This present disclosure relates to electric hairdryers. Hairdryers have been around for many years, necessitated by long hair and the user's desire to style and/or dry it. Commonly available hair dryers are electric and plug into standard household current. Hair dryers have a heater of some sort and a device to move air through the heater, such as a fan. Most hairdryers have simple controls, such as switches, to turn the heater and fan on or off. Some hair dryers have speed controls, such as sliding switches or levers that allow the user to coarsely control the heater and fan. These dryers use brushed electric motors due to their size, weight, and cost. Recently, brushless motors have made an entry into hairstyling appliances, such as hairdryers. Hairdryers that utilize brushless motors can be very heavy, as the power supply required to run a brushless motor and other ancillary devices adds weight. A hairdresser needs a device that is easy to handle and lightweight. An improved hairdryer is needed.
The present disclosure describes a digitally controlled hair dryer with powered attachments. The powered attachments are controlled by the hair dryer. The hair dryer uses a high-performance brushless motor that moves air across a heating element. The hairdryer is powered by AC (alternating current) and DC (direct current). The heating element is AC-powered and the brushless motor is powered by DC. The DC power source is located outside of the hairdryer body to reduce weight and fatigue. The hairdryer body has controls for airspeed, temperature, and any powered accessories (hereinafter described). The powered accessories are controlled by an option button on the hairdryer. The hair dryer has an annular air inlet that encircles an inlet chamber
The oscillating nozzle has a motor that moves a nozzle back and forth. The oscillating nozzle attaches to the hair dryer to direct airflow from the outlet of the hair dryer through the nozzle. When the operator presses the option button on the hair dryer, the hair dryer provides power to the motor inside the oscillating nozzle. The motor rotates an eccentric cam with a pin around a motor axis, the pin slides in a slot and moves the nozzle back and forth about an oscillating axis. As the nozzle moves back and forth, it directs the air from the hairdryer into a back and forth motion that simulates the same motion as a hairstylist would use to dry hair without overheating it.
The curling diffuser has a motor that moves the diffuser between a relaxed and grasping position. The curling diffuser is used to bunch up and dry a section of hair to give it volume and reduce frizz. The relaxed position corresponds to a large opening and the grasping position has a constricted outlet with an outer surface that raises up to “bunch” the hair. The constriction and bunching occur simultaneously. The diffuser attaches to the hair dryer to direct airflow from the outlet of the hair dryer through a baffle that redirects the air through apertures that face the central axis. The curling diffuser has a motor that moves a slider along a central axis. The motor moves the slider between an extended position and a retracted position. The slider directs fingers between a relaxed and a grasped position. An air-blocking membrane and a mesh are located at the outlet of the curling diffuser, with the mesh allowing airflow and the membrane blocking air. When the slider moves to the extended position, the fingers move to the grasped position that constricts the outlet opening.
A hair dryer 10 that is used for drying and styling hair is shown in
The outlet portion 20 is where the air exits the main body 12. The outlet portion 20 begins near the terminal end of the main body 12 and ends at the terminal end. The outlet portion 20 has an attachment area 30, where external devices, such as nozzles 100, diffusers 300, combs, or other hairdryer accessories can be attached. The outlet portion 20 further contains a pod receiver 32, where scent pods 34 can be attached. The scent pods 34 may contain perfumes, essential oils, hair nourishing compounds, or other cosmetic or therapeutic materials. The scent pods 34 are retained in the main body 12 through a magnet 35, but other methods are contemplated, such as a friction fit, clip, or snap feature. The outlet 38 contains a screen or mesh 36 to prevent foreign objects from being inserted into the outlet 38. Adjacent the outlet 38 is an accessory connector 28 that can provide electrical power and signals to a removable accessory, such as the oscillating nozzle 100 or the curling diffuser 300.
