The present disclosure relates generally to the assembly and fabrication of a digitally addressed x-ray source, and more particularly, to the construction of a matrix addressable, wide area x-ray sources and their application in digitally addressed x-ray imaging systems.
Since the discovery of X-radiation by Roentgen and others over 100 years ago, X-rays have found widespread use in medical, industrial and scientific imaging as well as in sterilization, lithography, medical radiation therapies and a variety of scientific instruments. X-rays are most commonly produced with vacuum X-rays tubes, the operation of which is shown conceptually in
Recently, a number systems replace the traditional hot filament cathode in an X-ray tube with a cold cathode operating on the principles of field emission. Field emission cold cathodes have a number of advantages over hot filament cathodes. They do not require a separate heater to generate an electron beam current, so they consume less power. They can be turned on and off instantly in comparison with filament cathodes. They can also be made very small, so as to be used in miniature X-ray sources for radiation therapy, for example. U.S. Pat. Nos. 5,854,822 and 6,477,233 disclose examples of miniature cold cathode X-ray tubes. U.S. Pat. Nos. 6,760,407 and 6,876,724 disclose examples of larger X-ray tubes using cold cathodes for other purposes, such as imaging. Several types of field emission cold cathodes have been developed which can be substituted for the single hot filament cathodes. These include arrays of semiconductor or metal micro tips, flat cathodes of low work function materials and arrays of carbon or other nanotubes. While they offer several improvements, these cold cathode X-ray tubes share the limitations of their hot filament tube predecessors in being essentially point sources of X-rays. U.S. Pat. No. 6,333,968 discloses a transmission cathode for X-ray production in which current from the cathode generates X-rays on a target opposite the cathode, the radiation then transmitting through the cathode. The single cathode covers substantially the entire exit area for the radiation. This limits the size of the radiation exit area to the size of the cathode, making this type of source essentially a point source of X-rays. It also limits the area of the anode to that of the cathode, making it difficult to produce more than small levels of X-ray flux owing to the difficulty of extracting heat from this small area. Another transmission cathode is disclosed in U.S. Pat. No. 7,469,040, for a pipe-like source in which the cathode surrounds an inner chamber through which can pass material to be irradiated.
Other developments employ a wide area cold cathode array opposite a thin-film X-ray target disposed on an exit window. Examples are disclosed in U.S. Pat. Nos. 6,477,233 and 6,674,837. In these X-ray sources, the wide-area or pixilated beam of electrons produces a wide-area or pixilated source of X-rays. Electrons striking the X-ray target produce X-radiation in all directions. As shown conceptually in
More recently, an X-ray source had been disclosed in U.S. Pat. No. 7,447,298 having a thermionic or cold cathode array inside a vacuum enclosure, which can direct e-beam current to a thin film X-ray target disposed on an exit window located above the cathode array with reference to the direction of the e-bam and X-ray fluxes, or, with a second cathode array, to a wide area anode located below the first cathode array, the second cathode arrays and the exit window with the thin-film anode. This source will have the heat dissipation limitations as discussed above for the thin-film X-ray target. X-rays produced by the lower, “reflective” anode will be attenuated first by the cathode arrays and their support structures, and then the thin-film X-ray target, resulting in an inefficient system. The second anode, while it can be thicker and have higher heat dissipation capacity than a thin-film anode, is inside the vacuum enclosure. The heat must therefore be transferred through the vacuum enclosure, which will limit the electrical and radiative flux power that can be achieved with this source.
X-ray treatment can be used to decontaminate biological or chemical agents. Chemical and gas methods for the remediation of hazards such as anthrax, ricin, or smallpox suffer a number of limitations, including hazards to human operators during their application, lingering hazards after they have been applied, limited effectiveness, long set-up and application times and destruction of electronic and other equipment in the treatment area. X-rays can decontaminate biological and chemical hazards through ionization, thereby decontaminating biohazards in a matter of minutes or hours, compared to days and weeks with chemical and gas methods. X-rays have the further advantage of being able to penetrate objects or surfaces which may occlude hazardous material. However, point sources of X-rays have limited heat dissipation capacity and therefore will be limited in their ability to cover a large decontamination or sterilization area. Sources of X-ray flux are needed which are broad, power efficient and can cover wide areas which may have been contaminated.
