The invention is based on a priority application EP04292692.3 which is hereby incorporated by reference.
The present invention relates to the field of telecommunication, and more particularly to advanced transmitter architectures based on I/Q signal processing:
In the framework of wireless telecommunication and in particular digital wireless communication systems a baseband signal carrying information has to be modulated to a radio frequency (RF) band prior to broadcasting into free space. Generally, there exist various modulation techniques for modulating the baseband signal to a radio frequency (RF) signal.
On the one hand single stage modulation techniques provide a direct conversion of the baseband signal into a RF-signal by making use of highly linear and highly symmetric mixers, such as I/Q-modulators with very low phase-, amplitude- and DC offset errors. Such a single stage conversion technique demands for a high performance of a RF-mixer. Generally, without implementation of some kind of error compensating scheme these, RF-mixers only provide limited capabilities for broadband applications. Additionally, the general properties of an implemented RF-mixer may change during its expected life cycle, and may also vary with respect to changing environmental conditions, such like a temperature shift.
Multistage modulation techniques providing an analog or digital generation of an intermediate frequency signal inherently generate mirror frequencies that have to be attenuated by means of intermediate frequency or high frequency analog filters. Implementation of additional filters and a rather complex architecture of these multistage modulation solutions is disadvantageous with respect to production costs. Moreover, by generating undesired mirror frequencies that have to be filtered, an appreciable portion of energy required by the modulation process is simply wasted.
In principle, any component inherent error, in particular phase and amplitude errors, reflect in an insufficient sideband suppression of the generated RF-signal. An undesired sideband may appreciably spoil the transmission spectrum of a transceiver in a mobile communication network system. Sidebands that evolve in a transmission spectrum due to an amplitude errors can be effectively eliminated with commercially available digital analog converters, such like AD 9777 of Analog Devices corporation. For further information refer to http://www.analog.com.
However, suppression of sidebands that are due to phase errors remains problematic. A phase error might be due to production tolerances of involved electronic components, such like an I/Q-modulator. Assuming that amplitude errors of an I/Q modulator and the input baseband signal as well as appropriate DC offset errors can be compensated, a general phase error can be split into a phase shift between real and imaginary parts of an incident I/Q signal φm and a phase error φc representing a phase error of an I/Q modulator, that might be e.g. due to manufacturing tolerances.
Performing an I/Q modulation, i.e. modulating a baseband signal with a local oscillator (LO) signal, a lower and an upper sideband are unavoidably generated symmetric to the RF- or intermediate frequency carrier frequency. When an amplitude difference between the I and Q branch, i.e. the difference in gain of a modulator for the I and Q branch, can be eliminated, one of the two sidebands, either the lower sideband or the upper sideband can be completely eliminated if the modulator inherent phase error exactly corresponds to the phase shift of the input signal, i.e. φm=φc.
The present invention therefore aims to provide an efficient suppression of a sideband of a modulator output by making use of a phase adjustment.
The present invention provides a method of adjusting the phase of an I/Q modulator's complex input signal for optimizing a sideband suppression of the I/Q modulator's output signal. In a first step the baseband signal is modulated to an intermediate frequency signal by means of a first and a second modulator that are adapted to convert the real and imaginary branch of the initial I/Q signal. For instance, the first modulator provides modulation of the input I/Q signal to the real branch I′ of the intermediate frequency signal and the second modulator provides the corresponding imaginary branch Q′ by making use of the same branches I and Q of the baseband input signal. These first and second modulators are preferably implemented as digital modulators. The first and second modulators therefore allow to manually adjust the phase of the generated intermediate frequency signal with respect to the phase of the baseband input signal. Hence, either the phase of the I′ or Q′ branch of the intermediate frequency signal can be modified.
Preferably, the baseband signal is converted to an intermediate frequency signal with a higher carrier frequency. However, this conversion does not necessarily have to provide a signal with a higher frequency. In a special case, the frequency of the intermediate frequency signal and the frequency of the baseband signal may be equal, which corresponds to an intermediate frequency of zero. Hence, for a zero intermediate frequency the spectrum of the intermediate frequency signal remains located around zero.