The center portion 22 has an inner structure 40 that insulates the outer shell 18 from heat generated by the internal heating element 42. The inner structure 40 is made from a heat-resistant material, such as an engineered resin or lightweight metal. The inner structure 40 provides an insulating barrier between heat-generating components, such as the heating element 42, electronic components, or brushless motor 50. The heating element 42 is a resistive wire wrapped around a mica structure 41, a design that is well-known in the art. Power is supplied to the heating element 42 through a digital control device, such as the triac 43, shown in
Adjacent the annular inlet port 60 is the control portion 26. The control portion 26 is bounded by a duct plate 48 that faces the inlet chamber 59. The duct plate 48 serves as a rearward boundary of the inlet chamber 59. The duct plate 48 may have an aperture 49 or apertures where any heat producing components in the control portion 26 can protrude through into the inlet chamber 59 to receive fresh air that enters the annular inlet ports 60. The embodiment described herein uses apertures that are used for heat sinks or heat-generating components. The duct plate 48, even with the apertures 49, does not allow airflow to pass through it. The annular inlet ports 60 provide the fresh air for the motor 50 and heating element. The control portion 26 houses a user interface 62, power switch 63, a main control circuit board 64, and electrical connections to the heater 42 and brushless motor 50. The user interface 62 has a display 66 to notify the user the status of the hair dryer 10 and provide feedback on settings. It is contemplated that the motor controller 88 is integrated into the main control circuit board 64. Input buttons 68 may also be located on the user interface 62. Other commonly used inputs are located on the center portion 22, such as a first action button 70, temperature controls 72, a user-defined scroll wheel 74, and a second action button 76. The action buttons can be user-defined to temporarily disable heat, control speed, adjust temperature, or utilize commonly used features a stylist would need to quickly control the hair dryer 10 without using the user interface 62. A cool blast button 73 is located adjacent the temperature controls 72. The cool blast button 73 temporarily disables the heater to provide cool air instead of heated air. The cool blast button 73 may be momentary or push on/push off.
The power source 16 has a plug 80 that plugs into standard household alternating current (AC), such as 120V or 240V. Brushless motors, unlike brushed or induction motors, cannot be rotated by providing a constant source of electricity to the coils; the brushless motor 50 requires a specific control circuit to sequence power to the individual coils. This is commonly provided by a direct current (DC) power supply, which is located in the power source 16. Heating elements are frequently powered with AC. The power source 16 provides AC and DC to the main body 12 through a multi-conductor cord 14.
Controlling the hairdryer 10 is accomplished through the user interface 62, buttons 70, 72, 76, and scroll wheel 74. For example, the scroll wheel 74 can be used to precisely control the speed of the brushless motor 50, and therefore, the air speed. The temperature buttons 72 can be used to precisely control the amount of power applied to the heater 42, and therefore, the temperature of the air. The action buttons 70, 76 can be used to control accessories, such as the oscillating nozzle 100 or curling diffuser 300. A temperature sensor (not shown) may be used in the airflow path to allow closed-loop control of the air temperature. Other accessories or attachments are contemplated.
An optional ion generator 90 helps to reduce static electricity, improve drying time, reduce frizz, and help hair to lay flat. The ion generator 90 may be enabled, disabled, or configured through the control portion 26. The ion generator 90 is powered by the main control circuit board 64 and has a high voltage electrode that is located in the air stream.
The oscillating nozzle 100, shown in
The attachment portion 102 has a fluid path through to the oscillating portion 104 so that air that is exiting the outlet 38 can travel unimpaired. The oscillating portion 104, where it is attached to the attachment portion 102, is circular and then gradually changes shape to an oval at the nozzle end 120. The oval shape changes the cylindrical air flow from the hairdryer 10 into more of a fan shape with a wider flow in one direction and narrower in the other. The motor 106 is shown as being powered and controlled by the action button 70, but other controls are contemplated.
