cell phone, or a personal wearable device as discussed above. The one or more automation packages may also be presented virtually through AR or VR glasses, in more than two dimensions. Other mechanisms of presenting may also be used to enable a user to visually comprehend presented information. Application of an automation package to a table may refer to the application of one or more automations of the automation package to an associated table such that a predefined action may be performed when a condition of the one or more automations is met.
Each automation package may include a plurality of automations. As mentioned previously, consistent with some disclosed embodiments, an automation may be broadly referred to as a rule or a logical rule that associates at least two of a plurality of columns with each other. In some embodiments, the rules may include a mathematical function that determines the value of a column based on values of one or more columns (e.g., a column may be customized to display a due date determined by adding 50 days to the date indicated in another column). In some other embodiments, the rules may include conditional functions that determine the appearance of a column based on the value of the column itself and/or the values of one or more other columns (e.g., a column may turn red when a due date specified therein has passed). In some further embodiments, the rules may include computer-readable instructions that perform certain actions using third-party services (e.g., a template may control a smart light bulb when the value of a column meets a predetermined condition), change the appearances of one or more columns, and/or change the values of one or more columns (e.g., a column may be linked to another column to display the same information).
Consistent with some disclosed embodiments, each automation may include a logical sentence structure including definable conditions. A logical sentence structure may include a logical organization of elements for implementing a conditional action. In some embodiments, the logical organization of elements may be a semantic statement or a rule (e.g., a logical sentence). A definable condition may be a requirement that may be configured or altered based on a user input or selection. The user-definable element may be a triggering element or an action element, activated or deactivated as a whole, or may be activated with configuration or alteration in accordance with user inputs. A definable condition may be presented in any manner such as being displayed in bold, underlining, or any other differentiating manner, representing that it is user-definable.
By way of example, in
In some embodiments, each automation may be configured to cause an action in response to at least one condition detected in the table. As described previously, an automation may be configured to cause an action in response to a trigger, such as an event or a condition, the occurrence or satisfaction of which may cause another event in the system, implemented by the automation. Triggers may occur as the result of at least one or more conditions being detected in a table. For example, a communications rule may include a trigger that activates when a specific value in a specific cell meets a criterion. A trigger may include an aspect of the rule (e.g., code) that recognizes a specific value in a cell, determines that it meets a criterion, and causes a resulting event, circumstance, action, process, or situation to occur as a result. A specific value contained in cells may include numeric, alphanumeric, graphical information, or any combination thereof. Similarly, a criterion associated with a communications rule may contain numeric, alphanumeric, graphical information, a combination thereof, or a range of such information (e.g., a range bounded on one or more ends by at least one boundary defining more than one specific value that may activate the trigger, such as a numeric range, a region, a category, a class, or any other criterion that defines multiple values.) When a match is determined between information in the cell and a criterion associated with the trigger, the condition of the trigger may be met and may be said to be a condition detected in the table, and result in an automation becoming activated to cause an action, such as a communications rule being triggered to send an alert.
A condition, as used in this context, may refer to any state of information contained in any column type or datatype stored in a column of an associated table. An automation may apply to any column type and may apply to an infinite number of combinations of column types such as a Task column, a Person column, a Date column, a Contact column, a Time Tracking column, a Location column, a World Clock column, a File column, or any other column type associated with the table. For example, in an automation or a logical sentence structure associated with a library such as “When a Person is absent at work, perform a Task,” the condition may be associated with a “Person” column, and the action may include the column “Task.” In some embodiments, the column or datatype associated with the condition may include, but is not limited to, a Date column, a Contact column, a Time Tracking column, a Location column, or other column types. The types and number of columns that may be subject to a predefined logical combination rule, and the action initiated as a result of that rule are limitless. Any column of the table may display cells of a single datatype or of multiple datatypes. A single datatype column may be one where all cells are uniform in at least one aspect or characteristic. The characteristic may be numeric values only, characters only, alphanumeric values, graphic elements only, closed lists of elements, single formatting, a specific value range, or any constraint on the format or type of column data. In some embodiments, the first column may be at least a portion of a single datatype (e.g., texts) column-oriented data structure. A single datatype column-oriented data structure may be a digital data structure of a table that includes columns where all cells of the columns may be programmed to include a single category of data.
A condition detected in the table may refer to a condition being met. According to some aspects of the disclosure, an automation may include a trigger that may be activated when a specific value in a specific cell of a table meets a criterion or a condition. A trigger may include an aspect of the rule (e.g., code) that recognizes a specific value in a cell, determines that it meets a criterion, and causes a resulting event, circumstance, action, process, or situation to occur as a result. A specific value contained in cells may include numeric, alphanumeric, or graphical information. Similarly, a criterion associated with a communications rule may contain numeric, alphanumeric, or graphical information, or a range of such information (e.g., a range bounded on one or more ends by at least one boundary defining more than one specific value that may activate the trigger, such as a numeric range, a region, a category, a class, or any other criterion that defines multiple values.) When a match is detected between information in the cell and a criterion associated with the trigger, the criterion of the trigger may be met, and a result of the communications rule may be triggered.
Consistent with some disclosed embodiments, an action may include at least one of a change in data in a table or in another table, or a change in control of an external device. In response to at least one condition being met or occurrence of a triggering event, the processor may be configured to alter a display in an associated table, or a non-associated table. Altering or making a change may refer to processes or procedures of modifying, adding, removing, rearranging, or any way of changing an object. The “display” in the table may include a visual representation in the table as described herein. In some embodiments, the display of the table may be altered by one or more of adding or changing data in the table, removing data, changing a visual effect of a visual object in the table, adding a visual object or indication to the table. The visual effect may include a change in a color, a font, a typeface, a strikethrough, a shape, a size, a column-row arrangement, or any characteristic in visual presentation. The visual object may include a table cell, a table border line, a table header, or any table elements, and may further include a number, a text, a symbol, a mark, a character, a date, a time, an icon, an avatar, a hyperlink, a picture, a video, an animation, or any visible item included in any table element.
In some embodiments, as a result of triggering, the action may include a change in control of an external device. The control of an external device may include activating, deactivating, charging, operating, initiating, or other control functions of the external device. An external device may refer to a cellphone, a personal computer, a laptop, a tablet, a monitor, a wearable device, a display screen, heads-up display, virtual reality (VR) and augmented reality (AR) devices, dispensers (e.g., vending machine), or any device capable of processing and/or displaying data that may result in a physical action. For example, triggering of the condition may initiate a dispenser to dispense a physical object, such as a physical reward or food item. In another example, triggering of the condition may initiate a communications application on the external device. A communications application may include an internal or external website or program that performs a particular task or set of tasks. (e.g., Outlook™, Gmail™, SMS, Whatsapp™, Slack™, Facebook Messenger™, a proprietary application of the system, or any other medium that enables communication. In other words, the communications application may be an integrated (or accessed) third-party-provider application or an internal automated application. The communications application may be predefined or may be selected by a user. For example, an automation may provide the user with access to a picklist permitting the user to specify, in defining the automation, which communications application will serve as the transmission mechanism for the message. Or, the logical template may predefine the communications application that may be used. In either scenario, automatic triggering may include accessing the defined communications application. In some embodiments, the automation may be predefined to enable sending an email, initiating a phone call, initiating a video conference call, sending text messages, activating an alarm, or any form of notification.
Some disclosed embodiments may involve identifying a selection of a package from a plurality of packages. Identifying an automation package may occur in a computing device in response to a user selection of an automation package or an alternative automation package from a plurality of alternative automation packages. A computing device may provide a user interface that includes an interactive element for identifying or receiving a user selection. The user interface may be a web page, a mobile-application interface, a software interface, or any graphical interface that enables interactions between a human and a machine. As previously mentioned, the automation packages may include one or more automations and the user may select an automation package based on existing automations including predefined and definable conditions.
