Dihydroxypyridmidine carboxylic acids as viral polymerase inhibitors

Abstract
A class of 2-aryl-4,5-dihydroxy-6-carboxypyrimidines of formula (I): wherein Ar is an optionally substituted aryl or heterocyclicgroup; as well as compounds of formula (I) which are derivatized at one or more of the 4-hydroxy, 5-hydroxy or 6-carboxy groups; and tautomers thereof, and pharmaceutically acceptable salts or esters thereof; and inhibitors of viral polymerases, especially the hepatitis C virus (HCV) polymerase enzyme
Description

This application is the National Stage of International Application No. PCT/EP01/07955, filed on Jul. 11, 2001, which claims the benefit of United Kingdom Application No. 001767.8, filed Jul. 19, 2000.


This invention relates to compounds which can act as inhibitors of viral polymerases, especially the hepatitis C virus (HCV) polymerase, to uses of such compounds and to their preparation.


The hepatitis C virus (HCV) is the major causative agent of parenterally-transmitted and sporadic non-A, non-B hepatitis (NANB-H). Some 1% of the human population of the planet is believed to be affected. Infection by the virus can result in chronic hepatitis and cirrhosis of the liver, and may lead to hepatocellular carcinoma. Currently no vaccine nor established therapy exists, although partial success has been achieved in a minority of cases by treatment with recombinant interferon-a, either alone or in combination with ribavirin. There is therefore a pressing need for new and broadly-effective therapeutics.


Several virally-encoded enzymes are putative targets for therapeutic intervention, including a metalloprotease (NS2-3), a serine protease (NS3), a helicase (NS3), and an RNA-dependent RNA polymerase (NS5B). Of these, the polymerase plays an essential role in replication of the virus and is therefore an important target in the fight against hepatitis C.


It has now been found that certain 2-aryl-4,5-dihydroxy-6-carboxypyrimidines act as inhibitors of hepatitis C virus (HCV) polymerase enzyme.


According to a first aspect of the present invention there is provided a 2-aryl-4,5-dihydroxy-6-carboxypyrimidine of formula (I) below, as well as pharmaceutically acceptable salts and esters thereof:




embedded image



in which Ar is an optionally substituted aryl group.


It will be appreciated that the compound of formula (I) as depicted above may exist in equilibrium with its other tautomeric forms, including in particular the structure of formula (IA):




embedded image



wherein Ar is as defined above. It is to be understood that all tautomeric forms of the compounds of formula (I), as well as all possible mixtures thereof in any proportion, are included within the scope of the present invention.


In a second aspect, the present invention provides a compound of formula (I), or a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof, for use in therapy, especially for pharmaceutical use in humans.


Before discussing preferred embodiments of the first and second aspects of the invention it is helpful to define certain terms used throughout the specification.


By “lower alkyl” and “lower alkoxy” are intended groups having from 1 to 10, preferably 1 to 6, most preferably 1 to 4, carbon atoms. “Lower alkenyl” and “lower alkynyl” groups have from 2 to 10, preferably 2 to 6, carbon atoms.


Typical examples of lower alkyl groups include methyl and ethyl groups, and straight-chained or branched propyl, butyl, pentyl and hexyl groups. Particular alkyl groups are methyl, ethyl, n-propyl, isopropyl, tert-butyl and 1,1-dimethylpropyl. Derived expressions such as “C1-6 alkoxy” are to be construed accordingly.


Typical examples of lower alkenyl groups include vinyl, allyl and dimethylallyl groups.


Typical examples of lower alkynyl groups include ethynyl and propargyl groups.


Cycloalkyl and cycloalkenyl groups contain from 3 to 8 carbon atoms, preferably 5 to 7. Heterocycloalkyl and heterocycloalkenyl groups are 3 to 8 membered rings which contain one or more heteroatoms selected from O, N and S.


Typical cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.


Suitable heterocycloalkyl groups include azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl groups.


The term “aryr” as used herein is intended to encompass heteroaromatic as well as carbocyclic groups and implies an aromatic (or heteroaromatic) ring optionally fused, e.g. benzofused, with one to three cycloalkyl, aromatic, heterocyclic or heteroaromatic rings. Preferred groups containing a carbocyclic aromatic radical have from 6 to 14, more preferably 6 to 10, carbon atoms prior to any optional substitution. Examples of such groups include phenyl and naphthyl. Heteroaryl groups include a 3 to 7 membered heterocyclic aromatic ring consisting of one or more carbon atoms and from one to four heteroatoms selected from nitrogen, oxygen and sulphur. Aryl groups, in general, and prior to any optional substitution, contain from 1 to 14 carbon atoms, preferably 3 to 10 carbon atoms.


Suitable heteroaryl groups include pyridinyl, quinolinyl, isoquinolinyl, pyridazinyl, pyrimidinyl, pyrazinyl, furyl, benzofuryl, dibenzofuryl, thienyl, benzthienyl, pyrrolyl, indolyl, pyrazolyl, indazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, benzimidazolyl, oxadiazolyl, thiadiazolyl, triazolyl and tetrazolyl groups.


Aralkyl and aralkoxy groups generally contain from 2 to 20, preferably 4 to 15, carbon atoms.


Typical aralkyl groups include benzyl, phenylethyl, phenylpropyl, naphthylmethyl, furylmethyl, furylethyl, thienylmethyl, thienylethyl, oxazolylmethyl, oxazolylethyl, thiazolylmethyl, thiazolylethyl, imidazolylmethyl, imidazolylethyl, oxadiazolylmethyl, oxadiazolylethyl, thiadiazolylmethyl, thiadiazolylethyl, triazolylmethyl, triazolylethyl, tetrazolylmethyl, tetrazolylethyl, pyridinylmethyl, pyridinylethyl, pyrimidinylmethyl, pyrazinylmethyl, quinolinylmethyl and isoquinolinylmethyl. Derived expressions such as “aralkoxy” are to be construed accordingly.


Where a compound or group such as the aryl group, Ar, is described as “optionally substituted” one or more substituents may be present. Optional substituents are not particularly limited and may, for instance, be selected from lower alkyl or alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, aralkyl, lower alkoxy, aryloxy or aralkoxy, amino, nitro, halo, hydroxy, carboxy, formyl, cyano and trihalomethyl groups. Furthermore, optional substituents may be attached to the compounds or groups which they substitute in a variety of ways, either directly or through a connecting group of which the following are examples: amine, amide, ester, ether, thioether, sulphonamide, sulphamide, sulphoxide, urea, thiourea and urethane. As appropriate an optional substituent may itself be substituted by another substituent, the latter being connected directly to the former or through a connecting group such as those exemplified above.


In preferred embodiments of the first and second aspects of the invention the group “Ar” may be selected from the following, all of which may, optionally, be substituted: phenyl, thienyl, oxazolyl, thiazolyl, furyl, isoquinolinyl, indolyl, isoxazolyl, pyrazolopyrimidinyl and pyrazinyl groups. These groups may be joined to the 2-position of the pyrimidine at any available position of the aryl ring. However, connection at certain positions may be preferred and this is considered in some more detail below.