Other uses of X-rays include industrial, security and medical imaging. In some imaging applications there is a need for a collimated source of X-ray flux to cover a wide area. Current point sources of X-rays, however, must place the source at a considerable distance from the imaging object, thereby increasing the bulk of the imaging system, or rely on grazing incidence optical systems to spread and collimate the flux. Examples of such an optical system for an X-ray point source are the “Kumakhov lens” taught in U.S. Pat. No. 5,175,755 and the X-ray collimator taught in U.S. Pat. No. 6,049,588. These optical systems for point sources of X-rays, however, are bulky, complicated and expensive. Accordingly there is a need for a wide, flat source of collimated X-ray flux.
Current tomographic imaging systems using a single or dual X-ray tube source rely on complex and expensive mechanical gantries to move the tube into position for each of a succession of flux emissions. Several inventions have been made which use cold cathodes to make a multiplicity of X-ray spots for tomographic imaging, the general advantage being the ability to electronically address the X-ray spots, or X-ray pixels, at high speeds compared to the movement of a tube with a mechanical gantry. Some of these inventions use miniature X-ray tubes using a cold cathode electron source, for example U.S. Pat. No. 7,330,533. These, however can not be placed close enough together to enable fine pitch resolution for imaging. They are also limited in the X-ray flux which can be produced owing to difficulty of dissipating heat from their small anode. Other inventions have been made which arrange a multiplicity of cold cathodes inside a vacuum enclosure to generate X-rays from common anode. U.S. Pat. No. 6,553,096 and USU Patent Application 2007/0053489 teach an X-ray source with multiple carbon nanotube cold cathodes are arranged inside a source, with multiple angled anode targets also arranged inside the source, the flux from each of these X-ray pixels exiting the source in an area not occupied by the cathodes. These configurations will also be limited in the pixel pitch which can be obtained. Accordingly, there exists a need for a wide source of pixilated x-ray flux which can obtain fine pixel resolution.
Embodiments of the present disclosure are directed to systems and methods that are further described in the following description and claims. Advantages and features of embodiments of the present disclosure may become apparent from the description, accompanying drawings and claims.
According to one embodiment of the present disclosure an apparatus and method for the X-ray irradiation of materials. This apparatus includes an irradiation chamber, a number of flat electromagnetic (X-ray) sources, a support mechanism, a heat transfer system, and a shielding system. A shielded portal within the shielding system allows access to an interior volume of the irradiation chamber. The shielded portal allows materials to be placed in and withdrawn from the irradiation chamber. When closed, the shielded portal allows a continuous shielded boundary of the interior volume of the irradiation chamber. The electromagnetic sources are positioned on or embedded with interior surfaces of the irradiation chamber. These electromagnetic sources may generate an electromagnetic flux, such as an X-ray flux, where this flux is used to irradiate the interior volume of the irradiation chamber and any materials placed therein. The materials placed within the interior of the chamber may be supported by a low attenuation support mechanism. This low attenuation support mechanism does not substantially reduce the X-ray flux intended to irradiate the materials placed within the interior volume of the irradiation chamber. Additionally the irradiation chamber may have a heat transfer system thermally coupled to the irradiation chamber and electromagnetic sources in order to remove heat from the interior surfaces of the irradiation chamber. The shielding system external to the irradiation chamber prevents unwanted radiation from escaping from within the irradiation chamber.
Another embodiment of the present disclosure provides a method for the X-ray irradiation of materials. This method involves transporting a work piece or material to be irradiated to an irradiation chamber. The work piece or materials are placed within the irradiation chamber and supported with a mechanism such as a low attenuation support mechanism. This low attenuation support mechanism does not substantially reduce the electromagnetic flux (X-ray) flux within the irradiation chamber. One or more flat electromagnetic (X-ray) sources may be energized to irradiate the interior volume of the irradiation chamber. This allows the work piece or materials to be irradiated within the chamber. Excess heat may be removed with a heat transfer system in order to prevent the irradiation chamber/electromagnetic source from overheating. Additionally the irradiation chamber may be shielded to prevent the irradiation of objects and materials external to the irradiation chamber.
