Optical communication systems typically include a first node that supplies optical signals carrying user information or data to a second node that receives such optical signals via an optical communication path that connects the first node to the second node. In certain optical communication systems, the first node is a so-called hub node that communicates with a plurality of second nodes, also referred to as leaf nodes. The optical communication paths that connect the hub with multiple leaf nodes may include one or more segments of optical fiber connected to one another by various optical components or sub-systems, such as optical amplifiers, optical splitters and combiners, optical multiplexers and demultiplexers, and optical switches, for example, wavelength selective switches (WSS). The optical communication path and its associated components may be referred to as a line system.
In each node, the various electrical and optical components or sub-systems may introduce impairments in the transmitted optical signals, such as a linear time-invariant impairments, nonlinear impairments, etc. Generally, linear time-invariant impairments are the dominant impairment type. These impairments cause a magnitude response or a phase response, or both, in the transmitted optical signal, thereby degrading the optical signal and limiting the transmitter from using higher modulation schemes when modulating the optical signal, which may result in a lower quality transmission.
Thus, a need exists for a system and method to measure and mitigate the effects of impairments introduced to the optical signals. It is to such a system and method that the present disclosure is directed.
The problem of mitigating the effects of impairments introduced to the optical signals is solved by introducing an AM tone and data to an optical modulator generating a modulated optical signal, measuring an amplitude response of the AM tone within the modulated optical signal, calculating a frequency response based on the amplitude response, and calibrating the optical modulator with the frequency response.
In some embodiments, the problem of mitigating the effects of impairments introduced to the optical signals is solved by a transmitter, comprising a laser operable to supply an optical signal; an AM signal generator operable to supply first electrical signals based on an AM tone having a first known carrier frequency component at a first period of time and a second known carrier frequency component at a second period of time, wherein the first known carrier frequency component is different from the second known carrier frequency component; digital-to-analog conversion circuitry operable to output second electrical signals based on the first electrical signals; modulator driver circuitry operable to output third electrical signals based on the second electrical signals; an optical modulator operable to modulate the optical signal based on the third electrical signals to supply a modulated optical signal, the modulated optical signal based on the AM tone; a photodetector operable to measure a power of the modulated optical signal; and a demodulation circuitry coupled to the photodiode and operable to determine an amplitude response using a first power of the modulated optical signal and the first known carrier frequency component at the first period of time and a second power of the modulated optical signal and the second known carrier frequency component at the second period of time, to calculate a frequency response based on the amplitude response, and to calibrate the optical modulator with the frequency response.
Other implementations are directed to systems, hub transceivers, devices, and non-transitory, computer-readable media having instructions stored thereon, that when executed by one or more processors, cause the one or more processors to perform operations described herein.
The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other aspects, features and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more implementations described herein and, together with the description, explain these implementations. The drawings are not intended to be drawn to scale, and certain features and certain views of the figures may be shown exaggerated, to scale or in schematic in the interest of clarity and conciseness. Not every component may be labeled in every drawing. Like reference numerals in the figures may represent and refer to the same or similar element or function. In the drawings:
Like reference numbers and designations in the various drawings indicate like elements.
The following detailed description refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
Before explaining at least one embodiment of the disclosure in detail, it is to be understood that the disclosure is not limited in its application to the details of construction, experiments, exemplary data, and/or the arrangement of the components set forth in the following description or illustrated in the drawings unless otherwise noted.
The disclosure is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for purposes of description and should not be regarded as limiting.
As used in the description herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” or any other variations thereof, are intended to cover a non-exclusive inclusion. For example, unless otherwise noted, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may also include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Further, unless expressly stated to the contrary, “or” refers to an inclusive and not to an exclusive “or”. For example, a condition A or B is satisfied by one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
In addition, use of the “a” or “an” are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the inventive concept. This description should be read to include one or more, and the singular also includes the plural unless it is obvious that it is meant otherwise. Further, use of the term “plurality” is meant to convey “more than one” unless expressly stated to the contrary.
As used herein, qualifiers like “substantially,” “about,” “approximately,” and combinations and variations thereof, are intended to include not only the exact amount or value that they qualify, but also some slight deviations therefrom, which may be due to computing tolerances, computing error, manufacturing tolerances, measurement error, wear and tear, stresses exerted on various parts, and combinations thereof, for example.
As used herein, any reference to “one embodiment,” “an embodiment,” “some embodiments,” “one example,” “for example,” or “an example” means that a particular element, feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment and may be used in conjunction with other embodiments. The appearance of the phrase “in some embodiments” or “one example” in various places in the specification is not necessarily all referring to the same embodiment, for example.
The use of ordinal number terminology (i.e., “first”, “second”, “third”, “fourth”, etc.) is solely for the purpose of differentiating between two or more items and, unless explicitly stated otherwise, is not meant to imply any sequence or order of importance to one item over another.
The use of the term “at least one” or “one or more” will be understood to include one as well as any quantity more than one. In addition, the use of the phrase “at least one of X, Y, and Z” will be understood to include X alone, Y alone, and Z alone, as well as any combination of X, Y, and Z.