Preferred optional substituents on the aryl group may be selected from a wide variety of groups. For instance, they may be simple, relatively small groups such as halogen (especially chlorine and bromine), hydroxy, —NO2, —NH2, —CO2H, lower alkyl (especially methyl), lower alkenyl or alkynyl, —CN, or lower alkoxy (especially methoxy). As appropriate any of these substituents may be substituted by one or more of the others. However, in general at least one substituent is a group of formula (IV):

—X—R3  (IV)

where R3 is a generally hydrophobic moiety containing one or more, but generally at least 3, preferably 4 to 20, particularly 4 to 14, carbon atoms. Preferably, R includes one or more of the following groups, any of which may, optionally, be substituted: aryl, aralkyl, cycloalkyl, lower alkyl (especially branched lower alkyl), heterocycloalkyl, lower alkenyl, cycloalkenyl and heterocycloalkenyl. The group X is preferably selected from —NH—SO2—, —NH—SO2—NH—, —CH2—SO2—, —SO2—NH—, —NH—CO—NH—, —NH—CS—NH—, —NH—CO—O—, —NH—CO—, —CO—NH—, —NH—CO—NH—SO2—, —NH—CO—NH—CO—, —O—, —S—, —NH—, —CH2—, —CH2O— and —CH2S—.


The hydrogen atom of any NH group may, optionally, be replaced by a lower alkyl group.


One preferred class of compounds may be represented by formula (II) below:




embedded image



where Phe is an optionally substituted phenyl group. For instance, examples of compounds within this class are those of formula (III):




embedded image



where each of R1 and R2 may independently be selected from H or a substituent group. Preferably, one of R1 and R2 is hydrogen, while the other is a substituent. Where a substituent is present it may be at any of the 2-, 3- or 4-positions—i.e. ortho, meta or para to the pyrimidine group. However, where a single substituent is present, substitution at the ortho or meta positions is preferred.


The substituents R1 and R2 may be selected from a wide variety of groups. For instance, they may be simple, relatively small groups such as halogen (especially chlorine and bromine), hydroxy, —NO2, —NH2, —CO2H, lower alkyl (especially methyl), lower alkenyl or alkynyl, —CN, or lower alkoxy (especially methoxy). As appropriate any of these substituents may be substituted by one or more of the others.


Although some such compounds are of high activity, it is generally preferable that substituent R1 and/or R2 include a relatively hydrophobic group R3 which is bonded to the phenyl group through a linkage X. In this case the substituents R1 and/or R2 may be represented by the formula (IV):

—X—R3  (IV)

where R3 and X are as defined above.


For instance, examples of preferred classes of compound are those in which a single ortho or meta substituent is present, and that substituent is selected from the following formulae (V), (VI), (VII), (VIII) and (IX):

—X—(CH2)n—R4  (V)
—X—CH═CH—R4  (VI)




embedded image



—X—(CHR5)p—(CH2)m—(CHR5)q—R4  (VIII)
—X—(CH2)r-Z-R4  (IX)

wherein


n is zero or an integer from 1 to 6, and preferably is from zero to 3, especially 0 or 1;


m is zero or an integer from 1 to 6, but preferably is 0 or 1;


each of p and q is independently 0 or 1, but preferably they are not simultaneously 1;


r is an integer from 1 to 6, preferably 1;


R4 is an optionally substituted aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl or branched lower alkyl group;


each R5 is independently a lower alkyl group (especially methyl), a cycloalkyl group, an optionally substituted aryl group (especially phenyl), hydroxy or hydroxy lower alkyl (especially hydroxymethyl), any of which may be optionally etherified, or —NH2, optionally protonated, alkylated or derivatised as a urethane group; and


Z is selected from —O—, —S— and —NH—.


In each of the formulae (IV) to (IX) the linkage X may be any of the X groups specified above.


Among the groups X, the sulfonamide (—NH—SO2—), urea (—NH—CO—NH—), urethane (—NH—CO—O—) and amide (—NH—CO—) groups are most preferred. A particular value of X is —NH—CO—NH—SO2—.


The group R4 is preferably an aryl group, of which optionally substituted phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl and thiazolyl are particularly preferred examples. Each of these may, optionally, be substituted by another optionally substituted aryl or heteroaryl group of the same or different type.


Examples of compounds of formula (II) can be found in Tables I, II, III and IV. All of the compounds in these Tables have IC50 values below 100 μM when measured in the assay described below. In many cases the IC50 is below 10 μM, and in some cases it is 1 μM or below.


A further preferred class of compounds may be represented by formula (X) below:




embedded image



wherein Thi represents a thienyl group, optionally carrying one or more substituents. Preferred compounds in this class are those in which the thienyl group is unsubstituted, or carries a single substituent R6, and may be represented by formula (XI) below:




embedded image


The pyrimidine group and the R6 substituent may be at any position on the thiophene ring. However, it is preferred that when the pyrimidine is at position 2 on the thiophene ring, then substituent R6 is at the 3-position, substitution at the 4- or 5-positions being less preferred. When the pyrimidine group is at the 3-position of the thiophene ring, then R6 is preferably at the 2- or 4-position of the thiophene ring, more preferably at the 4-position.


Substituent R6 may be selected from a wide variety of groups. For instance, like substituents R1 and R2 discussed above it may be a simple, relatively small group such as halogen (especially chlorine and bromine), hydroxy, —NO2, —NH2, —CO2H, lower alkyl (especially methyl), lower alkenyl or alkynyl, —CN, or lower alkoxy (especially methoxy). As appropriate any of these substituents may be substituted by one or more of the others.


More preferably, however, R6 includes a relatively hydrophobic group which is bonded to the thienyl group through a linkage X. In this case, the group R6 may be represented by the formula (IV):

—X—R3  (V)

where X and R3 are as defined above.


Preferred X groups are amide, sulphonamide, urea and urethane linkages. A particularly preferred X group is —NH—CO—NH—SO2—. Preferred R3 groups are those shown in formulas (V)–(IX) already discussed above, and which include a group R4. Advantageously, R3 is naphthyl.


Preferred R4 groups are aromatic groups, especially phenyl, naphthyl, thienyl, pyridyl, benzothienyl, indolyl, benzimidazolyl and oxazolyl groups. When R4 comprises fused aromatic rings, the connection to the remainder of the R3 group may be through any ring.


Preferred optional substituents on R4, especially in the case where R4 is an aryl group, include the following: halogen (e.g. fluorine, chlorine and/or bromine), nitro (—NO2), lower alkyl (especially methyl), trifluoromethyl and aryl (especially phenyl).


Suitably, n is zero.


Suitably, R4 is naphthyl.


Examples of compounds of formula (X) may be found in Tables V–IX. The compounds exemplified all have IC50 values of less than 100 μm as measured in the assay described infra. In fact, virtually all have an IC50 of less than 25 μM, mostly less than 10 μM. Very many of the compounds have submicromolar IC50 values.