Some disclosed embodiments may involve automatically configuring a first condition in a particular automation in the selected package based on data in the table. Data in the table may include, but is not limited to, a number, a text, a value, a symbol, a mark, a character, a date, a time, an icon, an avatar, a hyperlink, a picture, a video, an animation, or any visible item or information stored in a cell of the table or associated with a cell of the table (e.g., linked data). In some embodiments, data may be sorted or arranged in columns such that one column in the table includes similar data, and each column may have an associated column heading. In this disclosure, a column heading associated with a column may refer to a text associated with a column within a table and indicative of the data stored within the column. For example, a column with the column heading “Project Owner” may include a name, a photograph, or other identification information of the employee assigned as the owner of a project. In a non-limiting example, the associated column heading may be located in a top cell of the column including the text.
An automation may include any number of conditions, such as at least two conditions, of which one condition may include an automatically configurable condition and the second condition may include an undefined condition. Automatically configuring a condition based on data in the table may include mapping column heading information in the table to column heading information in the particular automation. Mapping may refer to linking or associating or establishing a relationship or a connection between two things (e.g., objects, data, interfaces, data objects, tables, and more). For example, if the two or more things are stored as digital data in a non-transitory computer-readable medium (e.g., a memory or a storage device), the relationship or connection may be established by linking the two or more things, or by assigning a common code, address, or other designation to the two or more things in the non-transitory computer-readable medium. In some embodiments, column heading information in the table may be “mapped” or linked to the column heading information (e.g., a definable condition or variable) in the automation. For example, if the automation package is customized for the legal profession, one or more automations in the automation package may include a condition “When the billed hours exceeds HOURS and the delivery date passes DATE, notify supervising attorney.” In this example, the first condition, “billed hours exceeds HOURS,” may be automatically configured by associating it with the column containing information about a working attorney's billed hours in the table. In some embodiments, the mapping may occur using artificial intelligence. The term “artificial intelligence” is defined earlier, and may refer, for example, to the simulation of human intelligence in machines or processors that exhibit traits associated with a human mind such as learning and problem-solving. Artificial intelligence, machine learning, or deep learning, or neural network processing techniques may enable the automatic learning through absorption of huge amounts of unstructured data such as text, images, or videos and user preferences analyzed over a period of time such as through statistical computation and analysis. Alternatively, or additionally, the mapping may occur using linguistic processing such as, for example, Natural Language Processing (NLP) techniques. Linguistic processing may involve determining phonemes (word sounds), applying phonological rules so that the sounds may be legitimately combined to form words, applying syntactic and semantic rules so that the words may be combined to form sentences, and other functions associated with identifying, interpreting, and regulating words or sentences. For example, a user may provide an audible input such as by “speaking” to select an automation package, or an automation within the selected automation package, or a condition of an automation within a selected automation package. In some embodiments, the mapping may occur using a combination of linguistic processing and artificial intelligence. For example, a neural network processor may be trained to identify and/or predict user preferences based on learning through linguistic processing and the user's historical preferences.
Some disclosed embodiments may involve displaying a second undefined condition of a particular automation, wherein a second undefined condition may require further configuration. Displaying an undefined condition in an automation may refer to presenting the condition to the user in an interactive format and presenting an indication the condition may not yet be fully defined. An undefined condition may refer to a configurable condition, in which the system may enable the user not only to select or deselect, but also to configure one or more elements thereof. For example, the system may enable the user to configure a maintained logical template in a dynamic manner, in which the user may create a new logical template that might not already exist in the system. In some embodiments, the system may enable the user to store the configured logical template in the system for future configurations or uses. In some embodiments, displaying the second undefined condition may include presenting a logical sentence structure with a variable field for subsequent completion. The second undefined condition may include an automation that includes a configurable trigger element, a configurable action element, or both. The second undefined condition may be presented to indicate that the condition has not yet been defined and that it is available for configuration, as discussed above. The automation may then be configured based on user input for the undefined condition, as discussed further below.
Some disclosed embodiments may involve receiving an input for configuring the second undefined condition. An input may be received via a user interface provided by the computing device. For configuring the second undefined condition, the user interface may enable the user to select a column, a column heading, a row, or any cell of a table associated with the automation. In some embodiments, the user interface may be a menu (e.g., a context menu) that may be prompted in response to a user input (e.g., a click or a finger tap on a button associated with the table).
In
The user interface may be a web page, a mobile-application interface, a software interface, or any graphical interface that enables interactions between a human and a machine via the interactive element. The user interface may include, for example, a webpage element that overlays an underlying webpage. In some embodiments, a computing device that implements the operations may provide the user interface that includes an interactive element. The interactive element may be a mouse cursor, a touchable area (as on a touchscreen), an application program interface (API) that receives a keyboard input, or any hardware or software component that may receive user inputs.
Some disclosed embodiments may be adapted to configure the second undefined condition using the input to cause the second undefined condition to become a second defined condition. In the selected automation, the first condition may already be automatically configured, and the second undefined condition may become a defined condition upon receiving a user input that configures the second undefined condition. Configuring the second undefined condition may involve enabling input options for the user-definable requirements into the selected automation. An input for a user-definable requirement may refer to any data, information, or indication to be used for configuring the user-definable condition.
By way of example,
Some disclosed embodiments may be configured to apply a particular automation to a table. In some embodiments, the particular automation may be applied to a specific table or a group of tables associated with the selected automation package. In some embodiments, the application of the particular automation may be activated and/or deactivated based on a user input. For example, the user may select the automation to be applied, from a plurality of automations in the selected automation package through a toggle that enables or disables specific automations of the automation package.
In some embodiments, the alternative automation packages may be vocationally-based. Vocationally-based automation packages may include pre-packaged groups of automations that are catered towards specific fields or professions (e.g., legal, R&D, marketing, medical, financial, and so on). The vocationally-based automation packages may include automation that function independently or collaboratively to achieve a certain result. For example, a real estate agent may select an automation package containing automations that are specific to tracking properties and automatically tracking the status of open houses, sales, and contract documents. While some automations of the real estate based automation package may be specific to tracking real estate properties, other automations of the same real estate based automation package may include communication based automations that enable a real estate agent to send automatic emails in response to inquiries. While an automation package may be manually selected, combined, or modified by a user, the plurality of automation packages presented for selection by a user may be based on the user's profile including information associated with user's vocation or profession so that a user may be presented with relevant automation packages for selection. For example, if the user is a Patent Attorney or an Intellectual Property Lawyer, the system may be configured to present one or more automation packages customized for attorneys, and more particularly, for patent attorneys, such as automations catered to track office actions and response deadlines upon receipt of an office action. In some embodiments, the user profile including information associated with, but not limited to, the name, age, gender, profession, educational qualification, location, contact information, employment records, and other credentials of the user may be pre-existing and already stored in a database. Additionally, or alternatively, the user may provide input or create a profile in response to a request from the system.
By way of example,
Consistent with some disclosed embodiments, at least one condition detected in the table may include a change in data in a cell of the table. As an example, in an automation “When a student is Status for school, send email to Personnel,” the roll-call data table of students may be associated with the automation. Upon updating the table with the day's attendance, if a student is tardy for school, the data in a corresponding cell recording the attendance information for a student may change from a pre-existing value such as a blank or a null value, to presenting “Tardy.” This change in data in a cell of the table may be detected which may trigger an action such as notifying “Personnel” (a defined condition for a specific individual) through an email or a phone call, or a text message, or any other means of communication.
At block 902, processing circuitry 110 may present a plurality of alternative automation packages for application to a table, wherein each package may include a plurality of automations, and wherein each automation may be configured to cause an action in response to at least one condition detected in the table. As discussed in greater detail above, presenting a plurality of automation packages may include displaying a visual representation of automation packages, or displaying one or more automations associated with an automation package, or displaying automation packages in a pop-up menu, a drop-down list, a pick list, or any suitable interface to allow a user to select an automation package.
At block 904, processing circuitry 110 may identify a selection of a package from the plurality of packages. Identifying an automation package may occur in a computing device in response to a user selection of an automation package or an alternative automation package from a plurality of alternative automation packages.
At block 906, processing circuitry 110 may be configured to automatically configure a first condition in a particular automation in the selected package based on data in the table. Automatically configuring a condition based on data in the table may include mapping column heading information in the table to column heading information in the particular automation. Mapping may refer to linking or associating or establishing a relationship or a connection between two things (e.g., objects, data, interfaces, tables, and more).