Where a range of numerical values is recited or established herein, the range includes the endpoints thereof and all the individual integers and fractions within the range, and also includes each of the narrower ranges therein formed by all the various possible combinations of those endpoints and internal integers and fractions to form subgroups of the larger group of values within the stated range to the same extent as if each of those narrower ranges was explicitly recited. Where a range of numerical values is stated herein as being greater than a stated value, the range is nevertheless finite and is bounded on its upper end by a value that is operable within the context of the invention as described herein. Where a range of numerical values is stated herein as being less than a stated value, the range is nevertheless bounded on its lower end by a non-zero value. It is not intended that the scope of the invention be limited to the specific values recited when defining a range. All ranges are inclusive and combinable.
When values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. Reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. The term “about” when used in reference to numerical ranges, cutoffs, or specific values is used to indicate that the recited values may vary by up to as much as 10% from the listed value. Thus, the term “about” is used to encompass variations of ± 10% or less, variations of ± 5% or less, variations of ± 1% or less, variations of ± 0.5% or less, or variations of ± 0.1% or less from the specified value.
Circuitry, as used herein, may be analog and/or digital components, or one or more suitably programmed processors (e.g., microprocessors) and associated hardware and software, or hardwired logic. Also, “components” may perform one or more functions. The term “component,” may include hardware, such as a processor (e.g., microprocessor), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a combination of hardware and software, and/or the like. The term “processor” as used herein means a single processor or multiple processors working independently or together to collectively perform a task.
Software may include one or more computer readable instructions that when executed by one or more components cause the component to perform a specified function. It should be understood that the algorithms described herein may be stored on one or more non-transitory computer readable medium. Exemplary non-transitory computer readable mediums may include random access memory, read only memory, flash memory, and/or the like. Such non-transitory computer readable mediums may be electrically based, optically based, magnetically based, and/or the like. Further, the messages described herein may be generated by the components and result in various physical transformations.
The generation of laser beams for use as optical data carrier signals is explained, for example, in U.S. Pat. No. 8,155,531, entitled “Tunable Photonic Integrated Circuits”, issued Apr. 10, 2012, and U.S. Pat. No. 8,639,118, entitled “Wavelength division multiplexed optical communication system having variable channel spacings and different modulation formats,” issued Jan. 28, 2014, which are hereby fully incorporated in their entirety herein by reference.
Referring now to the drawings, and in particular to
In one embodiment, the primary node 14 includes a primary transceiver 22 (or transceiver module) that is operable to supply a downstream optical signal (DS), including optical subcarriers, to an optical fiber link 26-1 (e.g., part of a first or downstream optical communication path), and receives an upstream signal (US) from an optical fiber link 26-2 (e.g., part of a second or upstream optical communication path). In one embodiment, the primary transceiver or primary transceiver 22 may be referred to as a hub transceiver or hub transceiver module. The downstream optical signal DS is fed by the optical fiber link 26-1 to one or more optical line system component, such as an optical amplifier, an erbium-doped fiber amplifier, an add-drop module, an optical gateway, a ROADM, and/or the like. As discussed in greater detail below with reference to
In one embodiment, the secondary node 18 includes a secondary transceiver 34 that is operable to transmit optical signals to the primary node 14 and to receive optical signals from the primary node 14. In one embodiment, the optical communication system 10 includes more than one primary node 14, each of which communicates with one or more secondary node 18.
In one embodiment, the primary transceiver 22 includes a transmitter, described below and shown in
In one embodiment, each secondary node 18 may have a structure similar to the primary node 14 and may operate in a manner similar to that described above with respect to the primary node 14.
As further shown in
The optical signals US′-1 to US′-n may be combined by a combiner in optical line system 50 and output towards the primary node 14 in combined form as the upstream optical signal US. The optical signal US may then be provided to the primary transceiver 22 via the optical fiber link 26-2.
Referring now to
Details of the transmitters 70, 82 and the receivers 74, 78 of the primary node 14 and the secondary node 18, respectively, are described in more detail below. It is understood that the transmitters 70, 82 have a similar structure and operate in a similar manner. Additionally, it is understood that the receivers 74, 78 have a similar structure and operate in a similar manner.
Referring now to
Referring now to
A Nyquist subcarrier is a group of optical signals, each carrying data, where (i) the spectrum of each such optical signal within the group is sufficiently non-overlapping such that the optical signals remain distinguishable from each other in the frequency domain, and (ii) such group of optical signals is generated by modulation of light from a single laser.
As discussed in greater detail below, the optical subcarriers SC1 to SC8 are generated by modulating light output from a laser. The frequency of such laser output light is f0 and is typically a center frequency such that half the subcarrier subcarriers (e.g., f5 to f8) are above f0, e.g., have a greater frequency than f0, and half the subcarrier frequencies (e.g., f1 to f4) are below fo, e.g., have a lesser frequency than fo.
As further shown in
Referring now to
As further shown in
The D/A and optics block 112 further includes optical modulator circuitry (MZM 120-1 to 120-4). Each MZM 120 is operable to output a first modulated optical signal or a second modulated optical signal based on the second electrical signals. The first modulated optical signal includes multiple optical subcarriers (e.g., the optical subcarriers SC1 to SC8) carrying user data to be transmitted between nodes of the optical communication system 10, and the second modulated optical signal is, for example, applying data to the orthogonal polarization, such as polarization multiplexing.