Examples of other compounds of formula (I) can be found in Tables X and XI. The compounds of these Tables have IC50 values less than 100 μM, some less than 10 μM.


In another aspect, the invention provides compounds of formula (I) which are derivatised at one or more of the 4-hydroxy, 5-hydroxy or 6-carboxy groups, and tautomers thereof, as well as salts and esters thereof. These compounds also are suitable for pharmaceutical use.


For instance, either or both of the 4- and 5-hydroxy groups may be etherified, e.g. with an optionally substituted alkyl, aryl or aralkyl group. The 6-carboxy group may be esterified with a variety of alcohols, most preferably an optionally substituted lower alkyl alcohol.


Examples of compounds derivatised at the 4-hydroxy, 5-hydroxy or 6-carboxy group are set out in Tables XIIa to XIIc. Although generally less active than the underivatised compounds in the IC50 assay, the exemplified compounds nevertheless all have IC50 values below 50 μM.


According to a further aspect of the invention there is provided the use of a compound of formula (I) above, of a compound of formula (I) which is derivatised at one or more of the 4-hydroxy, 5-hydroxy or 6-carboxy groups, of a tautomer thereof, or of a pharmaceutically acceptable salt or ester thereof, for the manufacture of a medicament for treatment or prevention of infection by hepatitis C virus in a human or animal.


A still further aspect of the invention provides a pharmaceutical composition comprising a compound of formula (I) above, a compound of formula (I) which is derivatised at one or more of the 4-hydroxy, 5-hydroxy or 6-carboxy groups, a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof, and a pharmaceutically acceptable excipient, diluent or carrier. The composition may be in any suitable form, depending on the intended method of administration. It may for example be in the form of a tablet, capsule or liquid for oral administration, or of a solution or suspension for administration parenterally.


The pharmaceutical compositions optionally also include one or more other agents for the treatment of viral infections such as an antiviral agent, or an immunomodulatory agent such as α-, β- or γ-interferon.


A yet further aspect of the invention provides a method of inhibiting hepatitis C virus polymerase and/or of treating or preventing an illness due to hepatitis C virus, the method involving administering to a human or animal (preferably mammalian) subject suffering from the condition a therapeutically or prophylactically effective amount of the pharmaceutical composition described above or of a compound of formula (I) above, a compound of formula (I) which is derivatised at one or more of the 4-hydroxy, 5-hydroxy or 6-carboxy groups, a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof “Effective amount” means an amount sufficient to cause a benefit to the subject or at least to cause a change in the subject's condition.


The dosage rate at which the compound, salt or ester is administered will depend on a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age of the patient, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition and the host undergoing therapy. Suitable dosage levels may be of the order of 0.02 to 5 or 10 g per day, with oral dosages two to five times higher. For instance, administration of from 10 to 50 mg of the compound per kg of body weight from one to three times per day may be in order. Appropriate values are selectable by routine testing. The compound, salt or ester may be administered alone or in combination with other treatments, either simultaneously or sequentially. For instance, it may be administered in combination with effective amounts of antiviral agents, immunomodulators, anti-infectives or vaccines known to those of ordinary skill in the art. It may be administered by any suitable route, including orally, intravenously, cutaneously and subcutaneously. It may be administered directly to a suitable site or in a manner in which it targets a particular site, such as a certain type of cell. Suitable targeting methods are already known.


An additional aspect of the invention provides a method of preparation of a pharmaceutical composition, involving admixing at least one compound selected from a compound of formula (I) above, a compound of formula (I) which is derivatised at one or more of the 4-hydroxy, 5-hydroxy or 6-carboxy groups, a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof, with one or more pharmaceutically acceptable adjuvants, diluents or carriers and/or with one or more other therapeutically or prophylactically active agents.


According to one more aspect of the invention there is provided a method for the production of compounds of formula (I). These may be prepared by hydrolysis of the corresponding methyl or other ester of formula 2:




embedded image



where R is a methyl or other lower alkyl group.


The esters of formula 2 may be prepared by cyclization of oximes of formula 3:




embedded image


Oximes of formula 3 may be prepared by reaction of amide-oximes of formula 4 with diesters of acetylenedicarboxylate:




embedded image


Amide-oximes of formula 4 may be prepared by reaction of nitrites of formula 5 with hydroxylamine:




embedded image


Nitriles of formula 5 may be obtained from commercial sources or may be prepared from the corresponding primary amides of formula 6 using established methods known to those skilled in the art:




embedded image


Primary amides of formula 6 may be obtained from commercial sources or may be prepared from the corresponding esters or carboxylic acids using established methods known to those skilled in the art.


Compounds of formula (I) which are derivatised at one or more of the 4-hydroxy, 5-hydroxy or 6-carboxy groups may be prepared by analogous methods.


Specific procedures are described in the following Examples:







EXAMPLE 1
2-(4-Chlorophenyl)-4,5-dihydroxyprimidine-6-carboxylate (7)



embedded image


To a suspension of 0.120 g (0.43 mmol) of methyl 2-(4-chlorophenyl)-4,5-dihydroxypyrimidine-6-carboxylate (Aldrich) in 1 ml of MeOH was added 3N NaOH (3 ml) and the mixture was stirred overnight at room temperature. The reaction mixture was acidified by addition of aqueous hydrochloric acid (1N, 5 ml) and the precipitate was filtered off and dried under vacuum to give the title compound (0.11 g, 0.41 mmol, 95% yield). 1H NMR (DMSO-d6): δ 8.06 (2H, d, J 8.54), 8.01 (2H, d, J 8.52).


EXAMPLE 2
2-[2-(2-Chlorobenzylureyl)phenyl]-4,5-dihydroxy-6-carboxypyrimidine (9)



embedded image


2-Nitrobenzonitrile 10 (10.0 g, 67.51 mmol) was heated at 80° C. in water (120 ml) with sodium carbonate (114.77 mmol, 12.164 g) and hydroxylamine hydrochloride (243 mmol, 16.89 g) for 2 h, sufficient EtOH being added to help dissolution of the reaction mixture. The cooled mixture was filtered to remove solids, the aqueous layer was extracted several times with EtOAc, and the extracts were dried and concentrated under reduced pressure. The resulting yellow solid was purified by flash chromatography, or by recrystallization, to give the title compound (50%). 1H NMR (DMSO-d6): δ 9.68 (1H, s), 7.84 (1H, d, J 8), 7.71 (1H, t, J 7.47), 7.64 (1H, d, J 6.3), 7.61 (1H, t, J 8.11), 6.00 (2H, br s). MS m/z 182 (M+1).