As assembled to the hairdryer 10, the oscillating nozzle 100 aligns with the central axis 56. The eccentric cam 116 rotates about a motor axis 156 that is parallel to the oscillation axis 108. As shown, the central axis 56 intersects the oscillation axis 108 and motor axis 156.
A curling diffuser 300 is shown in
The curling diffuser 300 has an outer cover 302 that has a connection sleeve portion 304. The connection sleeve portion 304 has an electrical connector 306 that mates with the accessory connector 28 on the hairdryer 10. The connection sleeve portion 304 includes a notch 308 that prevents the curling diffuser 300 from being improperly connected to the hairdryer 10. Proper connection allows the accessory connector 28 and electrical connector 306 to properly mate and make an electrical connection. The outer cover 302 is shown as parabolic, but conical, curved, semispherical, or other shape is contemplated. The outer cover 302 has an outer rim 310 where the diameter is at its largest. The outer cover 302 has mounting bosses 312 that allow other components of the diffuser to be affixed. One of the other components is a base 320. The base 320 is centered about the central axis 318 and houses a motor 322 and gearbox 324. The base 320, as shown, includes five finger holders 332, but it is contemplated that it includes a different number of finger holders 332. Each finger holder 332 has a wire finger 334 that is held at a pivot aperture 336. Pins 338 extend through the pivot apertures 336 to allow each wire finger 334 to pivot. A gearbox cover 326 keeps contaminants out of the gearbox 324 and allows a worm shaft 328 to extend therethrough. The gearbox cover 326 has guide apertures 330 and is affixed to the base 320 through fasteners. Mated to the worm shaft 328 is an inner slider 340. An outer slider 342 is connected to the inner slider 340. The inner slider 340 has a threaded portion 344 that causes the inner slider 340 to move along the central axis 318 when the worm shaft 328 rotates. The inner slider 340 can move between a retracted position (as shown in
The outer slider 342, also known as an upwards scrunching platform, moves axially with the inner slider 340 when the worm shaft 328 rotates. The outer slider 342 has a large flat surface with slits 360 that interrupt the outer surface 362. The slits 360 provide clearance and guidance to the wire fingers 334 when the sliders 340, 342 move outward and away from the base 320. The outer surface 362 is shown as planar, but other surface contours are contemplated, including but not limited to concave or convex. As shown in
An air redirection baffle 370 is attached to the base 320 and fits inside the outer cover 302 to form an air inlet chamber 372. The air inlet chamber 372 is defined by the air that is located between the connection sleeve portion 304, the outer cover 302, and the redirection baffle 370. The redirection baffle 370 has a terminal edge 374 that circumscribed by the outer cover 302. The terminal edge 374 fits inside the outer cover 302 and is seated inwardly below the outer rim 310. The terminal edge 374 is close, in contact, or in biased contact with the inner surface 376 of the outer cover 302. The proximity of the terminal edge 374 to the inner surface 376 allows air moving through the inlet chamber 372 to be directed to the directional apertures 378. The directional apertures 378, as shown, are bonneted dormer shaped, with a curved top, straight sides and a straight bottom. It is contemplated that the directional apertures 378 have other shapes not shown herein, such as triangular, oval, rectangular, circular, or other shape. The directional apertures 378 have overhanging walls that extend from the redirection baffle 370 towards the central axis 318. The overhanging walls serve to direct the air moving through the apertures 378 towards the center. Once the air has passed through the apertures 378, it enters a diffused chamber 373. As air from the hairdryer 10 enters the curling diffuser 300 through the connection sleeve portion 304, it is diverted by the redirection baffle 370 and through the directional apertures 378. Because the directional apertures 378 are facing the central axis 318, moving air that enters the diffused chamber 373 moves towards the center and outwardly.