Each of the MZMs 120-1 to 120-4 of the D/A and optics block 112 may be a Mach-Zehnder Modulator (MZM) that modulates the phase and/or amplitude of the light output from a laser 124. As further shown in
The first portion of the light is further split into third and fourth portions, such that the third portion is modulated by the MZM 120-1 to provide an in-phase (I) component of an X (or TE) polarization component of a modulated optical signal, and the fourth portion is modulated by the MZM 120-2 and fed to a phase shifter 128-1 to shift the phase of such light by 90 degrees in order to provide a quadrature (Q) component of the X polarization component of the modulated optical signal.
Similarly, the second portion of the light is further split into fifth and sixth portions, such that the fifth portion is modulated by the MZM 120-3 to provide an I component of a Y (or TM) polarization component of the modulated optical signal, and the sixth portion is modulated by the MZM 120-4 and fed to a phase shifter 128-2 to shift the phase of such light by 90 degrees to provide a Q component of the Y polarization component of the modulated optical signal.
The optical outputs of the MZMs 120-1 and 120-2 are combined to provide an X polarized optical signal including I and Q components and fed to a polarization beam combiner (PBC 132) provided in the optics block 112. In addition, the outputs of the MZMs 120-3 and 120-4 are combined to provide an optical signal that is fed to a polarization rotator 136, further provided in the optics block 112, that rotates the polarization of such optical signal to provide a modulated optical signal having a Y (or TM) polarization. The Y polarized modulated optical signal is also provided to a PBC 132, which combines the X and Y polarized modulated optical signals to provide a polarization multiplexed (“dual-pol”) modulated optical signal onto an optical fiber 140. In some examples, the optical fiber 140 may be included as a segment of optical fiber in an example optical communication path of the optical communication system 10.
In some implementations, the polarization multiplexed optical signal output from the D/A and optics block 112 includes the optical subcarriers SC1-SC8 (e.g., of
In one embodiment, as shown in
In another example, a plurality of optical components 144 may be provided to receive an optical signal including the optical subcarriers SC1 to SC8 output from the PBC 132. The optical components 144 may be any combination of a variable optical attenuator, an amplifier, an optical filter, such as a tunable filter, and/or the like. The optical component 144 may be operable to modify the optical signal output from the PBC 132. For example, if the optical component is a VOA, the VOA may be operable to adjust or vary the attenuation of the optical signal. By varying the attenuation experienced by the optical subcarriers SC1 to SC8, the amplitude or intensity of such subcarriers may be adjusted or controlled, such that the subcarriers SC1 to SC8 are amplitude modulated.
The transmitter 70 may be provided in the module 148, which may also house a receiver 74 of the primary transceiver 22 of the primary node 14. Although the optical components block 144 is shown inside the module 148, it is understood that the optical components 144 may be provided outside the module 148.
In one embodiment, the transmitter 70 includes one or more optical tap 150 disposed between the PBC 132 and the optical fiber 140 and in optical communication to receive a portion of the optical signal from the PBC 132. In the embodiment where the optical components 144 is included in the transmitter 70, the optical tap 150 may be disposed between the optical components 144 and the PBC 132 and/or disposed between the optical components 144 and the output optical fiber 140. As shown in greater detail below in reference to
In one embodiment, amplitude-modulated (AM) tones maybe added to the data coming from the DSP 104-3 by providing an AM signal generator 152 which provides each of outputs AMO-1 to AMO-4 to a respective input of the DACs 108-1 to 108-4. These signals are generated in such a way that the DACs 108 output analog signals that include the AM tone overlaying or superimposed on the data carrying DAC outputs. Based on such DAC outputs, the MZMDs 116, in turn, output drive signal to the MZMs 120, as noted above. Accordingly, the combined MZM outputs supply optical subcarriers are superimposed with the AM tone based on the outputs AMO-1 to AMO-4 of the AM signal generator 152. Both X and Y polarization components and both components I and Q of each polarization are capable of such AM tones being added to the high-speed data. In one embodiment, both X and Y polarization components and both I and Q components include a single AM tone, whereas in other embodiments, both X and Y polarization components and both I and Q components include a plurality of AM tones.
While the AM signal generator 152 is shown in
In other embodiments, each DAC 108 is associated with a different AM signal generator 152 to provide an output AMO to the particular DAC 108. In one embodiment, the primary transceiver 22 may share a single AM signal generator between multiple transmitters 70. Similarly, in some embodiments, the primary node 14 may share a single AM signal generator between multiple primary transceivers 22.
The controls and monitoring circuit 300 is in communication with the one or more optical tap 150 to receive the portion of the optical signal from the PBC 132 to monitor the optical signal. In one embodiment, the controls and monitoring circuit 300 may also be in communication with one or more of the optical components 144, the D/A and Optics Block 112, the AM signal generator 152, and the DSP 100. In one embodiment, the controls and monitoring circuit 300 outputs the CDPS signal as received by the block 104-2. In one embodiment, the controls and monitoring circuit 300 communicates with the DSP 100 and optical component 144 to control various settings, such as, VOA setting, amplifier setting, MZM bias, AM signal generator, CDPS data, laser control, and the like, or some combination thereof.