embedded image


A solution of dimethyl acetylenedicarboxylate (2.60 ml, 21.12 mmol, 1.3 eq) and 11 (2.943 g, 16.246 mmol) in CHCl3 was heated under reflux for 4 h. After concentration of the solvent the crude product was purified by flash chromatography (eluent 1:1 petroleum ether:ethyl acetate) on silica gel to give 12 as a 1:3.7 mixture of the two geometrical isomers (3.15 g, 60%). 1H NMR (DMSO-d6): δ 8.04 (1H, d, J 7.83), 7.81 (1H, t, J 7.46), 7.75 (1H, t, J 7.39), 7.70 (1H, d, J 7.40 (64%)), 7.64 (1H, d, J 7.48 (36%)), 7.30 (2H, br s (64%)), 6.92 (2H, br s (36%)), 5.70 (1H, s (36%)), 5.53 (1H, s (36%)), 3.78 (3H, s (64%)), 3.73 (3H, s (36%)), 3.59 (3H, s (64%)), 3.55 (3H, s (36%)). MS m/z 324 (M+1).




embedded image


The mixture of adducts 12 (1.28 g, 3.96 mmol) was heated under reflux in ortho-xylenes (15 ml) for 6 h. The hot solution was filtered to give 13 as a yellow solid (0.807 g, 70%). 1H NMR (DMSO-d6): δ 13.36 (1H, br s), 10.63 (1H, br s), 8.18 (1H, d, J 7.97), 7.88 (1H, t, J 7.53), 7.80 (1H, d, J 7.79), 7.77 (1H, t, J 7.56), 3.80 (3H, s). MS m/z 292 (M+1).




embedded image


The nitro compound 13 (4.6 g, 15.79 mmol) was dissolved in 450 ml of methanol. Palladium-on-carbon (10% by weight, 200 mg) was added and the mixture was stirred under a hydrogen atmosphere for 2 h. After two hours the reaction was complete (as indicated by reverse-phase tlc) and a green solid had precipitated. Dilute hydrochloric acid (1N) was added dropwise until the precipitate had dissolved. The catalyst was removed by filtration, the filtrate was concentrated in vacuo, and the resulting solid washed with diethyl ether to give 14 (4.5 g, 96%). 1H NMR (DMSO-d6): δ 3.85 (3H, s), 6.77 (1H, bt), 6.94 (1H, d, J 8), 7.24 (1H, t, J 7.4), 7.71 (1H, d, J 8). MS m/z 262 (M+1).




embedded image


The amino-pyrimidine 14 (95 mg, 0.319 mmol) was dissolved in 4 ml of pyridine and 2-chlorobenzyl isocyanate (0.6 ml, 0.419 mmol), dissolved in 2 ml of CHCl3, was added dropwise. The mixture was stirred at room temperature overnight. The solution was concentrated in vacuo and the resulting solid washed with HCl (1N), MeOH and diethyl ether to give 75 mg (53%) of ester urea which was used without further purification. 1H NMR (DMSO-d6): δ 3.80 (3H, s), 4.36 (2H, d, J 5.8), 6.99–7.04 (2H, m), 7.28–7.44 (5H, m), 7.64 (1H, d, J 7.8), 8.23 (1H, d, J 8.10), 10.30 (1H, s), 10.60 (1H, br s), 13.00 (1H, br s). MS m/z 429 (M+1).


To the ester urea was added a 0.5 M solution of NaOH (2 ml) and the resulting mixture was heated under reflux for 30 min. To the cooled solution, HCl (1N) was added dropwise, and a solid precipitate formed. The solid was isolated by filtration, then washed with methanol and diethyl ether to give 31 mg (43%) of the title compound. 1H NMR (DMSO-d6): δ 4.35 (2H, d, J 5.8), 6.93 (1H, bt), 7.00 (1H, t, J 7.4), 7.27–7.43 (5H, m), 7.68 (1H, d, J 7.8), 8.22 (1H, d, J 8.2), 10.90 (1H, s), 12.90 (1H, s). MS m/z 415 (M+1).


EXAMPLE 3
2-[3-(Diphenylmethylureyl)phenyl]-4,5-dihydroxy-6-carboxypyrimidine (15)



embedded image


A mixture of 3-nitrobenzonitrile 16 (20 g, 135 mmol) and hydroxylamine hydrochloride (46.9 μg, 675 mmol) in a water/ethanol mixture (600 ml, 5:1) was heated to 60° C. under vigorous stirring. Sodium carbonate (35.8 g, 337.5 mmol) was added portionwise and the temperature was increased to 100° C. The mixture was stirred at 100° C. for 1.5 h. When cooled to room temperature, a solid precipitated which was isolated by filtration to give amidoxime 17 (24 g) as yellow crystals (98%). 1H NMR (DMSO-d6): δ 9.94 (1H, s), 8.50 (1H, s), 8.35 (1H, d, J 8), 8.15 (1H, d, J 8), 7.67 (1H, t, J 8), 6.07 (3H, s). MS m/z 182 (M+1).




embedded image


A mixture of amidoxime 17 (22 g, 121.5 mmol) and dimethyl acetylenedicarboxylate (16.4 ml, 133.6 mmol) in a chloroform/methanol mixture (200 ml, 3:1) was refluxed for 3 h which gave a brown solution. The solution was concentrated in vacuo and the resulting oil was dissolved in xylene (150 ml), heated under reflux for 4 h at which point there was precipitation of a solid. The mixture was cooled to room temperature and the solid was isolated by filtration and dried in vacuo to give a brown solid (31 g) that was recrystallized from hot acetic acid (150 ml) to give 18 (28 g, 72%). 1H NMR (DMSO-d6): δ 13.43 (1H, br s), 10.71 (1H, br s), 8.86 (1H, s), 8.44 (1H, d, J 8), 8.36 (1H, d, J 8), 7.80 (1H, t, J 8), 3.87 (3H, s). MS m/z 292 (M+1).




embedded image


A mixture of compound 18 (2.1 g) and 10% palladium-on-carbon in a mixture of methanol and ethyl acetate (250 ml, 4:1) was stirred under atmospheric pressure of hydrogen overnight. The catalyst was removed by filtration and the catalyst was washed with hot tetrahydrofuran (4×100 ml). The combined filtrate and washings were concentrated in vacuo giving 19 as pale yellow solid (1.87 g, quantitative). 1H NMR (DMSO-d6): δ 11.89 (1H, br s), 10.45 (1H, br s), 7.17 (1H, s), 7.10–7.08 (1H, m), 6.66–6.69 (1H, m), 5.32 (2H, br s), 3.83 (3H, s). MS m/z 262 (M+1).




embedded image


Diphenylmethyl isocyanate (1.2 eq) was added neat to a 0.1N solution of pyrimidine 19 (100 mg) in dry pyridine stirring at room temperature overnight in a 15 ml centrifuge tube. Solvent was removed in vacuo using a Speedvac and the resulting solid triturated with 1N hydrochloric acid (3×5 ml), methanol (3×5 ml), diethyl ether (3×5 ml), and solid separated by centrifugation (5 min at 4000 rpm) and dried under vacuum. The residue (ester 20) was suspended in 2.5 eq of 0.5N sodium hydroxide and stirred at 65° C. for 20 min. The pH was adjusted to 3.5 with 1N hydrochloric acid which precipitated a solid. The solid was separated by centrifugation and the residue triturated with water (3×5 ml), methanol (3×5 ml) and diethyl ether (3×5 ml) using centrifuge each time to separate the solid. Removal of the remaining solvent under high vacuum gave desired free acid 15 as a white solid.