At block 908, processing circuitry 110 may display an undefined condition in an automation may refer to presenting the condition to the user in an interactive format. Displaying an undefined condition in an automation may refer to presenting the condition to the user in an interactive format.
At block 910, processing circuitry 110 may receive an input for configuring the second undefined condition. An input may be received via a user interface provided by the computing device. For configuring the second undefined condition, the user interface may enable the user to select a column, a column heading, a row, or any cell of a table associated with the automation.
At block 912, processing circuitry 110 may configure the second undefined condition using the input to cause the second undefined condition to become a second defined condition. Configuring the second undefined condition may involve enabling input options for the user-definable requirements into the selected automation. An input for a user-definable requirement may refer to any data, information, or indication to be used for configuring the user-definable condition.
At block 914, processing circuitry 110 may apply the particular automation to the table. The automation may be applied to a specific table or a group of tables associated with the selected automation package. In some embodiments, the application of the particular automation may be activated and/or deactivated based on a user input.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. The materials, methods, and examples provided herein are illustrative only and not intended to be limiting.
Implementation of the method and system of the present disclosure may involve performing or completing certain selected tasks or steps manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of preferred embodiments of the method and system of the present disclosure, several selected steps may be implemented by hardware (HW) or by software (SW) on any operating system of any firmware, or by a combination thereof. For example, as hardware, selected steps of the disclosure could be implemented as a chip or a circuit. As software or algorithm, selected steps of the disclosure could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In any case, selected steps of the method and system of the disclosure could be described as being performed by a data processor, such as a computing device for executing a plurality of instructions.
As used herein, the terms “machine-readable medium” “computer-readable medium” refers to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor.
Various implementations of the systems and techniques described here can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.
Although the present disclosure is described with regard to a “computing device”, a “computer”, or “mobile device”, it should be noted that optionally any device featuring a data processor and the ability to execute one or more instructions may be described as a computing device, including but not limited to any type of personal computer (PC), a server, a distributed server, a virtual server, a cloud computing platform, a cellular telephone, an IP telephone, a smartphone, a smart watch or a PDA (personal digital assistant). Any two or more of such devices in communication with each other may optionally comprise a “network” or a “computer network”.
To provide for interaction with a user, the systems and techniques described here can be implemented on a computer having a display device (a LED (light-emitting diode), or OLED (organic LED), or LCD (liquid crystal display) monitor/screen) for displaying information to the user and a keyboard and a pointing device (e.g., a mouse or a trackball) by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form, including acoustic, speech, or tactile input.
The systems and techniques described here can be implemented in a computing system that includes a back end component (e.g., as a data server), or that includes a middleware component (e.g., an application server), or that includes a front end component (e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the systems and techniques described here), or any combination of such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), and the Internet.
The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
It should be appreciated that the above described methods and apparatus may be varied in many ways, including omitting or adding steps, changing the order of steps and the type of devices used. It should be appreciated that different features may be combined in different ways. In particular, not all the features shown above in a particular embodiment or implementation are necessary in every embodiment or implementation of the invention. Further combinations of the above features and implementations are also considered to be within the scope of some embodiments or implementations of the invention.
While certain features of the described implementations have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the scope of the implementations. It should be understood that they have been presented by way of example only, not limitation, and various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The implementations described herein can include various combinations and/or sub-combinations of the functions, components and/or features of the different implementations described.
Disclosed embodiments may include any one of the following bullet-pointed features alone or in combination with one or more other bullet-pointed features, whether implemented as a method, by at least one processor, and/or stored as executable instructions on non-transitory computer-readable media:
Systems and methods disclosed herein involve unconventional improvements over conventional approaches. Descriptions of the disclosed embodiments are not exhaustive and are not limited to the precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from consideration of the specification and practice of the disclosed embodiments. Additionally, the disclosed embodiments are not limited to the examples discussed herein.
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to the precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from consideration of the specification and practice of the disclosed embodiments. For example, the described implementations include hardware and software, but systems and methods consistent with the present disclosure may be implemented as hardware alone.
It is appreciated that the above described embodiments can be implemented by hardware, or software (program codes), or a combination of hardware and software. If implemented by software, it can be stored in the above-described computer-readable media. The software, when executed by the processor can perform the disclosed methods. The computing units and other functional units described in the present disclosure can be implemented by hardware, or software, or a combination of hardware and software. One of ordinary skill in the art will also understand that multiple ones of the above described modules/units can be combined as one module or unit, and each of the above described modules/units can be further divided into a plurality of sub-modules or sub-units.
The block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer hardware or software products according to various example embodiments of the present disclosure. In this regard, each block in a flowchart or block diagram may represent a module, segment, or portion of code, which includes one or more executable instructions for implementing the specified logical functions. It should be understood that in some alternative implementations, functions indicated in a block may occur out of order noted in the figures. For example, two blocks shown in succession may be executed or implemented substantially concurrently, or two blocks may sometimes be executed in reverse order, depending upon the functionality involved. Some blocks may also be omitted. It should also be understood that each block of the block diagrams, and combination of the blocks, may be implemented by special purpose hardware-based systems that perform the specified functions or acts, or by combinations of special purpose hardware and computer instructions.
In the foregoing specification, embodiments have been described with reference to numerous specific details that can vary from implementation to implementation. Certain adaptations and modifications of the described embodiments can be made. Other embodiments can be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as example only, with a true scope and spirit of the invention being indicated by the following claims. It is also intended that the sequence of steps shown in figures are only for illustrative purposes and are not intended to be limited to any particular sequence of steps. As such, those skilled in the art can appreciate that these steps can be performed in a different order while implementing the same method.
It will be appreciated that the embodiments of the present disclosure are not limited to the exact construction that has been described above and illustrated in the accompanying drawings, and that various modifications and changes may be made without departing from the scope thereof.
Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed embodiments disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims.
Computer programs based on the written description and methods of this specification are within the skill of a software developer. The various programs or program modules can be created using a variety of programming techniques. One or more of such software sections or modules can be integrated into a computer system, non-transitory computer readable media, or existing software.
Moreover, while illustrative embodiments have been described herein, the scope includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations or alterations based on the present disclosure. The elements in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application. These examples are to be construed as non-exclusive. Further, the steps of the disclosed methods can be modified in any manner, including by reordering steps or inserting or deleting steps. It is intended, therefore, that the specification and examples be considered as exemplary only, with a true scope and spirit being indicated by the following claims and their full scope of equivalents.