Referring now to
In one embodiment, ωAM is much smaller than ωCarrier, such as a frequency selected from the range of about 0 MHz to about 50 MHz. In one embodiment, ωAM = 2πƒAM. Where ƒAM is the AM frequency of the tone in Hz.
It is understood that the AM signal generator 152 may include circuitry similar to the AM signal generator 152-1 shown in
In one embodiment, the AM signal generator 152 may supply a first AM tone for a first period of time and a second AM tone for the second period of time. For example, the first AM tone may have a first ωAM-I and a first ωCarrier-1, at the first period of time and the AM tone may have a second ωAM-2 and a second ωCarrier-2 at the second period of time. In some embodiments, the first period of time and the second period of time are the same amount of time. In some embodiments, the first ωAM and the second ωAM are the same, however in other embodiments the first ωAM and the second ωAM are different. In some embodiments, the first ωCarrier and the second ωCarrier are the same, however in other embodiments, the second ωCarrier and the second ωCarrier are the same. In one embodiment, the controls and monitoring circuit 300 controls the AM signal generator 152 as part of a frequency response determination process 600 as shown in
Referring now to
Each of the FEC encoders 200-1 to 200-8 provides an output to a corresponding one of multiple bits to symbol circuits, 204-1 to 204-8 (collectively referred to herein as “204”). Each of the bits to symbol circuits 204 may map the encoded bits to symbols on a complex plane. For example, the bits to symbol circuits 204 may map four bits to a symbol in a dual-polarization Quadrature Phase Shift Keying (QPSK) or an m-quadrature amplitude modulation (m-QAM, m being a positive integer) constellation, such as 8-QAM, 16-QAM, 32-QAM, 64-QAM, and 128-QAM or a greater m-quadrature amplitude modulation. Each of the bits to symbol circuits 204 provides first symbols, having the complex representation XI + j*XQ, associated with a respective one of the data input, such as D1. Data indicative of such first symbols may be carried by the X polarization component of each subcarrier SC1-SC8.
Each of the bits to symbol circuits 204 may further provide second symbols having the complex representation YI + j*YQ, also associated with a corresponding one of the data inputs D1 to D8. Data indicative of such second symbols, however, is carried by the Y polarization component of each of the subcarriers SC1-SC8.
As further shown in
Each overlap and save buffer 208 supplies an output, which is in the time domain, to a corresponding one of the fast Fourier Transform (FFT) circuits 212-1 to 212-8 (collectively referred to as “FFTs 212”). In one example, the output includes 256 symbols or another number of symbols. Each of the FFTs 212 converts the received symbols to the frequency domain using or based on, for example, a fast Fourier transform. Each of the FFTs 212 may include 256, for example, memories or registers, also referred to as frequency bins or points, that store frequency components associated with the input symbols.
Each of the replicator components 216-1 to 216-8 may replicate the 256 frequency components associated with of the FFTs 212 and store such components in 512 or another number of frequency bins (e.g., for T/2 based filtering of the subcarrier) in a respective one of the plurality of replicator components. Such replication may increase the sample rate. In addition, replicator components 216-1 to 216-8, or circuits, may arrange or align the contents of the frequency bins to fall within the bandwidths associated with shape filter circuits 220-1 to 220-8 described below.
In one embodiment, each of the shape filter circuits 220-1 to 220-8 may apply a pulse shaping filter to the data stored in the 512 frequency bins of a respective one of the plurality of replicator components 216-1 to 216-8 to thereby provide a respective one of multiple filtered outputs, which are multiplexed and subject to an inverse FFT, as described below. The shape filter circuits 220-1 to 220-8 calculate the transitions between the symbols and the desired subcarrier spectrum so that the subcarriers can be spectrally packed together for transmission (e.g., with a close frequency separation). The shape filter circuits 220-1 to 220-8 may also be used to introduce timing skew between the subcarriers to correct for timing skew induced by links between nodes shown in
In one embodiment, the shape filter circuits 220-1 to 220-8 may further include a frequency domain equalizer filter, pre-compensation filter, and/or a CD filter, discussed in more detail below in reference to
In one embodiment, the shape filter circuits 220-1 to 220-8 may further receive an array of amplitude and/or phase values, such as from the amplitude response and/or phase response derived below) and apply the amplitude and/or phase values to the spectrum of each subcarrier of the optical signal.
In one embodiment, a memory component 224, which may include a multiplexer circuit or memory, may receive the filtered outputs from the shape filter circuits 220-1 to 220-8, and multiplex or combine such outputs together to form an element vector.
The output of the memory component 224 is fed to the circuit block 104-3, which includes, in this example, an IFFT circuit 228-1. The IFFT circuit 228-1 may receive the element vector and provide a corresponding time domain signal or data based on an inverse fast Fourier transform (IFFT). In one example, the time domain signal may have a rate of 64 G Sample/s. A take last buffer or memory circuit 232-1 may select the last 1024 or another number of samples from an output of the IFFT circuit 228-1 and supply the samples to a downstream node at 64 G Sample/s, for example.