1H NMR (DMSO-d6) of 20: δ 13.05 (1H, br s), 8.65 (1H, s), 7.92 (1H, s), 7.59 (1H, d, J 8), 7.52 (1H, d, J 8), 7.37–7.16 (12H, m), 5.91 (1H, d, J 8), 3.79 (3H, s). MS m/z 471 (M+1).



1H NMR (DMSO-d6) of 15: δ (1H, br s), 8.67 (1H, s), 7.93 (1H, s), 7.59 (1H, d, J 8), 7.52 (1H, d, J 8), 7.37–7.16 (12H, m), 5.96 (1H, d, J 8). MS m/z 457 (M+1).


EXAMPLE 4
2-[2-(2,4,6-Trichlorophenylsulfonylamino)phenyl]-4,5-dihydroxy-6-carboxypyrimidine (21)



embedded image


Cesium fluoride (12.1 g, 79.7 mmol) was added to methyl 2-(2-nitrophenyl)-4,5-dihydroxy-6-carboxylate (13) (4.6 g, 15.8 mmol) in N,N-dimethylformamide (120 ml) at room temperature under nitrogen and the resultant suspension stirred vigorously for 20 min. Dibromomethane (1.2 ml, 17.1 mmol) was introduced and the reaction immersed in a pre-heated oil bath at 120° C. After 30 min, a further aliquot of dibromomethane (1.2 ml, 17.1 mmol) was added and heating continued for another 30 min. Additional dibromomethane (0.6 ml, 8.6 mmol) was introduced and heating continued for a further 20 min before the reaction was allowed to cool to room temperature and partitioned between ethyl acetate and water. The aqueous phase was extracted with ethyl acetate and the combined organics washed with 1N aqueous hydrochloric acid, water and then brine. The organics were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to leave a brown foam. Flash chromatography on silica gel (using 40% ethyl acetate/petroleum ether as eluent) gave the cyclic methyleneacetal (22) as an off-white powder (2.92 g, 61%): Rf (40% ethyl acetate/petroleum ether)=0.25; 1H NMR (DMSO-d6; 400 MHz): δ 7.94 (1H, dd, J 7.7, 1.2, (O2N)CCH or (pyrimidine)CCH, 7.93 (1H, dd, J 7.7, 1.5, (O2N)CCH or (pyrimidine)CCH), 7.80 (1H, td, J 7.7, 1.2, (pyrimidine)CC(H)CH or (O2N)CC(H)CH), 7.71 (1H, td, J 7.7, 1.5, pyrimidine)CC(H)CH or (O2N)CC(H)CH), 6.40 (2H, s, OCH2O), 3.88 (3H, s, CO2Me); 13C NMR (DMSO-d6; 75.5 MHz): δ 167.8, 162.0, 153.4, 149.1, 140.5, 132.5, 130.9, 130.8, 130.7, 129.1, 124.0, 102.7, 52.5; m/z (ES+) 326 (55%, [M+Na]+), 304 (100%, [M+H]+), 272 (20%), 243 (10%), 198 (15%), 186 (15%), 134 (25%).




embedded image


A slurry of palladium on carbon (300 mg, 10% Pd/C) in ethyl acetate (20 ml) was added under nitrogen to the 2-nitrophenylpyrimidine (22) (3.5 g, 11.6 mmol) in ethyl acetate (330 ml). The reaction was stirred vigorously under a hydrogen atmosphere overnight (14 h). The catalyst was removed by filtration on a glass fibre filter, washing thoroughly with warm ethyl acetate and methanol. The resultant yellow solution was concentrated in vacuo to afford the aniline (23) as a yellow solid (3 g, 95%): Rf (40% ethyl acetate/petroleum ether)=0.38; 1H NMR (DMSO-d6; 400 MHz): δ 8.11 (1H, dd, J 8.1, 1.6, (pyrimidine)CCH), 7.29 (2H, br s, NH2), 7.12 (1H, td, J 7.6, 1.6, (H2N)CC(H)CH), 6.76 (1H, d, J 8.1, (H2N)CCH), 6.56 (1H, t, J 7.6, (pyrimidine)CC(H)CH), 6.32 (2H, s, OCH2O), 3.91 (3H, s, CO2Me); 13C NMR (DMSO-d6; 75.5 MHz): δ 167.4, 162.7, 157.3, 149.3, 138.3, 131.4, 129.6, 127.3, 116.8, 115.8, 114.9, 101.9, 52.8; m/z (ES+) 296 (10%, [M+Na]+), 274 (100%, [M+H]+), 214 (40%), 186 (30%), 158 (40%), 131 (50%), 118 (65%).




embedded image


Triethylamine (80 μl, 0.574 mmol) was added to the aniline (23) (50 mg, 0.183 mmol) and 2,4,6-trichlorobenzenesulfonyl chloride (Maybridge) (103 mg, 0.368 mmol) in dry acetonitrile (4 ml). The reaction was agitated on an orbital shaker at room temperature overnight followed by removal of volatiles in vacuo in a SpeedVac to afford a brown solid. The solid was suspended in a mixture of 1,4-dioxane (2 ml) and 2N aqueous sodium hydroxide (1 ml, 2 mmol). The reaction was heated, with stirring, at 70° C. for 2 h, then acidified with 4N aqueous hydrochloric acid (1 ml, 4 mmol) and stirred at room temperature for 30 min. The reaction was concentrated in vacuo in a SpeedVac to leave a tan coloured gum. Iterative washing, centrifugation and decanting of the supernatants using first water (3 washings), and then diethyl ether (2 washings), followed by lyophilization (acetonitrile/water) afforded the title compound (21) in crude form as an off-white powder (45 mg, 50%). Purification by reverse phase HPLC (Merck Hibar 250-25, LiChrosorb RP-18 (7 μm) column, using acetonitrile and water (both containing 0.1% trifluoroacetic acid) as eluent gave the title compound (21) as a white powder following lyophilization (21 mg, 23%). 1H NMR (DMSO-d6; 400 MHz): δ 12.90 (1.5H, br s, NH or OH), 7.85 (1H, d, J 8.0, (pyrimidine)CCH), 7.81 (2H, s, (Cl)CCH), 7.42–7.39 (2H, m, (O2SNH)CCH and (pyrimidine)CC(H)CH or (O2SNH)CC(H)CH), 7.18–7.14 (1H, m, pyrimidine)CC(H)CH or (O2SNH)CC(H)CH; m/z (ES−) 515, 513, 511 chlorine isotope cluster (5%, 15%, 15%, [M+Na−1]), 492, 490, 488 chlorine isotope cluster (15%, 35%, 35%, [M−1]), 448, 446, 444 chlorine isotope cluster (10%, 25%, 20%, [M−CO2H]).