Yet another embodiment of the present disclosure provides another system for the X-ray irradiation of materials. This system includes an irradiation chamber, a number of flat X-ray sources, a transport mechanism, a low attenuation support mechanism, a heat transfer system, a shielding system, and a process controller. The irradiation chamber has an inner volume wherein the flat X-ray sources are positioned within or on the interior surfaces of the irradiation chamber such that the flat X-ray sources may irradiate the interior volume of the irradiation chamber. The transport mechanism allows materials to travel to and from the irradiation chamber. Within the irradiation chamber the low attenuation support mechanism supports the work pieces or materials to be irradiated while not substantially reducing the X-ray flux available for the irradiation of these objects. The heat transfer system removes heat from the X-ray source and the shielding system external to the irradiation chamber prevents inadvertent irradiation of materials and objects outside the irradiation chamber. The process controller coordinates the operation of the irradiation chamber, X-ray source, heat transfer system and an interlock system which prevents irradiation while access to the interior volume is open.
For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numerals indicate like features and wherein:
Preferred embodiments of the present disclosure are illustrated in the FIGs., like numerals being used to refer to like and corresponding parts of the various drawings.
The present disclosure relates to matrix addressed flat panel x-ray sources for use in applications where location specific addressing of x-ray beams is desired.
A conventional x-ray tube includes an anode, grid, and cathode assembly. The cathode assembly generates an electron beam which is directed to a target, by an applied electric field established by the anode. The target in turn emits x-ray radiation in response to the incident electron beam.
In high current x-ray tubes such as those used in tomographic imaging and radiography, high current and small spot size are desirable while operating at a high anode voltage. For these applications, electron beam current of tens of milliamps to several hundred milliamps is focused onto a small spot to generate a high intensity x-ray beam. To improve conduction of heat away from the anode, the anode plate is rotated at a high speed. In the case of computed tomography (CT) systems, the x-ray source is mounted on specially designed mechanical gantries and rotated around the object to be imaged. Current generation computed tomography systems involve a rotating x-ray source and a detector assembly on the other side of the patient.
It is desirable to have a system where there are no moving parts. This will result in improved imaging and reduce the cost and complexity of the system. There have been a number of efforts to remove the mechanical movement and replace it with an x-ray source that does not move. For example, in U.S. Pat. No. 7,068,749, they describe a stationary CT system comprising an annular x ray source assembly with a number of x-ray sources spaced along the annular x ray source assembly. Stationary electron sources are located along the with an x-ray target all inside of a vacuum assembly and a radiation window at a pre-defined angular displacement from the respective stationary X ray target.
In U.S. Pat. No. 4,521,900, Rand describes a method for scanning system for producing electrons in a vacuum chamber and rapidly scanning the electron beam in a fashion similar to CRT tube. In this case, the thickness of the target window of the CRT screen is such that x-rays produced will come out of the thin CRT window. While this approach produces addressable x-rays with a desired profile, there are serious limitations on the application of the method for CT imaging.
So far, attempts to replace the huge, expensive and performance-limiting mechanical gantries with simpler x-ray devices have seen limited progress. The disclosure presents a method to produce x-rays at desired locations on a large format flat panel matrix.
The present disclosure provides an apparatus and method for the X-ray irradiation of materials. This apparatus includes an irradiation chamber, a number of flat electromagnetic (X-ray) sources, a support mechanism, a heat transfer system, and a shielding system. A shielded portal within the shielding system allows access to an interior volume of the irradiation chamber. The shielded portal allows materials to be placed in and withdrawn from the irradiation chamber. When closed, the shielded portal allows a continuous shielded boundary of the interior volume of the irradiation chamber. The electromagnetic sources are positioned on or embedded with interior surfaces of the irradiation chamber. These electromagnetic sources may generate an electromagnetic flux, such as an X-ray flux, where this flux is used to irradiate the interior volume of the irradiation chamber and any materials placed therein. The materials placed within the interior of the chamber may be supported by a low attenuation support mechanism. This low attenuation support mechanism does not substantially reduce the X-ray flux intended to irradiate the materials placed within the interior volume of the irradiation chamber. Additionally the irradiation chamber may have a heat transfer system thermally coupled to the irradiation chamber and electromagnetic sources in order to remove heat from the interior surfaces of the irradiation chamber. The shielding system external to the irradiation chamber prevents unwanted radiation from escaping from within the irradiation chamber.