As further shown in
While
Referring now to
In some implementations, the gain of each multiplier 260 is software programmable (or may be implemented in firmware) along with a frequency shaping function in the filter circuit 220 preceding the multiplexing performed by the multiplexer or memory component 224.
In one embodiment, in the example shown in
In one embodiment, the gain parameters may be used as limited pre-compensation filter parameters for each subcarrier SC1 to SC8. In other words, adjusting the gain parameters may adjust an average power of a subcarrier. This embodiment, however, cannot mitigate power variance within any particular subcarrier.
As discussed in greater detail below, optical subcarriers may be selectively output by primary transceivers 22 and/or secondary transceivers 34. The number of optical subcarriers that may be output, however, can vary over time in accordance with bandwidth of data capacity requirements of the transceiver. For example, if at one point in time, network bandwidth requirements are such that transceiver 34a transmits 200 Gbit/s to primary transceiver 22, and, each subcarrier carries data associated with 100 Gbit/s transmission, transceiver 34a outputs two optical subcarriers (2 subcarriers X 100 Gbit/s).
As noted above, however, bandwidth requirements are often not static. Accordingly, in the current example, at another point in time, the network capacity requirements may be such that transceiver 34a transmits 100 Gbit/s to primary transceiver 22. As a result, transceiver 34a, turns off or cancels one of the subcarriers that previously had been transmitted. On the other hand, if, for example, additional bandwidth or capacity is required to be output from transceiver 34a, instructions may be provided to increase the number of optical subcarriers output from transceiver 34a.
Referring now to
While
Detection of an AM tone applied from the AM signal generator 152 generated at the transmitter 148 of a near end transceiver, primary transceiver 22, will next be described. The optical signal is input to an optical tap 150, which may provide an optical power split portion of the optical signal (e.g., 1% to 10%) to a photodetector 332, which may be a photodiode or other device operable to detect a power of the optical signal. A remaining portion of the optical signal continues to propagate along optical communication path 316 via the fiber optical 140. A VOA 312-1 or other optical component 144 may optionally be provided for processing the output signal. For example, the VOA 312-1 can receive the signal output by the optical tap 150 via an optical input port 336-1, and attenuate the signal according to an analog signal 340 received via the optical input port 336-2. In one embodiment, as described above, the optical tap 150 may be placed after the VOA 312-1. In one embodiment, the VOA 312-1 is set to a fixed gain. In this manner, the gain of the VOA 312-1 will not compromise detection of a frequency response.
As further shown in
In one embodiment, the amplitude response is one component of the frequency response caused by impairments in components of the primary node 14, primary transceiver 22, and/or transmitter 70. The amplitude response, in conjunction with a phase response, comprise the frequency response. The frequency response is a linear time-invariant impairment of the primary node 14, primary transceiver 22, and/or transmitter 70. Linear time-invariant impairments may be caused by components such as the DAC 108, traces and/or cables between components, the MZMD 116, MZM frequency roll-off, echoes in the transmitter 70 (e.g., caused by impedance mismatch), ripple in the spectral response, skew, any non-linear phase response, MZMD 116 peaking, low latency attenuation, and the like. Additionally, the frequency response may be temperature dependent, that is, the frequency response may change based on a temperature of the transmitter 70 and/or other components of the primary transceiver 22. The frequency response may also be age dependent, that is, the frequency response may change based on an age of the transmitter 70 and/or other components of the primary transceiver 22. The frequency response may also be optical laser frequency dependent, that is, the frequency response may change based on the operational laser frequency of the transmitter 70 and/or other components of the primary transceiver 22.
Referring now to
Generation of multiple amplitude modulated tones in the data paths will next be described. As noted above, the AM signal generator 152 can generate and transmit the AM tone super-imposed onto high-speed data supplied from the DSP 100. Referring now to
Returning to
The AM signal generator 152-2 also includes, for example, a multiplier circuit 424-2 that multiplies the second AM signal amplitude AS2 by a cosine function, cos(ωCt), where ωC is indicative of a frequency of another amplitude modulation and t is time as discussed above. Adder circuit 428-2 and the multiplier circuit 432-2 operate in a similar manner as the adder circuit 428-1 and the multiplier circuit 432-1 (except that the multiplier circuit 432-1 multiplies the resulting sum of the adder circuit 428-2 by cos(ω’Carriert)) resulting in a second output. As further shown in
It is understood that additional circuitry similar to the AM signal generator 152-2 shown in
Moreover, one or more of the secondary transceivers 34 may include transmitter 82, or transmitter circuitry, similar to the transmitter 70 and may include any of the AM signal generator 152, 152-1, and/or 152-2, as described above.
Referring now to
In some embodiments, because the crosstalk between the first X component 502-1 and the second X component 502-2 is very small, minimal, or non-existent, the Hiq filter values 504-2 and the Hqi filter values 504-3 can be set to “0” resulting in the first X component output 512-1 being equal to Hii*Xi and the second X component output 512-2 being equal to Hqq*Xq.