EXAMPLE 5
2-(2-Thienyl)-4,5-dihydroxypyrimidine-6-carboxylate (24)



embedded image


A solution of 2-thiophene amidoxime 25 (1.00 g, 7.03 mmol) in chloroform (5 ml) was treated dropwise with dimethyl acetylenedicarboxylate (1.00 g, 7.17 mmol) and the resulting solution was stirred at room temperature for 2 h. The mixture was concentrated in vacuo to give a residue which was taken up in p-xylene (5 ml) and heated under reflux for 5 h. The mixture was cooled to room temperature and the precipitate was collected by filtration. After washing with methanol and diethyl ether the precipitate was crystallized from acetic acid to afford methyl 2-(2-thienyl)-4,5-dihydroxypyrimidine-6-carboxylate 26 (470 mg, 26%) as a solid. 1H NMR (DMSO-d6): δ 13.20 (1H, bs), 10.48 (1H, bs), 7.99 (1H, d, J 3.5), 7.76 (1H, d, J 5), 7.16 (1H, dd, J 5, 3.5), 3.84 (3H, s).




embedded image


A suspension of methyl 2-(2-thienyl)-4,5-dihydroxypyrimidine-6-carboxylate 26 (300 mg, 1.19 mmol) in 1N aqueous sodium hydroxide (2 ml) was heated at 50° C. for 3 h. The resulting mixture was cooled to room temperature and acidified with 1N aqueous hydrochloric acid. The precipitate was collected and washed with water and diethyl ether, and dried to give the title compound 24 (212 mg, 75%) as a brown solid. 1H NMR (DMSO-d6): δ 12.40 (1H, bs), 7.84 (1H, d, J 4), 7.61 (1H, d, J 5.5), 7.09 (1H, dd, J 5.5, 4). 13C NMR (DMSO-d6): δ 169.0, 161.6, 156.0, 138.4, 136.1, 136.2, 128.9, 127.8, 125.7. MS m/z (MH)+ 239.0.


EXAMPLE 6
2-[3-(2-Chlorophenylmethylaminocarbonylamino)thien-2-yl]-4,5-dihydroxypyrimidine-6-carboxylate (27)



embedded image


A modification of the method described by Huddleston (Synth. Commun., 1995, 25, 3729) was used, as follows:


Commercial methyl 3-amino-2-thiophenecarboxylate 28 (75 g, 0.48 mol) was suspended in water (125 ml) and treated with concentrated hydrochloric acid (125 ml). The resulting suspension was stirred for 45 min at room temperature then cooled to −10° C. with an ice/salt bath (internal thermometer). A solution of sodium nitrite (33 g, 0.48 mol) in water (80 ml) was carefully added via dropping funnel, while internal temperature was kept between −5 and 0° C. After the addition, the reaction mixture was stirred for 1 h at 0° C., then treated in one portion with a solution of sodium tetrafluoroborate (79 g, 0.72 mol) in water (150 ml). The precipitated salt was isolated by filtration, washed with cold 5% aqueous sodium tetrafluoroborate (2×180 ml), ethanol (2×180 ml) and diethyl ether (2×180 ml), then dried in the air. The beige solid (98.5 g, 81%) thus obtained was used without further purification.


Activated copper bronze (19.1 g, 0.3 mol; see Vogel: Practical Organic Chemistry, p. 426 for activation) was added to a mechanically stirred solution of sodium nitrite (82.8 g, 1.2 mol) in water (180 ml). A suspension of the foregoing salt (25.6 g, 0.1 mol) in water (100 ml) was added to the vigorously stirred mixture portionwise over 1 h at room temperature. After the addition, stirring was continued for another hour. The reaction mixture was diluted with dichloromethane (500 ml) and filtered through diatomaceous earth (Celite). After separation of the phases, the aqueous phase was extracted with dichloromethane (4×300 ml) and the combined organic layers were dried over sodium sulfate in the presence of activated charcoal. Filtration and evaporation afforded 17.3 g (92%) of a red solid, which was used without further purification. 1H NMR (400 MHz, DMSO-d6): δ 7.48 (1H, d, J 5), 7.43 (1H, d, J 5), 3.90 (3H, s).




embedded image


The ester 29 (25 g, 0.13 mol), prepared as described above, was stirred for 24 h at 100° C. in a well-closed Pyrex bottle in the presence of 2M methanolic ammonia (405 ml, 0.8 mol). The volatiles were removed in vacuo and the residue crystallized from hot ethyl acetate to afford 16.5 g (74%) of 3-nitrothiophene-2-carboxamide 30. 1H NMR (400 MHz, DMSO-d6): δ 8.21 (1H, bs), 7.91 (1H, bs), 7.73 (1H, d, J 5), 7.57 (1H, d, J 5), 3.28 (3H, s). An analytical sample was obtained by further recrystallization from ethyl acetate; elemental analysis, calc. for C5H4N2O3S: C, 34.88; H, 2.34; N, 16.27. Found: C, 34.75; H, 2.24; N, 15.96.




embedded image


The amide 30 (15.5 g, 90 mmol), prepared as described above, was dissolved in dichloromethane (700 ml). Triethylamine (27.2 g, 37.6 ml, 270 mmol) was added and the solution cooled to 0° C. After dropwise addition of neat trifluoroacetic anhydride (24.6 g, 16.5 ml, 117 mmol), the reaction was allowed to warm to room temperature and stirred for 1 h. The solution was concentrated in vacuo, the residue taken into ethyl acetate and then washed successively with hydrochloric acid (1N, 2×), water (1×), saturated aqueous sodium hydrogencarbonate (2×) and brine. Drying over sodium sulfate and removal of solvent gave a dark solid, which was purified by flash chromatography (400 g of silica gel, petroleum ether:ethyl acetate 7:3+1% MeOH as eluent) yielding 2-cyano-3-nitrothiophene 31 (13.4 g, 96.5%). 1H NMR (CDCl3): δ 7.75 (1H, d, J 5.5), 7.68 (1H, d, J 5.5). An analytical sample was obtained by recrystallization from dichloromethane/n-pentane, m.p. 87–88° C.; elemental analysis, calc. for C5H2N2O2S: C, 38.96; H, 1.31; N, 18.17; S, 20.80. Found: C, 38.92; H, 1.20; N, 18.03; S, 21.31.




embedded image


The nitrile 31 (86.93 mmol, 13.4 g), prepared as described above, was suspended in water (360 ml) and ethanol (48 ml). Sodium carbonate (15.7 g, 147.8 mmol) and hydroxylamine (18.7 g, 287 mmol) were added and the mixture was left at room temperature for 24 h. The orange solid was isolated by filtration, washed with a small portion of diethyl ether and dried. The amidoxime 32 (14.0 g, 86%) was obtained as an orange solid. 1H-NMR (DMSO-d6): δ 9.95 (1H, bs), 7.68 (1H, d, J 5.3), 7.60 (1H, d, J 5.3), 6.08 (2H, bs). MS (ESI) 188 [M+H]+. An analytical sample was obtained by recrystallization from dichloromethane/n-pentane, m.p. 201–202° C.; elemental analysis, calc. for C5H5N3O3S: C, 32.09; H, 2.69; N, 22.45; S, 17.13. Found: C, 32.34; H, 2.64; N, 21.96; S, 17.47.