The intermediate frequency signal generated by the first and second modulators is provided as input signal to the I/Q modulator. Finally, the method provides tuning of the phase of the intermediate frequency signal in order to minimize the amplitude of one sideband of the I/Q modulator's output. Depending on the preferred transmitter configuration, the invention provides both either lower or upper sideband suppression. In principle, this allows to choose whether to attenuate the lower or the upper sideband and to adopt the I/Q modulator's output to different application scenarios either requiring upper or lower sideband suppression. Tuning of the phase of the I/Q modulator's digital input signal is typically implemented by varying the phase of either the real or imaginary branch of the intermediate frequency I/Q signal.
In particular, the digital modulation of the baseband signal to the intermediate frequency signal effectively allows to manipulate the phase of the intermediate frequency signal and hence the phase of the I/Q modulator's input signal with high accuracy. In this way an I/Q modulator inherent phase error, that might be due to manufacturing tolerances of the I/Q modulator can be dynamically compensated. Hence, the invention provides a dynamic phase tuning of the I/Q modulator's input signal for suppression of a disadvantageous and undesired sideband.
Compared to solutions known in the prior art making use of e.g. filtering of sidebands or shifting of unavoidable sidebands into a frequency band that is outside the signal transmission band, the invention effectively inhibits generation of the undesired sideband and therefore provides an effective means to save energy in the modulation process and to circumvent application of filters.
Additionally, the dynamic phase adjusting mechanism allows implementation of low cost electronic components with rather large manufacturing tolerances for realizing the I/Q modulator. By adaptively tuning the phase of the I/Q modulator's input signals, standard and low cost I/Q modulators with appreciable phase errors may even be implemented for broadband applications, such as applications in the framework of wideband and multi-band transceivers, e.g. universal mobile telecommunication systems (UMTS) transceivers.
In typical implementations of the invention, the first digital modulator receives I- and Q branch of the baseband signal and generates the I′ input branch for the I/Q modulator and the second digital modulator generates a signal for the Q′input branch of the I/Q modulator by making use of both I and Q branch of the baseband signal.
According to a further preferred embodiment of the invention, the first and second modulators are implemented as first and second Coordinate Rotation Digital Computer (CORDIC) modules. These first and second CORDIC modules provide multiplication of an input signal with a trigonometric function, like sine or cosine. The basic idea of a CORDIC module is based on an iterative algorithm that provides rotation of the phase of a complex number by multiplication with a succession of constant values. These multiplies can all be powers of two, so in binary arithmetic they can be done using just shifts and adds; no actual hardware multiplication is required.
This CORDIC approach is of particular advantage when hardware multipliers are not available, such as e.g. in a micro-controller or when appropriate gates of a Field Programmable Gate Array (FPGA) shall be saved for other applications.
Additionally, CORDIC based modules may calculate the trigonometric functions to any desired precision when appropriately driven. In this way the phase of the intermediate frequency signal can be manipulated with respect to any desired accuracy.
According to a further preferred embodiment of the invention, the first and second CORDIC modules are driven by a phase accumulator that is adapted to generate a driving signal at the intermediate frequency with a tuneable phase. Here, an input word of the phase accumulator with arbitrary length controls the frequency of a generated sine wave. The phase of the generated wave is governed by the modulo 2π. This allows for a high precision tuning of the phase of the output signals of the CORDIC modules and hence of the input signals of the I/Q modulator. The frequency of the driving signal is typically in the range of several MHz; hence it can be generated by means of digital signal processing.
According to a further preferred embodiment of the invention, the first and second modulators are driven by a numeric controlled oscillator (NCO) that is adapted to generate a driving signal at the intermediate frequency with a tuneable phase. For example, the NCO module provides a sine and a cosine oscillation as input signal for the modulator. The modulator in turn provides multiplication of the NCO input signal with the I and Q component of the baseband signal. Preferably, the NCO provides a first input signal for the first modulator and a second input signal for the second modulator. Either one of the first or second input signals can be subject to a phase manipulation.