The filter 500 shown in
Referring now to
. It should be noted that the conjugation block 524 may be denoted in the equation for Xout as an asterisk (*), such that if the conjugation block 524 receives an input of X = XI + jXQ, then the conjugation block 524 may have an output of X* = XI - jXQ.
Referring now to
In one embodiment, the photodetector 332 may be implemented as a simple photodiode with narrow bandwidth, e.g., a bandwidth of about 100 KHz to 100 MHz, or some range there-between.
Referring now to
On the first path, the digital signal is multiplied by sin(ωAMt) by multiplier 554-1. The sine-multiplied signal, then passes through a low-pass filter 558-1, is amplified by amplifier 562-1 and enters a summation block 566. On the second path, the digital signal is multiplied by cos(ωAMt) by multiplier 554-2. The cosine-multiplied signal, then passes through a low-pass filter 558-2, is amplified by amplifier 562-2 and enters the summation block 566. At the summation block 566, the sine-multiplied signal and the cosine-multiplied signal are combined into a tone amplitude response at frequency ωAM.
In one embodiment, the AM tone is the same as the one generated by the AM signal generator 152. In one embodiment, the low-pass filter 558-1 and/or the low-pass filter 558-2 is a low bandwidth filter. In one embodiment, the photodetector 332 is a low bandwidth photodetector that detects a power of the AM tone but is insensitive to frequencies of the optical signal at which data is being transmitted. It is important that the bandwidth of the photodetector 332 and the demodulation circuitry 342 are above the frequency of the AM tone (ωAM). Note that the bandwidth of the photodetector 332 and the demodulation circuitry 342 may be less than the bandwidth of the optical signal carrying data. In this manner, the AM tone is not affected, or is minimally affected, by the data transmitted on the optical signal, and, similarly, the data transmitted on the optical signal is not affected, or is minimally affected, by the AM tone.
Referring now to
In one embodiment, setting up the AM signal generator (step 604) includes, for each channel or subcarrier, for each polarization X and Y and for each path I and Q, setting up the AM signal generator 152 with an AM signal resulting in an AM tone having a known carrier frequency and a known AM frequency. In one embodiment, the AM tone has a component at the carrier frequency, a component at the carrier frequency less the AM frequency, and a component at the carrier frequency plus the AM frequency, as described in more detail below with respect to
In one embodiment, sweeping the AM tone across the band of interest (step 608) includes causing the AM signal generator 152 to transmit a plurality of AM tones 658 across a band of interest, such as a subcarrier or an optical signal. In one embodiment, sweeping the AM tone across the band of interest (step 608) includes sweeping the AM tone across only a portion of the band of interest. In one embodiment, sweeping the AM tone’s carrier frequency across the band of interest (step 608) includes sweeping the AM tone’s carrier frequency (ωcarrier) from a frequency of about 0.5 GHz to a frequency of about 50 GHz with steps of about 0.1 GHz. In other words, the AM tone is first centered on a 0.5 GHz carrier frequency, then centered on a 0.6 GHz frequency, then centered on a 0.7 GHz frequency, etc., until, lastly, the AM tone is centered on a 50 GHz carrier frequency. In one embodiment, the AM tone is centered on each frequency in order from lowest frequency to highest frequency, the AM tone is centered on each frequency in order from highest frequency to lowest frequency, or the AM tone is centered on one or more test frequency between the lowest frequency and the highest frequency, inclusive, where the test frequency is the lowest frequency plus a multiplier of the step frequency in any order not ascending or descending.
In one embodiment, the tone detector is a photodetector, such as the photodetector 332, a SOA in reverse bias, or any other device operable to detect and/or measure a power of the optical signal. In one embodiment, measuring the power at the tone detector (step 612) includes measuring an output of the photodetector 332, such as by the ADC 344 of the demodulation circuitry 342, which corresponds to the square of the amplitude response of the transmitter path. In one embodiment, measuring the power at the tone detector (step 612) is performed while the AM tone 658 is being swept across the band of interest. For example, as shown in
In one embodiment, measuring the power at the tone detector (step 612) includes measuring the power of the photodetector 332 multiple times and calculating an average of the measured power. In one embodiment, measuring the power at the tone detector (step 612) further includes determining a measured power of the photodetector 332 by passing the voltage of the photodetector through the ADC 344. In one embodiment, measuring the power at the tone detector (step 612) is performed by an FPGA, ASIC, or microprocessor 300, the DSP 100, or the like, implementing the ADC 344.
In one embodiment, obtaining the amplitude response (step 616) includes interpolating and normalizing the measured power at the tone demodulator from step 612. Obtaining the amplitude response (step 616) may be performed by the demodulation circuitry 342. As discussed above, the measured power may be analyzed by the demodulation circuitry 342, e.g., the demodulation circuitry 342-2, to determine the amplitude response. The amplitude response is the square root of the measured tone strength as the AM tone is swept across the band.
