Portions of this patent application include materials that are subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document itself, or of the patent application as it appears in the files of the United States Patent and Trademark Office, but otherwise reserves all copyright rights whatsoever in such included copyrighted materials.
The present invention relates to industrial water distribution vehicles. More particularly, it relates to an automated spray and watering control system for use with industrial water distribution vehicles, such as off-road water trucks typically used to maintain surface conditions in mines, power plants, and construction sites.
Trucks that carry water tanks for spraying water on road surfaces and the like are well known. Many such trucks simply employ a bottom mounted discharge with a gravity feed system for emptying the tanks. Another type of water discharge is with a pressurization system for the water tank. These systems have a number of shortcomings. For example, their operation can result in overwatering, which is inefficient, wasteful and can present safety issues.
It is an object of the invention to provide a method and system for industrial water distribution vehicles that can eliminate waste and overwatering through better utilization of water payloads.
It is yet another object of the invention to enhance safety and operational efficiency by improved watering control.
It is also an object to reduce maintenance and service requirements for the watering system, thereby yielding greater return on investment (ROI).
It is still another object of the invention to improve equipment reliability.
Additional objects and advantages of the invention will be set forth in the description that follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations pointed out in this specification.
To achieve the foregoing objects, and in accordance with the purposes of the invention as embodied and broadly described in this document, there is provided a system for controlling water distribution from a water distribution vehicle. The system includes one or more spray heads for spraying water from the vehicle and an actuator system for turning the one or more spray heads on and off. A computer processor is programmed for providing a signal for controlling the actuator system. Control communication can be provided via a computer network data bus, such as a LIN bus. The actuator system can include a hydraulic actuator. The computer processor can automatically provide the signal for controlling the actuator system in response to at least one sensor input signal or in response to a manual input from an operator.
In one preferred embodiment, the system can include means for measuring the ground speed of the vehicle, such as a GPS, and the sensor input signal can be related to the ground speed of the vehicle. The processor is programmed to adjust the water flow from the spray heads based on the vehicle ground speed. In a preferred embodiment, the signal for controlling the actuator and adjusting the water flow can be pulse width modulated. The processor also can be programmed to prevent water flow from at least one of the spray heads when the vehicle speed is below a minimum speed or to prevent water flow from at least one of the spray heads as the vehicle speed is reduced.
According to another feature of the invention, the processor can be programmed to automatically turn off the water pump in response to a sensor signal, such as if a water level in the vehicle water tank is below a minimum level.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate the presently preferred embodiments and methods of the invention and, together with the general description given above and the detailed description of the preferred embodiments and methods given below, serve to explain the principles of the invention. As will be understood by one of ordinary skill in the art, the figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only.
Reference in this application is made to presently preferred embodiments and methods of the invention. While the invention is described more fully with reference to these examples, the invention in its broader aspects is not limited to the specific details, representative devices, and illustrative examples shown and described. Rather, the description is to be understood as a broad, teaching disclosure directed to persons of ordinary skill in the appropriate arts, and not as limiting upon the invention.
According to the present invention, there is provided an intelligent spray and/or watering control system for use on industrial water distribution vehicles (sometimes referred to in this specification as the “digital spray control system” or “DSCS”). The digital spray control system 10 is designed for, but not limited to, use on off-road water trucks typically used to maintain surface conditions in mines, power plants, and construction sites.
In a presently preferred embodiment, the base system replaces the previous vehicle cab controls with a novel operator interface and digital control system. The base system serves as the foundation for productivity improvements and offers benefits such as:
One advantageous embodiment of the system allows the water vehicle operator to automatically control the amount of water applied to road surfaces based on vehicle ground speed. The system 10 works with the existing spray system hardware—water pumps, hydraulic motors, spray heads and electro-hydraulic controls. The system offers the following additional benefits:
Referring to
As can be seen in FIGS. 2 and 5-8, the hydraulic control circuit 30 includes a solenoid box 32, which encloses a hydraulic control manifold 34. The hydraulic manifold includes valves, which control the flow of hydraulic fluid to the spray heads 18 for opening and closing them. The circuits of the hydraulic control manifold 34 are connected to the spray heads via hydraulic control lines 312, 314, 316, 318 and hydraulic line connectors 311, 313, 315, 317 located in the bottom of the solenoid box 32. The manifold valves are actuated by solenoids controlled by power controllers 50, as described in more detail below. Electrical connectors 60, as shown in
Referring to
The system network is designed around automotive microprocessor and control network technology. An automotive control network serves as a backbone over which a master node can issue commands and retrieve responses from a number of network slave nodes including user interfaces, human-machine interfaces, power control units, and sensor interface units. In one preferred embodiment, a Local Interconnect Network (LIN) bus is used with the digital spray control system 10. LIN is a low-speed and inexpensive serial protocol network loosely based on the well-known Controller Area Network (CAN). In a presently preferred embodiment, the digital spray control system 10 uses cables for connecting network nodes, but it will be understood that other suitable means of establishing communication between devices can be used, including for example fiber optics, infrared, Radio Frequency (RF), wireless, Wi-Fi and Bluetooth.