According to a further preferred embodiment of the invention, the tuning of the phase of the complex intermediate frequency signal further comprises determining the amplitude of the sideband of the output signal of the I/Q modulator and using the determined amplitude as a feedback signal for manipulating the phase of the intermediate frequency signal. In this way by processing of the feedback signal, the phase of the I/Q modulator's input signal can be appropriately modified in order to almost completely eliminate an undesired sideband of the I/Q modulator's high frequency output.
According to a further preferred embodiment of the invention, tuning of the phase of the intermediate frequency signal can also be realized by modifying the phase of the intermediate frequency signal by means of a predefined value that in turn depends on the frequency of the intermediate frequency signal or on the frequency band of the I/Q modulator. The predefined values may be stored in a table and may specify a frequency band specific phase error or phase offset of the I/Q modulator. However, this requires determination of the I/Q modulator's phase error properties prior to generation of the respective table and hence prior to performing the inventive sideband suppression procedure.
In contrast to a tuning of the phase of the intermediate frequency signal by means of a feedback signal, modification of the phase by means of predefined values does not require determination of the sideband amplitude of the output signal and subsequent signal processing.
Phase modification of the I/Q modulator's input signal by means of a look-up table may provide sufficient sideband suppression with respect to well characterized phase shifting behavior of the I/Q modulator. It therefore represents a cost efficient way of sideband suppression since it does not require an adaptive feedback loop. However, measuring of the sideband amplitude for generating a feedback signal for phase tuning generally represents a more sophisticated approach for sideband suppression that accounts for the actual environmental conditions and the actually existing sideband amplitude.
In another aspect, the invention provides an electronic circuit that is adapted to suppress undesired sidebands of an output signal of an I/Q modulator by adjusting the relative phase of the I/Q modulator's complex input signals. The inventive electronic circuit comprises a first and a second modulator for modulating a baseband signal to an intermediate frequency signal. The electronic circuit further comprises a generator module for generating a driving signal at the intermediate frequency that is provided to the first and second modulators. The electronic circuit further has a phase module that allows for tuning of the phase of the intermediate frequency signal. By tuning of the phase of the intermediate frequency signal, which can be performed by digital signal processing means, evolution of a particular sideband in the I/Q modulator's output signal can be effectively suppressed, attenuated or even be eliminated.
Furthermore, the electronic circuit comprises a control unit that is adapted to measure and to determine the amplitude of a sideband signal of the I/Q modulator's output and to appropriately control the phase module for minimizing the sideband amplitude. In this way the phase module and the control unit effectively provide a feedback mechanism for tuning the phase of the I/Q modulator's input in such a way that the undesired or unwanted sideband of the I/Q modulator's output is effectively attenuated.
In another aspect, the invention provides a transceiver for a wireless communication network that comprises this inventive electronic circuit.
In another aspect, the invention provides a base station of a wireless communication network that comprises the transceiver making use of the electronic circuit.
In still another aspect, the invention provides a mobile station of a wireless communication network that comprises the transceiver making use of the inventive electronic circuit.
In the following preferred embodiments of the invention will be described in greater detail by making reference to the drawings in which:
The baseband signal that has to be modulated is provided by means of the two input ports 116 and 118. The output HF signal is finally provided at the output port 119 of the I/Q modulator 106. The intermediate frequency signal is generated by means of the two modulators 104 and 102 and is provided as input to the I/Q modulator 106. For example, the real part of the baseband signal is provided by input port 116 and the imaginary part of the baseband signal is provided by the input port 118.
As can be seen in the block diagram of
Both modulators 102 and 104 are driven by means of the Numeric Controlled Oscillator 108. In the illustrated embodiment modulator 102 is directly driven by the NCO 108, whereas modulator 104 is driven by a corresponding signal of the NCO 108, whose phase can be shifted by means of the phase module 110. In this way the phase of the intermediate frequency signal might be arbitrarily tuned. It may therefore represent a predistorted or precompensated signal for the I/Q modulator. Preferably, modulators 102, 104, NCO 108 as well as phase module 110 are implemented by means of digital processing elements. Hence, generation of the intermediate frequency signal, which is typically in the range of several MHz, can be digitally generated and its phase can be digitally manipulated.