A general method of producing X-ray flux is shown in
Embodiments of the present disclosure provide a different approach and method for the generation of X-rays. This is shown conceptually in
Anode target 106 may be a continuous sheet or slab of an X-ray target metal such as copper, tungsten or a tungsten-copper alloy. As shown in
Upon impacting anode target 106 in
The absorption of X-ray flux by cathode array 102 can be minimized in two ways. First, the cathode array can be made of thin-film field emission cold cathodes. As shown in Table 1, cathodes made of graphite or other forms of carbon, which can be made in thicknesses of under a micron, will absorb very little of the X-ray flux. Second, cathode array can be distributed over exit window 110 so as to occupy very little of the area of the exit window. An exemplary share of the cathode area to the total exit window area is under 10 percent.
The distance between cathode array 102 on exit window 110 and anode target 106 may be set according to the electrical potential used between cathode and anode. The distance should be sufficiently large to prevent arcing or other vacuum breakdown between cathode and anode at the chosen voltage. It should also be large enough to prevent external breakdown between conductive components such as feed throughs on the external side of the source. An exemplary distance for a 100 keV potential is 2-5 centimeters. The exit window may be provided in thicknesses of under one millimeter to several millimeters, while the anode target sheet or slab can be provided with a thickness of several centimeters. The overall thickness of the source can thus be made from a few centimeters to perhaps ten centimeters. The ratio of the width of the source to its thickness can therefore be made greater than 3:1 and up to 100:1, for an essentially flat radiation source. The wider the area, the more need there will be for internal mechanical support to prevent deflection or sagging of the exit window 110 and anode target 106. Spacers 310 of suitable insulating material such as ceramics may be used to provide such support. Internal walls may also be formed of glass or ceramic to provide such spacer support. In some embodiments of the disclosure, these internal walls can be arranged as a grid so as to allow the attachment of smaller exit windows in each grid opening, thereby creating a tiled exit window structure.
Side walls 308, exit window 110 and anode target 106 should be made and joined with materials having thermal coefficients of expansion (TCE) matched so as to prevent cracks in the vacuum envelope during X-ray production and consequent heat dissipation. An exemplary set of materials is a tungsten-copper alloy for the anode target, alumina for the side walls and sapphire for the exit window. The TCEs of these materials are very closely matched. They may be joined with frit glass sealing techniques common in the vacuum tube and flat panel display industries. Alternative sealing methods include O-ring seals of high-temperature materials such as Viton™ and mechanical clamping supports, vacuum-compatible epoxies or silica-based sealants. Non-evaporable getters may be affixed inside the radiation source disclosed in this disclosure so as to maintain vacuum throughout the operational lifetime of the source. Electrical and getter activation feed throughs may be provided through sidewalls 308, exit window 110 or anode target 106. Anode target 106 may also have external electrical connection. Vacuum evacuation of the source may be accomplished through vacuum pumping through a pinch-off tube or valve attached to the source, or the assembly may be sealed in vacuum.