This application is based on and claims benefit of priority of U.S. Nonprovisional patent application Ser. No. 17/242,452 filed on Apr. 28, 2021, which claims priority to U.S. Provisional Patent Application No. 63/018,593, filed May 1, 2020, U.S. Provisional Patent Application No. 63/019,396, filed May 3, 2020, U.S. Provisional Patent Application No. 63/078,301, filed Sep. 14, 2020, U.S. Provisional Patent Application No. 63/121,803, filed on Dec. 4, 2020, U.S. Provisional Patent Application No. 63/122,439, filed on Dec. 7, 2020, and U.S. Provisional Patent Application No. 63/148,092, filed on Feb. 10, 2021, the contents of all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5479602 | Baecker et al. | Dec 1995 | A |
5517663 | Kahn | May 1996 | A |
5682469 | Linnett | Oct 1997 | A |
5696702 | Skinner et al. | Dec 1997 | A |
5726701 | Needham | Mar 1998 | A |
5787411 | Groff et al. | Jul 1998 | A |
5880742 | Rao et al. | Mar 1999 | A |
5933145 | Meek | Aug 1999 | A |
6016553 | Schneider et al. | Jan 2000 | A |
6023695 | Osborn et al. | Feb 2000 | A |
6167405 | Rosensteel, Jr. et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6185582 | Zellweger et al. | Feb 2001 | B1 |
6195794 | Buxton | Feb 2001 | B1 |
6266067 | Owen et al. | Jul 2001 | B1 |
6275809 | Tamaki et al. | Aug 2001 | B1 |
6377965 | Hachamovitch et al. | Apr 2002 | B1 |
6385617 | Malik | May 2002 | B1 |
6460043 | Tabbara et al. | Oct 2002 | B1 |
6496832 | Chi et al. | Dec 2002 | B2 |
6509912 | Moran et al. | Jan 2003 | B1 |
6522347 | Tsuji et al. | Feb 2003 | B1 |
6527556 | Koskinen | Mar 2003 | B1 |
6606740 | Lynn et al. | Aug 2003 | B1 |
6636242 | Bowman-Amuah | Oct 2003 | B2 |
6647370 | Fu et al. | Nov 2003 | B1 |
6661431 | Stuart et al. | Dec 2003 | B1 |
7027997 | Robinson et al. | Apr 2006 | B1 |
7043529 | Simonoff | May 2006 | B1 |
7054891 | Cole | May 2006 | B2 |
7237188 | Leung | Jun 2007 | B1 |
7249042 | Doerr et al. | Jul 2007 | B1 |
7272637 | Himmelstein | Sep 2007 | B1 |
7379934 | Forman et al. | May 2008 | B1 |
7383320 | Silberstein et al. | Jun 2008 | B1 |
7415664 | Aureglia et al. | Aug 2008 | B2 |
7461077 | Greenwood | Dec 2008 | B1 |
7489976 | Adra | Feb 2009 | B2 |
7685152 | Chivukula et al. | Mar 2010 | B2 |
7707514 | Forstall et al. | Apr 2010 | B2 |
7710290 | Johnson | May 2010 | B2 |
7770100 | Chamberlain et al. | Aug 2010 | B2 |
7827476 | Roberts et al. | Nov 2010 | B1 |
7916157 | Kelley et al. | Mar 2011 | B1 |
7954064 | Forstall et al. | May 2011 | B2 |
8046703 | Busch et al. | Oct 2011 | B2 |
8078955 | Gupta | Dec 2011 | B1 |
8082274 | Steinglass et al. | Dec 2011 | B2 |
8108241 | Shukoor | Jan 2012 | B2 |
8136031 | Massand | Mar 2012 | B2 |
8151213 | Weitzman et al. | Apr 2012 | B2 |
8223172 | Miller et al. | Jul 2012 | B1 |
8286072 | Chamberlain et al. | Oct 2012 | B2 |
8365095 | Bansal et al. | Jan 2013 | B2 |
8375327 | Lorch et al. | Feb 2013 | B2 |
8386960 | Eismann et al. | Feb 2013 | B1 |
8423909 | Zabielski | Apr 2013 | B2 |
8548997 | Wu | Oct 2013 | B1 |
8560942 | Fortes et al. | Oct 2013 | B2 |
8566732 | Louch et al. | Oct 2013 | B2 |
8572173 | Briere et al. | Oct 2013 | B2 |
8578399 | Khen et al. | Nov 2013 | B2 |
8601383 | Folting et al. | Dec 2013 | B2 |
8620703 | Kapoor et al. | Dec 2013 | B1 |
8738414 | Nagar et al. | May 2014 | B1 |
8812471 | Akita | Aug 2014 | B2 |
8819042 | Samudrala et al. | Aug 2014 | B2 |
8862979 | Hawking | Oct 2014 | B2 |
8863022 | Rhodes et al. | Oct 2014 | B2 |
8869027 | Louch et al. | Oct 2014 | B2 |
8937627 | Otero et al. | Jan 2015 | B1 |
8938465 | Messer | Jan 2015 | B2 |
8954871 | Louch et al. | Feb 2015 | B2 |
9007405 | Eldar et al. | Apr 2015 | B1 |
9015716 | Fletcher et al. | Apr 2015 | B2 |
9026897 | Zarras | May 2015 | B2 |
9043362 | Weissman et al. | May 2015 | B2 |
9129234 | Campbell et al. | Sep 2015 | B2 |
9172738 | daCosta | Oct 2015 | B1 |
9239719 | Feinstein et al. | Jan 2016 | B1 |
9244917 | Sharma et al. | Jan 2016 | B1 |
9253130 | Zaveri | Feb 2016 | B2 |
9286246 | Saito et al. | Mar 2016 | B2 |
9292587 | Kann et al. | Mar 2016 | B2 |
9336502 | Mohammad et al. | May 2016 | B2 |
9342579 | Cao et al. | May 2016 | B2 |
9361287 | Simon et al. | Jun 2016 | B1 |
9390059 | Gur et al. | Jul 2016 | B1 |
9424287 | Schroth | Aug 2016 | B2 |
9424333 | Bisignani et al. | Aug 2016 | B1 |
9430458 | Rhee et al. | Aug 2016 | B2 |
9449031 | Barrus et al. | Sep 2016 | B2 |
9495386 | Tapley et al. | Nov 2016 | B2 |
9558172 | Rampson et al. | Jan 2017 | B2 |
9613086 | Sherman | Apr 2017 | B1 |
9635091 | Laukkanen et al. | Apr 2017 | B1 |
9679456 | East | Jun 2017 | B2 |
9727376 | Bills et al. | Aug 2017 | B1 |
9760271 | Persaud | Sep 2017 | B2 |
9798829 | Baisley | Oct 2017 | B1 |
9866561 | Psenka et al. | Jan 2018 | B2 |
9870136 | Pourshahid | Jan 2018 | B2 |
10043296 | Li | Aug 2018 | B2 |
10067928 | Krappe | Sep 2018 | B1 |
10176154 | Ben-Aharon et al. | Jan 2019 | B2 |
10235441 | Makhlin et al. | Mar 2019 | B1 |
10255609 | Kinkead et al. | Apr 2019 | B2 |
10282405 | Silk et al. | May 2019 | B1 |
10282406 | Bissantz | May 2019 | B2 |
10311080 | Folting et al. | Jun 2019 | B2 |
10347017 | Ruble et al. | Jul 2019 | B2 |
10372706 | Chavan et al. | Aug 2019 | B2 |
10380140 | Sherman | Aug 2019 | B2 |
10445702 | Hunt | Oct 2019 | B1 |
10452360 | Burman et al. | Oct 2019 | B1 |
10474317 | Ramanathan et al. | Nov 2019 | B2 |
10489391 | Tomlin | Nov 2019 | B1 |
10489462 | Rogynskyy et al. | Nov 2019 | B1 |
10496737 | Sayre et al. | Dec 2019 | B1 |
10528599 | Pandis et al. | Jan 2020 | B1 |
10534507 | Laukkanen et al. | Jan 2020 | B1 |
10540152 | Krishnaswamy et al. | Jan 2020 | B1 |
10540434 | Migeon et al. | Jan 2020 | B2 |
10564622 | Dean et al. | Feb 2020 | B1 |
10573407 | Ginsburg | Feb 2020 | B2 |
10628002 | Kang et al. | Apr 2020 | B1 |
10698594 | Sanches et al. | Jun 2020 | B2 |
10706061 | Sherman et al. | Jul 2020 | B2 |
10719220 | Ouellet et al. | Jul 2020 | B2 |
10740117 | Ording et al. | Aug 2020 | B2 |
10747950 | Dang et al. | Aug 2020 | B2 |
10748312 | Ruble et al. | Aug 2020 | B2 |
10754688 | Powell | Aug 2020 | B2 |
10761691 | Anzures et al. | Sep 2020 | B2 |
10795555 | Burke et al. | Oct 2020 | B2 |
10817660 | Rampson et al. | Oct 2020 | B2 |
D910077 | Naroshevitch et al. | Feb 2021 | S |