Real and imaginary parts of the intermediate frequency signal generated by modulators 104, 102, respectively are separately provided to the I/Q modulator 106 as input signals. The I/Q modulator 106 is typically driven by means of a local oscillator (LO) generator module 112. The two separate input signals to the I/Q modulator 106 are typically separately multiplied by orthogonal signals derived from the LO module 112. Thereafter, the two modulated signals are added and provided to the HF output 119 of the I/Q modulator 106.
The control unit 114 and the phase module 110 serve as a control loop for tuning the phase of the intermediate frequency signal. Therefore, the control unit 114 is coupled to the output of the I/Q modulator 106 in order to determine the amplitude of a sideband of the I/Q modulator's output. In response to detect an appreciable sideband amplitude, the control unit 114 is adapted to vary the phase of the intermediate frequency signal by means of controlling the phase module 110. By measuring an appropriate output signal of the I/Q modulator 106 that is based on the phase varied input signal, the sideband amplitude can be iteratively minimized or the entire sideband of the I/Q modulator's output can be completely eliminated.
The feedback loop of control unit 114 and the phase module 110 provides an efficient and accurate means to suppress sideband signals in the transmission band of the HF signal as well as a dynamic approach for compensating phase offset of an input baseband signal and phase errors of an I/Q modulator 106.
Additionally, the internal structure of the I/Q modulator 106 is schematically shown. The I/Q modulator 106 has two multipliers 128, 130, an adder 134 as well as a splitting module 132. The high frequency signal generated by the local oscillator module 112 is provided to the splitting module 132 generating a first sinusoidal signal for the multiplier 128 and providing a 90° phase shifted signal to the multiplier 130. In this way the real part of the intermediate frequency signal provided by the CORDIC module 122 might be multiplied by a sine signal by means of the multiplier 128, whereas the complex part of the intermediate frequency signal provided by the CORDIC module 120 is multiplied by a cosine signal by means of the multiplier 130. The two evolving modulator signals are then superimposed by means of the adder 134 and are finally provided as RF signal to the output port 119 that is connected to e.g. a power amplifier of a base station for a mobile telecommunication network.
For instance assuming that the real part of the intermediate frequency signal that is provided to the multiplier 128 can be expressed by A cos(ωt+φm) and that the corresponding imaginary part equals A sin(ωt). The two multipliers 128 and 130 of the I/Q modulator provide multiplication by B cos(ωct+φc) and −B sin(ωct), respectively, where ωc represents the frequency of the LO signal provided by the LO module 112, φm represents the phase of the intermediate frequency signal and φc reflects the phase offset or phase error of the I/Q modulator 106. Assuming further that the amplitudes of the real and imaginary parts as well the amplitudes of the LO signal and the incident intermediate frequency signal are all equal, the I/Q modulator's output is given by:
This can be expressed in term of an upper sideband (USB):
and a lower sideband (LSB)
As can be seen, when the two phases φm and φc are equal, hence when φm−φc=0, then the two components of the LSB mutually compensate and the lower sideband may entirely vanish.
The control unit 114 serves to analyze the HF output signal and to generate an appropriate feedback signal for the phase module 124 as soon as an undesired sideband signal can be detected at the HF output 119.
Alternative to the illustrated embodiment, the phase module 124 might be entirely integrated into the phase accumulator 126. In contrast to the NCO module 108 of
The alternative embodiment illustrated in
For instance, the phase accumulator 126 provides a phase signal in terms of modulo 2π which in turn serves as a basis to generate the RF frequency signal in terms of cot. Based on the input values I at input port 140 and Q at input port 142, the CORDIC module 120 serves to multiply the complex baseband signal and to provide the imaginary part Q′ of the multiplied signal at output port 144 and to provide the real part I′ of the multiplied signal at output port 146.
When implementing the CORDIC module 120 into an electronic circuit 200 as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
04292692.3 | Nov 2004 | EP | regional |