embedded image


The amidoxime 32 (11.87 g, 63.90 mmol), prepared as described above, was suspended in dichloromethane (250 ml). Triethylamine (0.5 ml) and dimethyl acetylenedicarboxylate (9.53 g, 67.1 mmol, filtered over basic alumina) were added. The mixture was refluxed for 3 h and became homogeneous during this time. Evaporation of the dichloromethane gave a red oil (20.88 g), which was dissolved in ethyl acetate (400 ml). After washing with water and brine, the organic phase was dried over sodium sulfate and the solution was concentrated in vacuo. The residual oil (20.5 g, 97%) was used without further purification. 1H NMR (CDCl3), two diastereomers (2.5:1*): δ 7.61*, 7.58 (1H, d, J 5.6), 7.38*, 7.33 (1H, d, J 5.6), 6.10, 5.84* (2H, bs), 5.94, 5.88* (1H, s), 3.90*, 3.83 (3H, s), 3.71, 3.68* (3H, s). MS (ESI) 330 [M+H]+, 352 [M+Na]+.




embedded image


To a flask containing the oxime 33 (30.7 g, 93.28 mmol), prepared as described above, was added xylene (212 ml). The reaction was heated at 140° C. until the disappearance of the starting material was evident by TLC (7 h). The reaction mixture was stored in a refrigerator at 4° C. overnight and the precipitate isolated by filtration. The solid was washed with ethyl acetate and petroleum ether and dried in vacuo. The product was obtained as an off-white powder (13.27 g, 48%). 1H NMR (DMSO-d6): δ 13.30 (1H, bs), 11.80 (1H, bs), 7.89 (1H, d, J 5.4), 7.71 (1H, d, J 5.4), 3.82 (3H, s). MS (ESI) 296 [M−H]. (In addition to the desired product, the 1H NMR spectrum in DMSO showed about 6% of a dehydroxylated product).




embedded image


The pyrimidine 34 (1.5 g, 5.05 mmol), prepared as described above, was dissolved in a mixture of ethyl acetate and methanol (2:1, 200 ml). Palladium-on-charcoal (10% Pd, 1.5 g) was added, and the reaction stirred under an atmosphere of hydrogen for 5 h at ambient temperature. The catalyst was removed by filtration and washed with hot ethyl acetate and methanol. After evaporation the amine 35 (1.08 g, 80%) was obtained as a yellow solid. 1H NMR (DMSO-d6): δ 8.80 (3H, bs), 7.48 (1H, d, J 5.2), 6.67 (1H, d, J 5.2), 3.85 (3H, s). MS (ESI) 268 [M+H]+.




embedded image


The amine 35 (300 mg, 1.12 mmol), prepared as described above, was dissolved in pyridine (10 ml). Commercial 2-chlorobenzyl isocyanate (225 mg, 1.34 mmol) was added dropwise. The reaction was monitored by analytical HPLC. After consumption of amine, the solution was concentrated in vacuo and the residue was dissolved in a large volume of ethyl actetate, washed with hydrochloric acid (1N), brine, and dried over sodium sulfate. The compound (methyl ester) obtained after concentration of the solution in vacuo was hydrolyzed using sodium hydroxide (4.5 ml, 1N) and methanol (3 ml) at 80° C. for 30 min. The solution was then cooled in an ice-bath and acidified with hydrochloric acid (1N) to pH 2. The precipitated solid was isolated by filtration, washed with water and diethyl ether and dried. It was boiled once in ethyl acetate, filtered and washed again with ethyl acetate and diethyl ether, and dried in vacuo to give the crude product. This was purified by preparative reversed phase HPLC using a Waters Prep-NovaPak column (HR C18, 40×100 mm, 6 micron) and 0.05% trifluoroacetic acid in water (solvent A) and 0.05% trifluoroacetic acid in acetonitrile (solvent B) as eluents; gradient: 80% A, 2 min isocratic, in 2 min to 60% A, then in 8 min to 30% A; flow 35 ml/min, giving 105 mg (22%) of the title compound as a yellow powder after lyophilization. 1H NMR (DMSO-d6): δ 12.70 (1H, bs), 11.05 (1H, bs), 8.80, 7.83 (1H, d, J 5.4), 7.61 (1H, d, J 5.4), 7.45 (2H, m), 7.36 (2H, m), 7.00 (1H, bs), 4.42 (2H, bd, J 5.9). MS (ESI) 421, 419 [M−H].


EXAMPLE 7
2-[4-(2-Chlorophenylmethylaminocarbonylamino)thien-3-yl]-4,5-dihydroxypyrimidine-6-carboxylate (36)



embedded image


A solution of 3-amino-4-cyanothiophene 37 (10 g, 80.5 mmol) in methylene chloride (125 ml) was treated with pyridine (7.5 ml) and di-tert-butyl dicarbonate (36.9 g, 169.14 mmol) then heated under reflux for 45 min. The cooled solution was concentrated in vacuo and the residue was diluted with 1N hydrochloric acid. After extraction with ethyl acetate (3×150 ml) the dried organic layer was concentrated in vacuo to give 3-tert-butyloxycarbonylamino-4-thiophene carbonitrile 38 (15 g, 83%) as a solid. 1H NMR (DMSO-d6): δ 9.35 (1H, bs), 8.42 (1H, s), 7.41 (1H, s), 1.47 (9H, s).




embedded image


A solution of N-Boc-3-amino-4-cyanothiophene (3.04 g, 13.5 mmol) and hydroxylamine hydrochloride (1.32 g, 69.5 mmol) in MeOH (25 ml) was treated with Et3N (2.32 g, 23 mmol) and heated at 50° C. for 12 h. The solution was cooled and concentrated, and the residue was taken up with H2O and AcOEt. The organic layer was separated and dried, then concentrated to give 3-tert-butyloxycarbonylamino-4-thiophene amidoxime 39 (3.47 g, 100%) as a solid. 1H NMR (DMSO-d6): δ 10.15 (1H, s), 9.85 (1H, s), 7.90 (1H, s), 7.51 (1H, s), 6.05 (2H, s), 1.47 (9H, s).




embedded image


Dimethyl acetylenedicarboxylate (1.84 g, 13 mmol) was added dropwise to a stirred solution of oxime 39 (3.27 g, 12.7 mmol). The mixture was treated with triethylamine (0.25 ml) and heated under reflux for 3 h. The cooled solution was concentrated in vacuo and the residue was filtered through a short path of SiO2 (3:1 petroleum ether:ethyl acetate as eluent) to give a solid which was taken up in p-xylene (100 ml). The solution was heated under reflux for 3.5 h and then cooled and filtered. The precipitate was washed with methanol (5 ml) and diethyl ether (20 ml) and dried to give methyl 2-(3-tert-butyloxycarbonylamino-4-thienyl)-4,5-dihydroxypyrimidine-6-carboxylate 40 (1.3 g, 28%) as a solid. 1H NMR (DMSO-d6): δ 13.10 (1H, bs), 10.90 (1H, s), 10.78 (1H, bs), 8.49 (1H, s), 7.70 (1H, s), 3.85 (3H, s), 1.48 (9H, s).