The curling diffuser 300 includes a blocking membrane 380 that is connected to the outer rim 310 at an outer perimeter edge 381. The blocking membrane 380 is shown as an annular component. An inner perimeter edge 383 is connected to the fingers 334 at their terminal ends 354. The blocking membrane 380 is flexible and does not allow airflow through it. The blocking membrane 380 is shown as resilient and stretchable. It is contemplated that the blocking membrane is pleated or accordion bellows material that allows movement without requiring the material itself to be stretchable. While it is preferable that the blocking membrane 380 blocks the flow of air through its thickness, it may or may not be completely impermeable. It is contemplated that the blocking membrane 380 blocks a significant portion but not all air attempting to flow through it. The purpose of the blocking membrane 380 is to direct airflow through mesh 382. The mesh 382 is a screen that is flexible but allows air flow through its thickness. The mesh 382 is connected around its perimeter edge 384 to the blocking membrane 380 on its inner perimeter edge 383. It is contemplated that the mesh 382 is connected to the outer slider 342 to keep the mesh 382 from being pushed out when air is being pushed through the curling diffuser 300. The mesh 382 keeps hairs, fingers, or other foreign objects from becoming tangled up or ensnared in the moving parts of the diffuser 300. The diffused chamber 373 is defined by the chamber that is located between the redirection baffle 370, the blocking membrane 380, and mesh 382.
When the user actuates the curling diffuser 300, the motor 322 rotates the gearbox 324, which causes the worm shaft 328 to rotate. This causes the inner and outer sliders 340, 342 to move away from the gearbox cover 326 along the central axis 318. The guide pins 346 slide through the guide apertures 330 while the pivot apertures 336 constrain movement along the central axis 318. As the inner slider 340 moves, the finger apertures 352 on the inner slider 340 draw the wire fingers 334 closer to the central axis 318. Because the wire fingers 334 are curved, their terminal ends 354 are brought closest together when the inner and outer slider 340, 342 are at the extended position. The extended position of the inner and outer sliders 340, 342 correspond to a grasping position of the curling diffuser 300 and the retracted position of the sliders 340, 342 correspond to an open position of the curling diffuser 300. The mesh forms a pocket 390 that can receive hair in the resting position that closes down significantly in the grasping position. The pocket 390 is defined by the volume between the mesh 382 and an outlet aperture 392 that is defined by the opening formed by the inner perimeter edge 383. The outlet aperture 392 moves between a relatively large size as shown in
The inner slider 340 has a flag 386 that is adjacent a sensor 388 that is located in the outer cover 302 or redirection baffle 370. The flag 386 moves with the inner slider 340. The sensor 388 provides feedback to the motor 322 or hair dryer 10 of the slider position. Feedback of the position of the sliders 340, 342 allows the hair dryer 10 to properly drive the motor 322 to prevent damage to the gearbox 324, motor 322, wire fingers 344, or other components. It also allows the user to simply press the action button 70 to move the curling diffuser 300 between the relaxed and grasped position without having to worry about overdriving or damaging the mechanism.
In the open position, the user places a portion of hair in the pocket 390. The hairdryer 10 is turned on to move air through the diffuser 300, and then the user activates the action button 70. The action button 70 moves the diffuser 300 between the resting position and the grasping position.