The choice of the LIN bus for the control network bus minimizes installation costs. A 3- or 4-wire shielded cable can be used to provide the communications between the nodes as well as the control power to the nodes themselves. Heavy loads (such as the solenoids and coils) draw power directly from the power source via cables entirely separate from the LIN bus. The number and size of conductors that must be used to interface the digital spray control system 10 to the devices on the vehicle is reduced by this approach.
Referring to
Referring to
Each power controller 50 exists as a slave node on the LIN bus, complete with its own microprocessor. If no LIN bus activity is detected by the microprocessor for a certain length of time, then the power controller 50 will time out and turn off power to the outputs. This prevents outputs from remaining energized if the master node should fail or in cases of lack of network connectivity (i.e., physical damage to cables, faulty LIN nodes, etc).
Referring to
Referring to
Upon reading this specification, it will be understood by those of skill in the art that slave nodes for other types of devices can be implemented as needs arise because of the flexibility of the modular network design of the system 10. For example, the network design will allow for the inclusion of data display units, touch screen interfaces, video or camera interfaces, soil monitoring devices, pattern recognition units, autonomous operation units (for vehicle operation), radio and telemetry devices, and many other devices used in operations where the digital spray control system might be applied.
Referring to
The digital spray control system 10 implements a number of features that are designed to improve the cost of ownership. Some of these features are:
Still referring to
The automatic (AUTO) mode is a feature of the digital spray control system 10 that uses ground speed feedback to continuously adjust the duty cycle and period of the sprayed pulses of water applied to the surface in accordance with the desires of the operator. In a presently preferred embodiment, this ground speed feedback is implemented by GPS. It also can be implemented, however, by other suitable means for sensing ground speed, such as radar, laser, shaft or transmission sensors, etc. In one embodiment, the auto mode is implemented by splitting the vehicle speed into various ranges where varying behaviors are applied:
An advantageous feature of the system 10 is the parameterization of the Rate knob 402 and Speed knob 404. This feature helps to simplify the operation of the system. There are many ways that the two knobs can be used, well known to persons skilled in the art of human-machine interfaces. This approach provides some key benefits:
According to another aspect of the system 10, pulsed (PWM) control of the spray heads can be combined with intelligently turning off some requested spray heads as the vehicle speed is reduced. Using the spray heads this way significantly compensates for engine RPM induced changes in water pump and spray head performance without requiring expensive and troublesome variable speed pumps/variable flow spray heads. This is expected to provide tangible ROI benefits to the customer.
Tables 1-3 below show pin out information for controller output load connections to various devices in an exemplary embodiment of the digital spray control system 10 using three controllers 50a, 50b, 50c.
The device to be actuated should be connected from the given pin to ground. The +24VDC will appear on the output when the device is to be turned on. At other times the output pin will be unpowered and will show a resistance of several thousand ohms to ground. Pin number references are for a Deutsch DT13-12PA connector housing, which is a 12-pin connector.
Regarding the +24VDC power to the controllers 50, it is possible for each of the controllers 50 to supply up to 16 amps of current to the connected loads if all loads are turned on simultaneously, each controller can supply a total of about 16 amps. With three controllers in operation, a maximum of 48 amps must be supplied by the +24VDC power bus. The cable carrying the +24VDC power should be sized appropriately for this current, taking into account the length of the power cable and voltage drop due to the resistance of the wire in the cable. This should be done to provide proper operation and prevent overheating in the power cable. Preferably, the power cable is protected by a fuse or circuit breaker at the power source connection.
Regarding +24VDC load power pins on the controllers 50, if the power pins are too small to individually carry the required current, multiple pins can be used to obtain the required current capacity. It is preferable to run wires from the pair of pins together from each controller to the power bus and connect than to the power bus, rather than to tie them together at the connector and run a single wire to the power bus. For example, the two red wires for +24VDC (pins 9, 12) can be run from controller #1 together over to the +24VDC power bus, tied together with a crimp lug at the power bus, and make the connection to the power bus with the crimp lug (could also install individual crimp lugs, then attach the two crimp lugs to the power bus). This should be done separately for each controller (i.e. don't daisy chain the +24VDC from connector to connector and then tie the end of the chain to the +24VDC power bus). This helps to prevent the wires from being overloaded and also to eliminate excessive voltage drops/noise on the loads when various devices are turned on/off.
Table 4 below shows pin out information for a water level sensor an exemplary embodiment of the digital spray control system 10.
Table 5 below shows pin out information for LIN bus cables in an exemplary embodiment of the digital spray control system 10.
Table 6 below shows pin out information for a switch box power cable in an exemplary embodiment of the digital spray control system 10.
As shown in
For the example reference code 100 shown in
Example Reference Code: 1 KB4C10CA
Exemplary switch setting configuration options for the switchbox 32 are shown below in Table 7.
The PWM drive power to the pump valve ramps the pump up and down. Because there are several different valves in common use, the switch settings allow for selection of the appropriate drive power for the type of valve being used
The firmware configures the system based on the DIP switch settings. The pin/switch assignments are:
Upon reading this disclosure, those skilled in the art will appreciate that various changes and modifications may be made to the preferred embodiments of the invention and that such changes and modifications may be made without departing from the spirit of the invention. Therefore, the invention in its broader aspects is not limited to the specific details, representative devices, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the general inventive concept.
This application claims the benefit of U.S. Provisional Application No. 61/705,087, filed Sep. 24, 2012, entitled “Digital Spray Control System,” which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61705087 | Sep 2012 | US |