Operation of the X-ray flux source shown in
A variety of cathodes can be used in the cathode array for the radiation source according to the disclosure. Thin-film hot filament cathodes can be used, with internal or external heaters. The preferred cathodes, however, are thin-film, field-emission cold cathodes. The wide variety of cold cathodes known in the art can be used in this disclosure, including metal or semiconductor tip arrays, flat cathodes of low-work-function materials, metal-insulator-metal cathodes, surface conduction emission cathodes, vertical or horizontal arrays of carbon nanotubes, or field emitters with conductive chunks embedded in an insulating medium. A preferred cold cathode is the thin-film edge emitter. In these cathodes, field emission is from the external edges of a conductive thin film, which can be made of metal, various forms of carbon, or a carbon layer with upper and lower metal cladding layers to enhance conduction. Thin-film edge emitters made of arc-deposited carbon, pulsed arc deposited carbon, plasma arc deposited carbon, CVD diamond, laser ablated carbon or filtered arc deposited carbon are all suitable for use as cathodes in the disclosure. These cathodes can be made as continuous strips, as broken segments connected by conductive metal, or as separate cathode structures. Thin-film carbon cold cathodes are very thin, ranging in thickness from under a hundred Angstroms to a few thousand Angstroms. Metal conductive cladding can add several hundred more Angstroms to this thickness, but the resulting structure will still be so thin as to allow the transmission of essentially all the X-ray flux that reaches the cathodes. The cathodes are formed as arrays. In an exemplary design with an exit window of 100 cm2, an array of 10,000 cathodes, each occupying about 2,500 μm2, can supply all the current needed for the operation of a 500 Watt X-ray source at 100 keV.
The cathodes can also be gated so as to provide greater current control than would be possible in diode operation and radiation source control at lower voltages. Several gating schemes can be used. Separate transistors, such as field effect transistors, can be connected to individual cathodes or groups of cathodes. One method employs an extraction gate placed close to the cathode. In this embodiment, a gate voltage between 20 and 2,000V can be used to extract current from thin-film edge emitter cathode, the current then being captured by the field established by a higher voltage between cathode and anode. In operation, field emitters can sometimes emit debris due to micro discharges from the cathode or gate, or electromigration of material. It can therefore be advantageous to provide barriers to these material discharges so as to prevent cathode to gate shorts. These barriers can be made of deposited material or etched into exit window 110. Small pads for the cathodes and gates can also be made by depositing material or etching material from the window. These pads provide clearance for field lines between cathode and gate. They also allow the height of the gate to be raised in relation to the height of the cathode, which in turn provides control of the angle at which the electron beam current is emitted from the cathodes.
In a high voltage system such as the radiation source according to the present disclosure, it can be advantageous use a resistor to improve emission uniformity across a cathode array, suppress emitter to extractor arcs, and to act as current limiters for any emitter to extractor shorts. The line width, length and thickness can be varied to provide appropriate resistive values for cathodes operating under different conditions.
Cathodes and gates can be matrix addressed so as to provide small radiative emission spots, or pixels, from corresponding X-ray or UV-C targets across from the cathodes. Individual cathodes can be addressed so as to provide single spots or groups of cathodes can be addressed to provide emission patterns. This ability to precisely control radiative flux profiles over wide areas is useful for a number of imaging and scientific applications.
A further embodiment of the radiation source according to the present disclosure is the provision of circuitry to step up the voltage from the external power supply to the cathode and anode. This allows the use of more compact power sources and much thinner power cables to the radiation source. It also improves safety by lowering the risk of high voltage arcs external to the radiation source and makes the source itself more compact by allowing the use of smaller feed throughs. A number of voltage multiplication techniques well established in the prior art may be used in the radiation source according to the present disclosure. An exemplary technique is the Cockroft-Walton Amplifier (CWA), first developed in 1932 for high energy physics experiments and later used in nearly all black and white and many early color television sets.
The operating principle is very simple, and is based on the doubling of a pulsed input voltage by laddered diode-capacitor stages. The amplifier can be tapped at any stage to extract various voltages, as in a tapped transformer. A CWA supplying 100 keV and 5 mA, for example, may be made with twenty multiplier stages and a 3 kV input to the first stage. An external CWA or other step-up voltage amplifier may be used with the radiation source of this disclosure. In a novel and preferred embodiment of this disclosure, the CWA or other voltage amplification circuitry is disposed inside a vacuum envelope to take advantage of the superior insulation properties of vacuum. This can include forming the circuitry on the exit window of a single window source made according to the disclosure, or one of the exit windows in a source with tiled exit windows, on an interior wall of a compartmented source or on a separate insulating substrate affixed to part of the interior of the source, or in a separate compartment made to be part of the source.