10963578 | More et al. | Mar 2021 | B2 |
11042363 | Krishnaswamy et al. | Jun 2021 | B1 |
11042699 | Sayre et al. | Jun 2021 | B1 |
11048714 | Sherman et al. | Jun 2021 | B2 |
20010008998 | Tamaki et al. | Jul 2001 | A1 |
20010032248 | Krafchin | Oct 2001 | A1 |
20020075309 | Michelman et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020138528 | Gong et al. | Sep 2002 | A1 |
20030033196 | Tomlin | Feb 2003 | A1 |
20030041113 | Larsen | Feb 2003 | A1 |
20030051377 | Chirafesi, Jr. | Mar 2003 | A1 |
20030058277 | Bowman-Amuah | Mar 2003 | A1 |
20030065662 | Cosic | Apr 2003 | A1 |
20030093408 | Brown et al. | May 2003 | A1 |
20030135558 | Bellotti et al. | Jul 2003 | A1 |
20030187864 | McGoveran | Oct 2003 | A1 |
20030200215 | Chen et al. | Oct 2003 | A1 |
20040032432 | Baynger | Feb 2004 | A1 |
20040098284 | Petito et al. | May 2004 | A1 |
20040133441 | Brady et al. | Jul 2004 | A1 |
20040138939 | Theiler | Jul 2004 | A1 |
20040172592 | Collie et al. | Sep 2004 | A1 |
20040212615 | Uthe | Oct 2004 | A1 |
20040215443 | Hatton | Oct 2004 | A1 |
20040268227 | Brid | Dec 2004 | A1 |
20050034058 | Mills et al. | Feb 2005 | A1 |
20050034064 | Meyers et al. | Feb 2005 | A1 |
20050039001 | Hudis et al. | Feb 2005 | A1 |
20050039033 | Meyers et al. | Feb 2005 | A1 |
20050044486 | Kotler et al. | Feb 2005 | A1 |
20050066306 | Diab | Mar 2005 | A1 |
20050086360 | Mamou et al. | Apr 2005 | A1 |
20050091314 | Blagsvedt et al. | Apr 2005 | A1 |
20050096973 | Heyse et al. | May 2005 | A1 |
20050114305 | Haynes et al. | May 2005 | A1 |
20050125395 | Boettiger | Jun 2005 | A1 |
20050165600 | Kasravi et al. | Jul 2005 | A1 |
20050171881 | Ghassemieh et al. | Aug 2005 | A1 |
20050257204 | Bryant et al. | Nov 2005 | A1 |
20050278297 | Nelson | Dec 2005 | A1 |
20050289342 | Needham et al. | Dec 2005 | A1 |
20050289453 | Segal et al. | Dec 2005 | A1 |
20060009960 | Valencot | Jan 2006 | A1 |
20060015806 | Wallace | Jan 2006 | A1 |
20060031148 | O'Dell et al. | Feb 2006 | A1 |
20060047811 | Lau et al. | Mar 2006 | A1 |
20060053096 | Subramanian | Mar 2006 | A1 |
20060053194 | Schneider et al. | Mar 2006 | A1 |
20060069604 | Leukart et al. | Mar 2006 | A1 |
20060069635 | Ram et al. | Mar 2006 | A1 |
20060080594 | Chavoustie et al. | Apr 2006 | A1 |
20060090169 | Daniels et al. | Apr 2006 | A1 |
20060106642 | Reicher et al. | May 2006 | A1 |
20060107196 | Thanu et al. | May 2006 | A1 |
20060111953 | Setya | May 2006 | A1 |
20060129415 | Thukral et al. | Jun 2006 | A1 |
20060136828 | Asano | Jun 2006 | A1 |
20060173908 | Browning et al. | Aug 2006 | A1 |
20060190313 | Lu | Aug 2006 | A1 |
20060224542 | Yalamanchi | Oct 2006 | A1 |
20060224568 | Debrito | Oct 2006 | A1 |
20060224946 | Barrett et al. | Oct 2006 | A1 |
20060250369 | Keim | Nov 2006 | A1 |
20060253205 | Gardiner | Nov 2006 | A1 |
20060287998 | Folting et al. | Dec 2006 | A1 |
20060294451 | Kelkar et al. | Dec 2006 | A1 |
20070050322 | Vigesaa et al. | Mar 2007 | A1 |
20070050379 | Day et al. | Mar 2007 | A1 |
20070073899 | Judge et al. | Mar 2007 | A1 |
20070101291 | Forstall et al. | May 2007 | A1 |
20070106754 | Moore | May 2007 | A1 |
20070118527 | Winje et al. | May 2007 | A1 |
20070118813 | Forstall et al. | May 2007 | A1 |
20070143169 | Grant et al. | Jun 2007 | A1 |
20070168861 | Bell et al. | Jul 2007 | A1 |
20070174228 | Folting et al. | Jul 2007 | A1 |
20070174760 | Chamberlain et al. | Jul 2007 | A1 |
20070186173 | Both et al. | Aug 2007 | A1 |
20070220119 | Himmelstein | Sep 2007 | A1 |
20070256043 | Peters et al. | Nov 2007 | A1 |
20070282522 | Geelen | Dec 2007 | A1 |
20070282627 | Greenstein et al. | Dec 2007 | A1 |
20070283259 | Barry et al. | Dec 2007 | A1 |
20070294235 | Millett | Dec 2007 | A1 |
20070299795 | Macbeth et al. | Dec 2007 | A1 |
20070300174 | Macbeth et al. | Dec 2007 | A1 |
20070300185 | Macbeth et al. | Dec 2007 | A1 |
20080004929 | Raffel et al. | Jan 2008 | A9 |
20080005235 | Hegde et al. | Jan 2008 | A1 |
20080033777 | Shukoor | Feb 2008 | A1 |
20080034314 | Louch et al. | Feb 2008 | A1 |
20080065460 | Raynor | Mar 2008 | A1 |
20080077530 | Banas et al. | Mar 2008 | A1 |
20080104091 | Chin | May 2008 | A1 |
20080126389 | Mush et al. | May 2008 | A1 |
20080148140 | Nakano | Jun 2008 | A1 |
20080155547 | Weber et al. | Jun 2008 | A1 |
20080163075 | Beck et al. | Jul 2008 | A1 |
20080195948 | Bauer | Aug 2008 | A1 |
20080216022 | Lorch et al. | Sep 2008 | A1 |
20080222192 | Hughes | Sep 2008 | A1 |
20080256014 | Gould et al. | Oct 2008 | A1 |
20080270597 | Tenenti | Oct 2008 | A1 |
20080282189 | Hofmann et al. | Nov 2008 | A1 |
20080295038 | Helfman et al. | Nov 2008 | A1 |
20080301237 | Parsons | Dec 2008 | A1 |
20090006171 | Blatchley et al. | Jan 2009 | A1 |
20090006283 | Labrie et al. | Jan 2009 | A1 |
20090013244 | Cudich et al. | Jan 2009 | A1 |
20090019383 | Riley et al. | Jan 2009 | A1 |
20090024944 | Louch et al. | Jan 2009 | A1 |
20090044090 | Gur et al. | Feb 2009 | A1 |
20090048896 | Anandan | Feb 2009 | A1 |
20090049372 | Goldberg | Feb 2009 | A1 |
20090077164 | Phillips et al. | Mar 2009 | A1 |
20090077217 | McFarland et al. | Mar 2009 | A1 |
20090132470 | Vignet | May 2009 | A1 |
20090150813 | Chang et al. | Jun 2009 | A1 |
20090174680 | Anzures et al. | Jul 2009 | A1 |
20090198715 | Barbarek | Aug 2009 | A1 |
20090248710 | McCormack et al. | Oct 2009 | A1 |
20090276692 | Rosner | Nov 2009 | A1 |
20090313201 | Huelsman et al. | Dec 2009 | A1 |
20090313537 | Fu et al. | Dec 2009 | A1 |
20090313570 | Po et al. | Dec 2009 | A1 |
20090319882 | Morrison et al. | Dec 2009 | A1 |
20090327240 | Meehan et al. | Dec 2009 | A1 |
20090327851 | Raposo | Dec 2009 | A1 |
20090327875 | Kinkoh | Dec 2009 | A1 |
20100017699 | Farrell et al. | Jan 2010 | A1 |
20100070895 | Messer | Mar 2010 | A1 |
20100083164 | Martin et al. | Apr 2010 | A1 |
20100088636 | Yerkes et al. | Apr 2010 | A1 |
20100095298 | Seshadrinathan et al. | Apr 2010 | A1 |
20100100427 | McKeown et al. | Apr 2010 | A1 |
20100100463 | Molotsi et al. | Apr 2010 | A1 |
20100114926 | Agrawal et al. | May 2010 | A1 |
20100149005 | Yoon et al. | Jun 2010 | A1 |
20100174678 | Massand | Jul 2010 | A1 |
20100228752 | Folting et al. | Sep 2010 | A1 |