In one embodiment, calculating the phase response (step 620) includes calculating the phase response using Kramers-Kronig relation:
If the transmitter 70 has an impulse response that is well-behaved and matches Kramers-Kronig conditions, the phase response can be calculated from the amplitude response. The Kramers-Kronig conditions that should be matched include that h(t) is (1) a real value, (2) is causal, and (3) is analytic. If the conditions are matched, the following equation is true:
Further simplifications results in the equation
and
With an additional condition that h(t) is a minimum phase, e.g., mod 2n, the above equation can be simplified to
(equation 1) where
By using Equation 1, the phase response can be calculated for the amplitude response for each path I, Q, of each component X, Y as shown in
In one embodiment, determining the frequency response (step 624) includes combining the amplitude response and the phase response into the frequency response. In some embodiments, this is performed by the DSP 100, the microprocessor 300, e.g., within the demodulation circuitry 342, within an FPGA, within an ASIC, the central software 38, or the like. In one embodiment, determining the frequency response (step 624) includes averaging the amplitude response, the phase response, and/or the frequency response over multiple sweeps of the AM tone across the bands of interest.
In some embodiments, determining the frequency response (step 624) is performed without first calculating the phase response. In these embodiments, the frequency response includes only the amplitude response and not the phase response.
In one embodiment, determining the frequency response (step 624) includes combining the amplitude response with the phase response for each path I, Q, of each component X, Y to determine a frequency response for each channel of the optical signal. In one embodiment, determining the frequency response (step 624) includes combining the amplitude response with the phase response for each path I, Q, of each component X, Y for each channel to determine a frequency response of the optical signal.
In one embodiment, calculating pre-compensation filter parameters (step 628) includes taking an inverse of the frequency response determined in step 624. In one embodiment, calculating pre-compensation filter parameters (step 628) includes taking an inverse of the amplitude response for each path I, Q, of each component X, Y, as shown in
In one embodiment, calculating pre-compensation filter parameters (step 628) includes taking an inverse of the frequency response for each path I, Q, of each component X, Y, as shown in
In one embodiment, implementing the pre-compensation filter parameters (step 632) includes applying one or more of the pre-compensation filter parameters for the frequency response on one or more of the shape filter circuits 220-1 to 220-8 or 252-1 to 252-8. The pre-compensation filter parameters may include an amplitude and/or phase filter to be performed on the optical signal at a particular frequency or on a particular range of frequencies. The amplitude filtering may correspond to the amplitude, in dB, of the inverse of the frequency response as shown in
In one embodiment, implementing the pre-compensation filter parameters (step 632) includes applying one or more of the pre-compensation filter parameters for the frequency response against the optical signal. In embodiments where the optical signal does not include multiple subcarriers, implementing the pre-compensation filter parameters (step 632) includes applying one or more of the pre-compensation filter parameters for the frequency response on the bandwidth of the optical signal on which data is being transmitted. For example, if data is being transmitted on an optical signal from a first frequency to a second frequency, implementing the pre-compensation filter parameters may include applying the pre-compensation parameters on the optical signal from the first frequency to the second frequency, e.g., by using a frequency domain equalizer or a CD filter.
In one embodiment, implementing the pre-compensation filter parameters (step 632) includes storing the pre-compensation filter parameters in a memory associated with the DSP 100 or otherwise associated with the primary node 14. In one embodiment, the pre-compensation filter parameters are stored in the memory component 224 or 256. In another embodiment, the pre-compensation filter parameters are stored in the central software 38.
In one embodiment, the frequency response determination process 600 is performed while the primary node 14, the primary transceiver 22, and/or the transmitter 70 is in operation, that is, while the primary node 14, the primary transceiver 22, and/or the transmitter 70 is transmitting data to the secondary node 18. In other embodiments, one or more of the steps 604-632 of the frequency response determination process 600 is performed while the primary node 14, the primary transceiver 22, and/or the transmitter 70 is in use or operation, is in a maintenance window, is being manufactured, and/or when the frequency response determination process 600 is triggered, or some combination thereof.
In one embodiment, the frequency response determination process 600 is triggered by the central software 38, by a user in communication with the primary node 14 or some component of the primary node 14 such as the primary transceiver 22 or the transmitter 70, after a predetermined period of time has elapsed since the frequency response determination process 600 was previously executed, when a temperature of one or more of the primary node 14, the primary transceiver 22, and/or the transmitter 70 exceeds a predetermined temperature threshold, when a temperature of one or more of the primary node 14, the primary transceiver 22, and/or the transmitter 70 exceeds a predetermined temperature threshold for a specified period of time, when one or more of the primary node 14, the primary transceiver 22, and/or the transmitter 70 has been in service for a specified period of time, e.g., since the primary node 14, the primary transceiver 22, and/or the transmitter 70 was installed in the optical communication system 10, when one or more of the primary node 14, the primary transceiver 22, and/or the transmitter 70 has transmitted a quantity of data beyond a data transfer threshold, or some combination thereof, or the like.