For applications requiring collimated X-rays, such as X-ray lithography, a further embodiment of the disclosure provides X-ray focusing or collimating optics made as part of the radiation source. A number of X-ray mirrors or focusing schemes known in the art for point sources of X-rays may be incorporated as part of the radiation source according to the disclosure. A “Kumakhov lens”, for example is a glass tube, capillary or array of capillaries with internally curved surfaces which reflect diffuse incoming X-ray flux in such as way as to collimate the flux exiting the lens. In its application according to the present disclosure, arrays of small Kumakhov lenses may be formed as part of the exit window, or on a separate substrate placed in front of the exit window facing the X-ray target, or outside the window and attached to it. Arrays of Kumakhov lenses or other X-ray focusing lenses may be made etching the substrates or by forming sacrificial pillars in the profile of the focusing optics around which the window or other substrate may be formed by melting or spin-on glass processes, with the pillars then etched away using chemical processes. These lens arrays may be made as wide as an X-ray source made according to the disclosure, thereby providing wide sources of collimated X-rays.
Separate or combined sources of X-ray and UV-C flux made according to the disclosure may be used to sterilize materials or to decontaminate biological or chemical hazards. In decontamination applications, these radiation sources may be combined into systems with the individual sources positioned so as to allow the broadest and most effective coverage of a contaminated area. In an office environment. For example, the sources may be arranged at three levels, each having three or more sources to provide 360° coverage of the area. One tier may be at ankle height so the flux can reach contaminants under tables or desks and on the floor. The next tier may be at waist height so the flux can reach contaminants which have settled on desks or tables, while the third tier may be at shoulder height so the flux can reach contaminants which have settled on cabinets and other tall objects. The sources may also be rotated to provide 360° coverage or mounted on robots with radiation shielded electronics and moved around the contaminated space.
Such as source may be formed as follows. First cold cathode emitter array 802 is fabricated on flat substrate 814 such as glass, quartz or sapphire. The cold cathode emitters are fabricated to enable matrix addressing using external drive circuits. Unlike other cold cathode applications such as field emission displays, with digitally addressed x-ray panels, the emission current density required is extremely high, but it is confined to active areas of 1 mm or less. For most computed tomography applications, desired currents are in the 1 to 500 mA range.
The high-density emitter arrays are fabricated first in the desired configuration where emitters are aggregated to provide the desired pixilation. Electron sources 802 may be arranged in a (x, y) matrix with the periodicity determined by the application. Typically, each pixel is capable of generating electron beam 816 having a current of 1 to 500 mA within an active area of generally smaller than a 1 mm.
Emitter substrate and the tungsten anode 810 are assembled within a sealed vacuum envelop. Electrons 816 are emitted from the matrix addressed emitter array 802 according to the pixel being addressed. A high potential is applied between the emitter array and the anode 810. The pixilated electron beam 816 accelerates towards the anode 810, electron impact results in the production of X-rays 818 production. The x-rays 818 thus produced are pixilated or in other words the beam characteristics are defined by the electron source array. The X-ray beam is transmitted through the transparent cathode 802 and substrate 814 towards the object to be imaged or studied.
In another embodiment, high-density field emitter arrays may be fabricated on substrates of single crystal wafers such as silicon. This also allows one to build more robust devices with a variety of materials and dielectrics with a higher dielectric breakdown. Also, fabrication on silicon wafers allows one to fabricate devices with micron and submicron feature sizes, and emitters that can operate at voltages much less than 100V. This leads to increased emitter density to well beyond 10,000 emitters within a square millimeter area. This approach allows one to make devices on desired substrates and test the arrays and locate the arrays with optimum operating characteristics on a different substrate.
One of the important advantages of including an aperture array is to provide a conductive layer for bleed off charged particles that are generated during the electron impact process and by the impact of x-rays on various surfaces.
Another advantage of including apertures in the vacuum space between the cold cathode array and the anode is to provide collimation of the x-ray beam. The collimation of the x-ray beam from the anode.
Application of DAXS panels has several advantages in x-ray medical imaging. The resulting systems are compact, provide higher temporal resolution, and allows for configurations that do not require the x-ray source to be moved.