It is understood that while certain aspects of the disclosed subject matter have been shown and described, the disclosed subject matter is not limited thereto and encompasses various other embodiments and aspects. No specific limitation with respect to the specific embodiments disclosed herein is intended or should be inferred. Modifications may be made to the disclosed subject matter as set forth in the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/557,343, filed Sep. 12, 2017, the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1835337 | Rose | Dec 1931 | A |
1951269 | Boeckx | Mar 1934 | A |
2420732 | Bichsel | May 1947 | A |
2713627 | Kamataris | Jul 1955 | A |
2962576 | Russell | Nov 1960 | A |
3797752 | Cercone | Mar 1974 | A |
3837581 | Orsoff | Sep 1974 | A |
3860174 | Cercone | Jan 1975 | A |
3943329 | Hlavac | Mar 1976 | A |
3981314 | Barradas | Sep 1976 | A |
4019260 | Levy | Apr 1977 | A |
4039774 | Kata | Aug 1977 | A |
4167660 | Liedtke | Sep 1979 | A |
4192325 | Liedtke | Mar 1980 | A |
4232454 | Springer | Nov 1980 | A |
4287673 | Wolter | Sep 1981 | A |
4328818 | Glucksman | May 1982 | A |
4391047 | Janssens | Jul 1983 | A |
4525623 | Da Silva | Jun 1985 | A |
4538362 | Andis | Sep 1985 | A |
4556782 | Fujishima | Dec 1985 | A |
4602146 | Barns | Jul 1986 | A |
4721121 | Adams | Jan 1988 | A |
4827105 | Brown, Jr. | May 1989 | A |
5157757 | McDougall | Oct 1992 | A |
5275339 | Andis | Jan 1994 | A |
5394620 | Chimera | Mar 1995 | A |
5488783 | Parkinson | Feb 1996 | A |
5626123 | Johnson | May 1997 | A |
5628123 | Chan | May 1997 | A |
5715847 | Rolf | Feb 1998 | A |
5765292 | Chan | Jun 1998 | A |
5839451 | Dorber | Nov 1998 | A |
5841943 | Nosenchuck | Nov 1998 | A |
5845656 | Assmann | Dec 1998 | A |
5894849 | Ehlhardt | Apr 1999 | A |
6003239 | Liebenthal | Dec 1999 | A |
6053181 | Ehlhardt | Apr 2000 | A |
6067724 | Depoyian | May 2000 | A |
6199295 | Smal | Mar 2001 | B1 |
6222988 | Behrendt | Apr 2001 | B1 |
6532968 | Hafemann | Mar 2003 | B1 |
6966125 | Rago et al. | Nov 2005 | B2 |
7047660 | Leventhal | May 2006 | B2 |
7586066 | Bell | Sep 2009 | B2 |
8082679 | Arnim | Dec 2011 | B1 |
8490633 | Kennedy | Jul 2013 | B1 |
8732976 | Han et al. | May 2014 | B2 |
9072358 | Han et al. | Jul 2015 | B2 |
9237789 | Prehodka | Jan 2016 | B2 |
9707580 | Mancl | Jul 2017 | B1 |
10702037 | Boateng | Jul 2020 | B2 |
10849400 | Weatherly | Dec 2020 | B2 |
20030079366 | Chang | May 2003 | A1 |
20040047620 | Ruben | Mar 2004 | A1 |
20050072019 | Rago | Apr 2005 | A1 |
20060201016 | Nakagawa | Sep 2006 | A1 |
20080116753 | Carlucci | May 2008 | A1 |
20080223394 | Maddocks | Sep 2008 | A1 |
20080271337 | Chan | Nov 2008 | A1 |
20100101598 | Ng | Apr 2010 | A1 |
20110197466 | Shami | Aug 2011 | A1 |
20110209721 | Yahnker | Sep 2011 | A1 |
20110277335 | Prehodka | Nov 2011 | A1 |
20130239427 | Quessard | Sep 2013 | A1 |
20130291394 | Shami | Nov 2013 | A1 |
20150335128 | Larkin | Nov 2015 | A1 |
20160262520 | Depoyian | Sep 2016 | A1 |
20160324292 | Depoyian | Nov 2016 | A1 |
20160367003 | Stephens | Dec 2016 | A1 |
20160367004 | Stephens | Dec 2016 | A1 |
20160367005 | Stephens | Dec 2016 | A1 |
20160367006 | Stephens | Dec 2016 | A1 |
20160367007 | Stephens | Dec 2016 | A1 |
20160367008 | Stephens | Dec 2016 | A1 |
20170095050 | Dineen | Apr 2017 | A1 |
20180042356 | Pavis | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2010019512 | Feb 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20190075905 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62557343 | Sep 2017 | US |