20100241477 | Nylander et al. | Sep 2010 | A1 |
20100241948 | Andeen et al. | Sep 2010 | A1 |
20100241990 | Gabriel et al. | Sep 2010 | A1 |
20100251090 | Chamberlain et al. | Sep 2010 | A1 |
20100257015 | Molander | Oct 2010 | A1 |
20100262625 | Pittenger | Oct 2010 | A1 |
20100287221 | Battepati et al. | Nov 2010 | A1 |
20100324964 | Callanan et al. | Dec 2010 | A1 |
20110016432 | Helfman | Jan 2011 | A1 |
20110028138 | Davies-Moore et al. | Feb 2011 | A1 |
20110047484 | Mount et al. | Feb 2011 | A1 |
20110055177 | Chakra et al. | Mar 2011 | A1 |
20110066933 | Ludwig | Mar 2011 | A1 |
20110071869 | O'Brien et al. | Mar 2011 | A1 |
20110106636 | Spear et al. | May 2011 | A1 |
20110119352 | Perov et al. | May 2011 | A1 |
20110179371 | Kopycinski et al. | Jul 2011 | A1 |
20110205231 | Hartley et al. | Aug 2011 | A1 |
20110208324 | Fukatsu | Aug 2011 | A1 |
20110208732 | Melton et al. | Aug 2011 | A1 |
20110219321 | Gonzalez et al. | Sep 2011 | A1 |
20110225525 | Chasman et al. | Sep 2011 | A1 |
20110289397 | Eastmond et al. | Nov 2011 | A1 |
20110289439 | Jugel | Nov 2011 | A1 |
20110298618 | Stahl et al. | Dec 2011 | A1 |
20110302003 | Shirish et al. | Dec 2011 | A1 |
20120029962 | Podgurny et al. | Feb 2012 | A1 |
20120035974 | Seybold | Feb 2012 | A1 |
20120036462 | Schwartz et al. | Feb 2012 | A1 |
20120079408 | Rohwer | Mar 2012 | A1 |
20120084798 | Reeves et al. | Apr 2012 | A1 |
20120086716 | Reeves et al. | Apr 2012 | A1 |
20120086717 | Liu | Apr 2012 | A1 |
20120089914 | Holt et al. | Apr 2012 | A1 |
20120089992 | Reeves et al. | Apr 2012 | A1 |
20120096389 | Flam et al. | Apr 2012 | A1 |
20120096392 | Ording et al. | Apr 2012 | A1 |
20120102432 | Breedvelt-Schouten et al. | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120110515 | Abramoff et al. | May 2012 | A1 |
20120116834 | Pope et al. | May 2012 | A1 |
20120116835 | Pope et al. | May 2012 | A1 |
20120124749 | Lewman | May 2012 | A1 |
20120131445 | Oyarzabal et al. | May 2012 | A1 |
20120151173 | Shirley et al. | Jun 2012 | A1 |
20120158744 | Tseng et al. | Jun 2012 | A1 |
20120198322 | Gulwani et al. | Aug 2012 | A1 |
20120210252 | Fedoseyeva et al. | Aug 2012 | A1 |
20120215574 | Driessnack et al. | Aug 2012 | A1 |
20120215578 | Swierz, III et al. | Aug 2012 | A1 |
20120233533 | Yücel et al. | Sep 2012 | A1 |
20120239454 | Taix et al. | Sep 2012 | A1 |
20120246170 | Iantorno | Sep 2012 | A1 |
20120254252 | Jin et al. | Oct 2012 | A1 |
20120254770 | Ophir | Oct 2012 | A1 |
20120260190 | Berger et al. | Oct 2012 | A1 |
20120278117 | Nguyen et al. | Nov 2012 | A1 |
20120297307 | Rider et al. | Nov 2012 | A1 |
20120303262 | Alam et al. | Nov 2012 | A1 |
20120304098 | Kuulusa | Nov 2012 | A1 |
20120311496 | Cao et al. | Dec 2012 | A1 |
20130018952 | McConnell et al. | Jan 2013 | A1 |
20130018953 | McConnell et al. | Jan 2013 | A1 |
20130024760 | Vogel et al. | Jan 2013 | A1 |
20130036369 | Mitchell et al. | Feb 2013 | A1 |
20130041958 | Post et al. | Feb 2013 | A1 |
20130055113 | Chazin et al. | Feb 2013 | A1 |
20130086460 | Folting et al. | Apr 2013 | A1 |
20130090969 | Rivere | Apr 2013 | A1 |
20130104035 | Wagner et al. | Apr 2013 | A1 |
20130111320 | Campbell et al. | May 2013 | A1 |
20130117268 | Smith et al. | May 2013 | A1 |
20130159832 | Ingargiola et al. | Jun 2013 | A1 |
20130159907 | Brosche et al. | Jun 2013 | A1 |
20130211866 | Gordon et al. | Aug 2013 | A1 |
20130238968 | Barrus | Sep 2013 | A1 |
20130262527 | Hunter | Oct 2013 | A1 |
20130268331 | Bitz et al. | Oct 2013 | A1 |
20130297468 | Hirsch et al. | Nov 2013 | A1 |
20130318424 | Boyd | Nov 2013 | A1 |
20140006326 | Bazanov | Jan 2014 | A1 |
20140019842 | Montagna et al. | Jan 2014 | A1 |
20140043331 | Makinen et al. | Feb 2014 | A1 |
20140046638 | Peloski | Feb 2014 | A1 |
20140052749 | Rissanen | Feb 2014 | A1 |
20140068403 | Bhargav et al. | Mar 2014 | A1 |
20140074545 | Minder et al. | Mar 2014 | A1 |
20140108985 | Scott et al. | Apr 2014 | A1 |
20140109012 | Choudhary et al. | Apr 2014 | A1 |
20140115518 | Abdukalykov et al. | Apr 2014 | A1 |
20140129960 | Wang et al. | May 2014 | A1 |
20140136972 | Rodgers et al. | May 2014 | A1 |
20140137144 | Järvenpää et al. | May 2014 | A1 |
20140173401 | Oshlag et al. | Jun 2014 | A1 |
20140188748 | Cavoue et al. | Jul 2014 | A1 |
20140195933 | Rao DV | Jul 2014 | A1 |
20140214404 | Kalia et al. | Jul 2014 | A1 |
20140249877 | Hull et al. | Sep 2014 | A1 |
20140278638 | Kreuzkamp et al. | Sep 2014 | A1 |
20140278720 | Taguchi | Sep 2014 | A1 |
20140280287 | Ganti et al. | Sep 2014 | A1 |
20140281868 | Vogel et al. | Sep 2014 | A1 |
20140281869 | Yob | Sep 2014 | A1 |
20140289223 | Colwell et al. | Sep 2014 | A1 |
20140304174 | Scott et al. | Oct 2014 | A1 |
20140306837 | Hauck, III | Oct 2014 | A1 |
20140324497 | Verma et al. | Oct 2014 | A1 |
20140324501 | Davidow et al. | Oct 2014 | A1 |
20140365938 | Black et al. | Dec 2014 | A1 |
20140372932 | Rutherford et al. | Dec 2014 | A1 |
20150032686 | Kuchoor | Jan 2015 | A1 |
20150033131 | Peev et al. | Jan 2015 | A1 |
20150074721 | Fishman et al. | Mar 2015 | A1 |
20150074728 | Chai et al. | Mar 2015 | A1 |
20150095752 | Studer et al. | Apr 2015 | A1 |
20150106736 | Torman et al. | Apr 2015 | A1 |
20150125834 | Mendoza | May 2015 | A1 |
20150142829 | Lee et al. | May 2015 | A1 |
20150153943 | Wang | Jun 2015 | A1 |
20150169531 | Campbell et al. | Jun 2015 | A1 |
20150212717 | Nair et al. | Jul 2015 | A1 |
20150242091 | Lu et al. | Aug 2015 | A1 |
20150249864 | Tang et al. | Sep 2015 | A1 |
20150261796 | Gould et al. | Sep 2015 | A1 |
20150278699 | Danielsson | Oct 2015 | A1 |
20150281292 | Murayama et al. | Oct 2015 | A1 |
20150295877 | Roman | Oct 2015 | A1 |
20150317590 | Karlson | Nov 2015 | A1 |
20150324453 | Werner | Nov 2015 | A1 |
20150331846 | Guggilla et al. | Nov 2015 | A1 |
20150363478 | Haynes | Dec 2015 | A1 |
20150370540 | Coslovi et al. | Dec 2015 | A1 |
20150370904 | Joshi et al. | Dec 2015 | A1 |
20150378542 | Saito et al. | Dec 2015 | A1 |
20150378711 | Cameron et al. | Dec 2015 | A1 |
20150378979 | Hirzel et al. | Dec 2015 | A1 |
20160012111 | Pattabhiraman et al. | Jan 2016 | A1 |
20160018962 | Low et al. | Jan 2016 | A1 |
20160026939 | Schiffer et al. | Jan 2016 | A1 |