With digitally addressed x-ray sources, one can achieve rapid switching speeds. This is especially critical in cardiac CT imaging where the cardiac motion causes small objects in CT images to be blurred. Switching speeds of a microsecond makes fast acquisition of cardiac images possible.
Our method for the application of digital x-ray sources for digital breast tomosynthesis (DBT) and small animal CT (SACT) provides advantages in making these systems compact and allows for rapid image acquisition.
In the case of small animal computed tomography (SACT), acquisition of useful images is a difficult task due to the high heart rate of small animals. For example, in the case of mice, the heart rate is as high as 600 beats per minute. In a CT system with a moving x-ray source, it is not possible to rapidly move the source through a whole half circle, which requires over 200 cross sections with each requiring 20 secs. With a DAXS based system, this issue can be solved by taking advantage of the rapid switching speed of DAXS panel.
In summary, the present disclosure provides an apparatus and method for the X-ray irradiation of materials. This apparatus includes an irradiation chamber, a number of flat electromagnetic (X-ray) sources having a number of addressable cathode emitters, a support mechanism, a heat transfer system, a shielding system, and a process controller. A shielded portal within the shielding system allows access to an interior volume of the irradiation chamber. The electromagnetic sources are positioned on or embedded within interior surfaces of the irradiation chamber. These electromagnetic sources generate an electromagnetic flux, such as an X-ray flux, where this flux is used to irradiate the interior volume of the irradiation chamber and any materials placed therein. The operation of the electromagnetic sources and the number of addressable cathode emitters is controlled by the process controller. The materials placed within the interior of the chamber may be supported by a low attenuation support mechanism. This low attenuation support mechanism does not substantially reduce the X-ray flux intended to irradiate the materials placed within the interior volume of the irradiation chamber. Additionally the irradiation chamber may have a heat transfer system thermally coupled to the irradiation chamber and electromagnetic sources in order to remove heat from the interior surfaces of the irradiation chamber. The shielding system external to the irradiation chamber prevents unwanted radiation from escaping from within the irradiation chamber.
As one of average skill in the art will appreciate, the term “substantially” or “approximately”, as may be used herein, provides an industry-accepted tolerance to its corresponding term. Such an industry-accepted tolerance ranges from less than one percent to twenty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. As one of average skill in the art will further appreciate, the term “operably coupled”, as may be used herein, includes direct coupling and indirect coupling via another component, element, circuit, or module where, for indirect coupling, the intervening component, element, circuit, or module does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As one of average skill in the art will also appreciate, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two elements in the same manner as “operably coupled”. As one of average skill in the art will further appreciate, the term “compares favorably”, as may be used herein, indicates that a comparison between two or more elements, items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The embodiment was chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
The present U.S. Utility patent application claims priority pursuant to 35 U.S.C. §120, as a continuation-in-part (CIP), to the following U.S. Utility patent application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility patent application for all purposes: 1. U.S. Utility application Ser. No. 12/201,741, entitled “COMPACT RADIATION SOURCE,” (Attorney Docket No. STRY002US1), filed Aug. 29, 2008, pending, which claims priority pursuant to 35 U.S.C. §120 as a continuation to the following U.S. patent application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility patent application for all purposes: a. U.S. Utility application Ser. No. 11/355,692, entitled “COMPACT RADIATION SOURCE,” (Attorney Docket No. STRY002US0), filed Feb. 16, 2006, abandoned. The present U.S. Utility patent application also claims priority pursuant to 35 U.S.C. §119(e) to the following U.S. Provisional Patent Application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility patent application for all purposes: 1. U.S. Provisional Application Ser. No. 61/248,987, entitled “DIGITALLY ADDRESSED FLAT PANEL X-RAY SOURCES,” (Attorney Docket No. STRY005US0), filed Oct. 6, 2009, pending.
This invention was made with Government support under Contract No. 70NANB7H7030 awarded by the Advanced Technology Program of the National Institute of Standards and Technology. The U.S. Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61249087 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11355692 | Feb 2006 | US |
Child | 12201741 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12201741 | Aug 2008 | US |
Child | 12692496 | US |