Referring now to
Similarly, the AM tone 658-2-1 is offset from ƒλ by the carrier frequency 662-2 of +mƒc, thereby centering the AM tone 658-2-1 at ƒλ + mƒc and a conjugate 658-2-2 at ƒλ - mƒc. The AM tone 658-2-1 is further comprised of a first component 666-2 offset from the AM tone center by +ƒAM, thereby located at ƒλ + mƒc + ƒAM and a second component 670-2 offset from the AM tone center by -ƒAM, thereby located at ƒλ + mƒc - ƒAM. The conjugate tone 658-2-2, being a replica of the AM tone 658-2-1, is similarly constructed wherein the conjugate tone 658-2-2 comprises a first component offset from the AM tone center by +ƒAM, and is thereby located at ƒλ - mƒc + ƒAM and a second component offset from the AM tone center by -ƒAM. thereby located at ƒλ - mƒc - ƒAM.
In one embodiment, the AM tone 658-1 and 658-2, after passing through various optical component, thereby experiencing different transmitter impairments, includes an amplitude response 674, i.e., amplitude response 674-1 and amplitude response 674-2, respectively. Note that due to the nature of MZM modulation, the AM tone 658-1-1 and 658-2-1, as well as conjugate tone 658-1-2 and 658-2-2, will be sampled simultaneously.
In one embodiment, the AM tone 658-1 is an AM tone transmitted at a first period of time and the AM tone 658-2 is an AM tone transmitted at a second period of time where the first period of time and the second period of time are different. In one embodiment, additional carrier frequencies 662 may be centered at a frequency offset by a multiple (n or m) of ±ƒc, e.g., ±2ƒc, ±3ƒc, ±4ƒc, etc.
In one embodiment, the carrier frequency 662 may have a step size, i.e., ƒc, of 100 MHz. In other embodiments, the carrier frequency 662 may have a step size ƒc of between about 10 MHz and about 10 GHz. The carrier frequency 662 step size, ƒc, may be selected based on a desired amplitude response, or frequency response, resolution where a smaller step size, ƒc, results in a higher resolution and a larger step size, ƒc, results in a lower resolution.
In one embodiment, the carrier frequency 662 may have a frequency range, that is, has a maximum frequency offset of mƒc and a minimum frequency offset of nƒc. In one embodiment, the frequency range is 18 GHz, whereas in other embodiments the frequency range is a range selected from within a frequency of about 0.5 GHz to about 100 GHz. It is conceivable that the frequency range has an upper bound greater than 100 GHz and that the upper bound is limited by capabilities of the transmitter 70 such that the frequency range is selected from a range based on the frequencies the transmitter 70 is capable of processing. In one embodiment, the frequency range is the bandwidth of an optical signal, or the bandwidth of an optical subcarrier.
In one embodiment, the AM signal generator 152 may supply the AM tone 658-1 at the first period of time and the AM tone 658-2 at the second period of time. The AM signal generator 152 may then change a multiplier (n, m) and supply the AM tone 658 centered at a different frequency with the frequency range. The AM signal generator 152 adjusting the step multiplier (n, m) resulting in multiple AM tones 658 within the frequency range may be referred to as frequency sweeping, e.g., sweeping the AM tone 658 across the band of interest.
Referring now to
Referring now to
In one embodiment, when the amplitude response calibration 686 is not associated with a phase response, the amplitude response calibration 686 for any of TEI, TMI, TEQ, orTMQ shown in
In some embodiments, when the amplitude response calibration 686 has a bandwidth greater than the amplitude responses 678, for any frequency outside the frequency range of the amplitude responses 678, the amplitude response calibration 686 will include a frequency cutoff where the amplitude response calibration is set to zero (0).
In one embodiment, the amplitude response calibration for each of the TEI amplitude response calibration 686-1, the TEQ amplitude response calibration 686-2, the TMI amplitude response calibration 686-3, and the TMQ amplitude response calibration 686-4 also includes a maximum filter attenuation, as set in the demodulation circuitry 342. The maximum filter attenuation may be a power, in dB, set as a limit for the amplitude response calibration. For example, the maximum filter attenuation may be set to about 8 dB. In one embodiment, the maximum filter attenuation may be set to a power in the range of about 1 dB to about 40 dB. As shown in
In some embodiments, the amplitude response calibration 686 for each of TEI, TMI, TEQ, and TMQ is a frequency response calibration when the amplitude response calibration 686 is combined with a phase response for each of the TEI, TMI, TEQ, and TMQ optical signals. The frequency response calibration may be referred to as a full frequency response calibration when the amplitude response calibration 686 is combined with the phase response for each of the TEI, TMI, TEQ, and TMQ optical signals.
Referring now to
where
to the TEI amplitude response 678-1, TEQ amplitude response 678-2, TMI amplitude response 678-3, and TMQ amplitude response 678-4, respectively.
Referring now to
The frequency-dependent echo response 744 results in a phase response, which in turn creates ringing 746 vs frequency in the amplitude plot of
The phase response can be calculated by plugging the amplitude response into Equation 1, and the result, in the time domain, is shown in
Referring now to
Referring now to
Referring now to
This application is a divisional of U.S. Pat. Application No. 17/375,575, filed on Jul. 14, 2021, which claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Pat. Application No. 63/051,815, filed Jul. 14, 2020, both of which are incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63051815 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17375575 | Jul 2021 | US |
Child | 18091870 | US |