20160027076 | Jackson et al. | Jan 2016 | A1 |
20160055134 | Sathish et al. | Feb 2016 | A1 |
20160055374 | Zhang et al. | Feb 2016 | A1 |
20160063435 | Shah et al. | Mar 2016 | A1 |
20160078368 | Kakhandiki et al. | Mar 2016 | A1 |
20160088480 | Chen et al. | Mar 2016 | A1 |
20160092557 | Stojanovic et al. | Mar 2016 | A1 |
20160117308 | Haider et al. | Apr 2016 | A1 |
20160173122 | Akitomi et al. | Jun 2016 | A1 |
20160210572 | Shaaban et al. | Jul 2016 | A1 |
20160224532 | Miller et al. | Aug 2016 | A1 |
20160246490 | Cabral | Aug 2016 | A1 |
20160253982 | Cheung et al. | Sep 2016 | A1 |
20160275150 | Bournonnais et al. | Sep 2016 | A1 |
20160299655 | Migos et al. | Oct 2016 | A1 |
20160321235 | He et al. | Nov 2016 | A1 |
20160335302 | Teodorescu et al. | Nov 2016 | A1 |
20160335303 | Madhalam et al. | Nov 2016 | A1 |
20160335731 | Hall | Nov 2016 | A1 |
20160335903 | Mendoza | Nov 2016 | A1 |
20160350950 | Ritchie et al. | Dec 2016 | A1 |
20170031967 | Chavan et al. | Feb 2017 | A1 |
20170041296 | Ford et al. | Feb 2017 | A1 |
20170052937 | Sirven et al. | Feb 2017 | A1 |
20170061342 | LoRe et al. | Mar 2017 | A1 |
20170061360 | Rucker et al. | Mar 2017 | A1 |
20170063722 | Cropper et al. | Mar 2017 | A1 |
20170075557 | Noble et al. | Mar 2017 | A1 |
20170091337 | Patterson | Mar 2017 | A1 |
20170109499 | Doshi et al. | Apr 2017 | A1 |
20170111327 | Wu | Apr 2017 | A1 |
20170116552 | Deodhar et al. | Apr 2017 | A1 |
20170124042 | Campbell et al. | May 2017 | A1 |
20170124048 | Campbell et al. | May 2017 | A1 |
20170124055 | Radakovitz et al. | May 2017 | A1 |
20170126772 | Campbell et al. | May 2017 | A1 |
20170132296 | Ding | May 2017 | A1 |
20170139874 | Chin | May 2017 | A1 |
20170139884 | Bendig et al. | May 2017 | A1 |
20170153771 | Chu | Jun 2017 | A1 |
20170177888 | Arora et al. | Jun 2017 | A1 |
20170185668 | Convertino et al. | Jun 2017 | A1 |
20170221072 | AthuluruTlrumala et al. | Aug 2017 | A1 |
20170228445 | Chiu et al. | Aug 2017 | A1 |
20170228460 | Amel et al. | Aug 2017 | A1 |
20170236081 | Grady Smith et al. | Aug 2017 | A1 |
20170242921 | Rota | Aug 2017 | A1 |
20170270970 | Ho et al. | Sep 2017 | A1 |
20170272316 | Johnson et al. | Sep 2017 | A1 |
20170272331 | Lissack | Sep 2017 | A1 |
20170285879 | Pilkington et al. | Oct 2017 | A1 |
20170285890 | Dolman | Oct 2017 | A1 |
20170315683 | Boucher et al. | Nov 2017 | A1 |
20170351252 | Kleifges et al. | Dec 2017 | A1 |
20170372442 | Mejias | Dec 2017 | A1 |
20180025084 | Conlan et al. | Jan 2018 | A1 |
20180032570 | Miller et al. | Feb 2018 | A1 |
20180055434 | Cheung et al. | Mar 2018 | A1 |
20180075104 | Oberbreckling et al. | Mar 2018 | A1 |
20180075115 | Murray et al. | Mar 2018 | A1 |
20180075413 | Culver et al. | Mar 2018 | A1 |
20180075560 | Thukral et al. | Mar 2018 | A1 |
20180081863 | Bathla | Mar 2018 | A1 |
20180081868 | Willcock et al. | Mar 2018 | A1 |
20180088989 | Nield et al. | Mar 2018 | A1 |
20180095938 | Monte | Apr 2018 | A1 |
20180096417 | Cook et al. | Apr 2018 | A1 |
20180109760 | Metter et al. | Apr 2018 | A1 |
20180157455 | Troy et al. | Jun 2018 | A1 |
20180157467 | Stachura | Jun 2018 | A1 |
20180157468 | Stachura | Jun 2018 | A1 |
20180173715 | Dunne | Jun 2018 | A1 |
20180181650 | Komatsuda et al. | Jun 2018 | A1 |
20180181716 | Mander et al. | Jun 2018 | A1 |
20180210936 | Reynolds et al. | Jul 2018 | A1 |
20180225270 | Bhide et al. | Aug 2018 | A1 |
20180276417 | Cerezo | Sep 2018 | A1 |
20180293217 | Callaghan | Oct 2018 | A1 |
20180293669 | Jackson et al. | Oct 2018 | A1 |
20180329930 | Eberlein et al. | Nov 2018 | A1 |
20180357305 | Kinast et al. | Dec 2018 | A1 |
20180373434 | Switzer et al. | Dec 2018 | A1 |
20180373757 | Schukovets et al. | Dec 2018 | A1 |
20190005094 | Yi et al. | Jan 2019 | A1 |
20190036989 | Eirinberg et al. | Jan 2019 | A1 |
20190050445 | Griffith et al. | Feb 2019 | A1 |
20190050812 | Boileau | Feb 2019 | A1 |
20190056856 | Simmons et al. | Feb 2019 | A1 |
20190065545 | Hazel et al. | Feb 2019 | A1 |
20190073350 | Shiotani | Mar 2019 | A1 |
20190095413 | Davis et al. | Mar 2019 | A1 |
20190108046 | Spencer-Harper et al. | Apr 2019 | A1 |
20190130611 | Black et al. | May 2019 | A1 |
20190138588 | Silk et al. | May 2019 | A1 |
20190138653 | Roller et al. | May 2019 | A1 |
20190155821 | Dirisala | May 2019 | A1 |
20190208058 | Dvorkin et al. | Jul 2019 | A1 |
20190236188 | McKenna | Aug 2019 | A1 |
20190251884 | Burns et al. | Aug 2019 | A1 |
20190286839 | Mutha et al. | Sep 2019 | A1 |
20190306009 | Makovsky et al. | Oct 2019 | A1 |
20190324840 | Malamut et al. | Oct 2019 | A1 |
20190347077 | Huebra | Nov 2019 | A1 |
20190361879 | Rogynskyy et al. | Nov 2019 | A1 |
20190361971 | Zenger et al. | Nov 2019 | A1 |
20190364009 | Joseph et al. | Nov 2019 | A1 |
20190371442 | Schoenberg | Dec 2019 | A1 |
20200005248 | Gerzi et al. | Jan 2020 | A1 |
20200005295 | Murphy | Jan 2020 | A1 |
20200012629 | Lereya et al. | Jan 2020 | A1 |
20200026397 | Wohlstadter et al. | Jan 2020 | A1 |
20200042648 | Rao | Feb 2020 | A1 |
20200142546 | Breedvelt-Schouten et al. | May 2020 | A1 |
20200151630 | Shakhnovich | May 2020 | A1 |
20200159558 | Bak et al. | May 2020 | A1 |
20200247661 | Rao et al. | Aug 2020 | A1 |
20200279315 | Manggala | Sep 2020 | A1 |
20200301678 | Burman et al. | Sep 2020 | A1 |
20200301902 | Maloy et al. | Sep 2020 | A1 |
20200327244 | Blass et al. | Oct 2020 | A1 |
20200348809 | Drescher | Nov 2020 | A1 |
20200349320 | Owens | Nov 2020 | A1 |
20200356873 | Nawrocke et al. | Nov 2020 | A1 |
20200380212 | Butler et al. | Dec 2020 | A1 |
20200380449 | Choi | Dec 2020 | A1 |
20200387664 | Kusumura et al. | Dec 2020 | A1 |
20200401581 | Eubank et al. | Dec 2020 | A1 |
20210019287 | Prasad et al. | Jan 2021 | A1 |
20210021603 | Gibbons | Jan 2021 | A1 |
20210042796 | Khoury et al. | Feb 2021 | A1 |
20210049555 | Shor | Feb 2021 | A1 |
20210055955 | Yankelevich et al. | Feb 2021 | A1 |
20210056509 | Lindy | Feb 2021 | A1 |
20210072883 | Migunova et al. | Mar 2021 | A1 |
20210084120 | Fisher et al. | Mar 2021 | A1 |
20210124872 | Lereya | Apr 2021 | A1 |
20210149553 | Lereya et al. | May 2021 | A1 |
20210150489 | Haramati et al. | May 2021 | A1 |
20210165782 | Deshpande et al. | Jun 2021 | A1 |
20210166196 | Lereya et al. | Jun 2021 | A1 |
20210166339 | Mann et al. | Jun 2021 | A1 |
20210173682 | Chakraborti et al. | Jun 2021 | A1 |
20210264220 | Wei et al. | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
107422666 | Dec 2017 | CN |
107623596 | Jan 2018 | CN |
107885656 | Apr 2018 | CN |
112929172 | Jun 2021 | CN |
WO 2004100015 | Nov 2004 | WO |
WO 2006116580 | Nov 2006 | WO |
WO 2017202159 | Nov 2017 | WO |
WO 2020187408 | Sep 2020 | WO |
Entry |
---|
D'Alessio et al., Monday.com Walkthrough 2018\All Features, Platforms & Thoughts, (https://www.youtube.com/watch?v=ajBtOzTlhC8&t=352s), Mar. 1, 2018, Screenshots and transcript pp. 1-55, (Year: 2018). |
Rodrigo et al., Project Management with Monday.com: a 101 Introduction; Jul. 22, 2019, pp. 1-21, 2019. |
International Search Report and Written Opinion of the International Searching Authority in PCT/IB2020/000658, dated Nov. 11, 2020 (12 pages). |
International Search Report in PCT/IB2020/000974, dated May 3, 2021 (19 pages). |
International Search Report in PCT/1B2021/000090 dated Jul. 27, 2021. |
ShowMyPC, “Switch Presenter While Using ShowMyPC”; web archive.org; Aug. 20, 2016. |
International Search Report and Written Opinion of the International Search Authority in PCT/1B2021/000024, dated May 3, 2021 (13 pages). |
“Pivot table—Wikipedia”; URL: https://en.wikepedia .org/w/index.php?title=Pivot_table&oldid=857163289, originally retrieve on Oct. 23, 2019; retrieved on Jul. 16, 2021. |
Vishal Singh, “A Theoretical Framework of a BIM-based Multi-Disciplinary Collaboration Platform”, Nov. 5, 2010, Automation in Construction, 20 (2011), pp. 134-144 (Year: 2011). |
Edward A. Stohr, Workflow Automation: Overview and Research Issues, 2001, Information Systems Frontiers 3:3, pp. 281-296 (Year: 2001). |
U.S. Appl. No. 17/143,897, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,603, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,745, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,482, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,768, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,677, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,653, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,916, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,475, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,865, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,462, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,470, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,905, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,798, filed Jan. 7, 2021. |
U.S. Appl. No. 17/143,892, filed Jan. 7, 2021. |
U.S. Appl. No. 17/243,716, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,727, filed Apr. 29, 2021. |
U.S. Appl. No. 17/232,978, filed Apr. 16, 2021. |
U.S. Appl. No. 17/243,809, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,901, filed Apr. 29, 2021. |
U.S. Appl. No. 17/232,354, filed Apr. 16, 2021. |
U.S. Appl. No. 17/243,898, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,969, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,742, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,752, filed Apr. 29, 2021. |
U.S. Appl. No. 17/232,754, filed Apr. 16, 2021. |
U.S. Appl. No. 17/232,827, filed Apr. 16, 2021. |
U.S. Appl. No. 17/243,763, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,848, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,934, filed Apr. 29, 2021. |
U.S. Appl. No. 17/244,121, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,807, filed Apr. 29, 2021. |
U.S. Appl. No. 17/244,027, filed Apr. 29, 2021. |
U.S. Appl. No. 17/244,157, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,725, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,737, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,748, filed Apr. 29, 2021. |
U.S. Appl. No. 16/453,065, filed Jun. 26, 2019. |
U.S. Appl. No. 17/243,691, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,722, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,892, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,977, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,764, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,837, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,729, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,802, filed Apr. 29, 2021. |
U.S. Appl. No. 17/242,452, filed Apr. 28, 2021. |
U.S. Appl. No. 17/243,891, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,775, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,731, filed Apr. 29, 2021. |
U.S. Appl. No. 17/243,768, filed Apr. 29, 2021. |
U.S. Appl. No. 16/502,679, filed Jul. 3, 2019. |
International Search Report and Written Opinion of the International Search Authority in PCT/1B2021/000297, dated Oct. 12, 2021 (20 pages). |
Dapulse.com “features”.extracted from web.archive.or/web/2014091818421/https://dapulse.com/features; Sep. 2014 (Year: 2014). |
Stephen Larson et al., Introducing Data Mining Concepts Using Microsoft Excel's Table Analysis Tools, Oct. 2015, [Retrieved on Nov. 19, 2021], Retrieved from the internet: <URL: https://dl.acm.org/doi/pdf/10.5555/2831373.2831394> 3 Pages (127-129) (Year: 2015). |
Isaiah Pinchas etal., Lexical Analysis Tool, May 2004, [Retrieved on Nov. 19, 2021], Retrieved from the internet: <URL: https:// dl.acm.org/doi/pdf/10.1145/997140.997147> 9 Pages (66-74) (Year: 2004). |
Sajjad Bahrebar et al., “A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application”, Energies, 11, 721, pp. 1-16, Mar. 22, 2018. |
Number | Date | Country | |
---|---|---|---|
20210350309 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63148092 | Feb 2021 | US | |
63122439 | Dec 2020 | US | |
63121803 | Dec 2020 | US | |
63078301 | Sep 2020 | US | |
63019396 | May 2020 | US | |
63018593 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2021/000297 | Apr 2021 | US |
Child | 17244121 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2021/000090 | Feb 2021 | US |
Child | PCT/IB2021/000297 | US | |
Parent | PCT/IB2021/000024 | Jan 2021 | US |
Child | PCT/IB2021/000090 | US | |
Parent | PCT/IB2020/000974 | Nov 2020 | US |
Child | PCT/IB2021/000024 | US | |
Parent | PCT/IB2020/000658 | Aug 2020 | US |
Child | PCT/IB2020/000974 | US |