embedded image


Ester 40 (828 mg, 2.25 mmol), prepared as described above, was treated with a 6:4 mixture of methylene chloride:trifluoroacetic acid (8 ml). The solution was stirred for 20 min then concentrated in vacuo and the residue dried to give methyl 2-(3-amino-4-thienyl)-4,5-dihydroxy-pyrimidine-6-carboxylate trifluoroacetate (860 mg, 99%) as a solid. 1H NMR (DMSO-d6): δ 8.32 (1H, s), 6.75 (1H, s), 3.87 (3H, s). MS m/z (MH)+ 268.0.




embedded image


A solution of amine 41 (200 mg, 0.58 mmol) in pyridine (5 ml) was treated dropwise with 2-chlorobenzyl isocyanate and the mixture was stirred for 8 h. The solution was concentrated in vacuo and the residue was washed with 1N hydrochloric acid (2 ml), water (2 ml) and diethyl ether (2 ml) to give a solid (199 mg) which was taken up in 1N sodium hydroxide (2 ml). The mixture was heated at 60° C. for 5.5 h then cooled to 0° C. and acidified with 1N hydrochloric acid. The precipitate was collected and washed with water (5 ml) and diethyl ether (5 ml). Purification of a 40 mg portion by HPLC (MacheryNagel Nucleosil C18 25 mm×20 cm; eluent MeCN+0.1% TFA/H2O+0.1% TFA; gradient from 30% MeCN to 90% MeCN in 10 min; retention time=8 min) afforded the title compound (12 mg) as a white solid. 1H NMR (DMSO-d6): δ 12.80 (1H, bs), 11.60 (1H, s), 8.35 (d, J 4), 7.61 (1H, d, J 4), 7.43 (2H, m), 7.32 (2H, m), 6.52 (1H, t, J 4.8), 4.41 (2H, d, J 4.8). MS m/z (M−) 419.0.


EXAMPLE 8
5,6-Dihydroxy-2-[4-(1-naphthylsulfonylaminocarbonylamino)thien-3-yl]pyrimidine-4-carboxylic acid (630)



embedded image


A mixture of 1-naphthalene sulfonamide (769 mg, 3.67 mmol) and potassium carbonate (563 mg, 4.07 mmol) in 2-butanone (9 ml) was heated under reflux for 30 min. Ethyl chloroformate (430 mg, 3.96 mmol) was added dropwise and the resulting solution was heated under reflux for 3 h. The mixture was cooled and diluted with H2O (30 ml) and AcOEt (10 ml). The aqueous layer was collected and adjusted to pH 2 by addition of 1N HCl (aq). Extraction with AcOEt (2×20 ml) and concentration of the dried organic extracts afforded ethyl 1-naphthylsulfonylcarbamate (674 mg, 67%) as a white solid. 1H NMR (DMSO-d6): δ 12.35 (bs, 1H), 8.57 (1H, d, J 8.6), 8.29 (2H, m), 8.11 (1H, d, J 7.7), 7.71 (3H, m), 3.90 (2H, q, J 7.1), 0.99 (3H, t, J 7.1).




embedded image


A solution of amine 41 (200 mg, 0.52 mmol) in toluene (4 ml) was treated with triethylamine (99 mg, 0.98 mmol) to adjust the pH to 6. Ethyl 1-naphthylsulfonylcarbamate (137 mg, 0.49 mmol) was added and the mixture was heated to reflux for 30 min. The mixture was cooled to room temperature and treated with 1N HCl (aq). The precipitate was filtered and triturated with H2O and Et2O then dried to afford methyl 5,6-dihydroxy-2-[4-(1-naphthylsulfonylaminocarbonylamino)thien-3-yl]pyrimidine-4-carboxylate (224 mg, 86%) as a solid. A portion of this compound (109 mg, 0.22 mmol) was dissolved in a 4:1 mixture of THF/H2O (2.2 ml) and was treated with LiOH.H2O (46 mg, 1.09 mmol). The mixture was heated overnight at 50° C., then the solution was cooled and the THF was removed under vacuum. The residue was acidified to pH 2 with 1N HCl (aq) and the resulting precipitate was collected by filtration, triturated with H2O and Et2O, and dried to afford the title compound (101 mg, 94%) as a solid. 1H NMR (DMSO-d6): δ 12.90 (1H, bs), 11.30 (1H, bs), 8.63 (1H, d, J 8.5), 8.28 (3H, m), 8.09 (1H, d, J 8), 7.69 (3H, m), 7.45 (1H, d, J 3.3); MS (ESI) 485 [M−H].


EXAMPLE 9
5,6-Dihydroxy-2-{3-[(E)-2-phenylethenyl]thien-2-yl}pyrimidine-4-carboxylic acid (628)



embedded image


3-(1,3-Dioxolan-2-yl)thiophene-2-carbaldehyde (13.1 g, 71.11 mmol), prepared by a method described by Hibino (S. Hibino et al., J. Org. Chem. 1984, 49, 5006), was dissolved in ethanol (80 ml). At room temperature a solution of hydroxylamine hydrochloride (two equivalents) and sodium hydrogencarbonate (one equivalent) in water (130 ml) was added and the resultant mixture stirred at this temperature for two hours. The ethanol was removed under reduced pressure and the aqueous phase extracted with ethyl acetate (3×300 ml). The combined organic layers were washed with brine and dried over sodium sulfate. Evaporation after filtration afforded 3-(1,3-dioxolan-2-yl)thiophene-2-carbaldehyde oxime as an off-white solid (quantitative). 1H NMR (2 isomers, 1:1) (CDCl3): δ 8.56 (1H, s), 8.45 (1H, s), 7.50 (1H, d, J 5.26), 7.25 (1H, d, J 5.2), 7.21 (1H, d, J 5.28), 7.12 (1H, d, J 5.2), 6.09 (1H, s), 5.99 (1H, s), 4.17–4.00 (2H, m).


The foregoing aldoxime (10.09 g, 50.07 mmol) was dissolved in acetonitrile (139 ml) containing copper(II) acetate hydrate (1.01 g, 5.07 mmol). Triethylamine (19.6 ml) was added dropwise and the resulting mixture was heated to reflux. After 30 min TLC (hexanes/ethyl acetate 3:1) indicated complete conversion of starting material. After cooling the reaction mixture to room temperature, the solvents were evaporated under reduced pressure and the crude product was purified by flash chromatography (eluent hexanes/ethyl acetate 3:1) to give 7.78 g (87%) of 3-(1,3-dioxolan-2-yl)thiophene-2-carbonitrile as an oily liquid. 1H NMR (CDCl3): δ 7.55 (1H, d, J 5.20), 7.21 (1H, d, J 5.20), 6.04 (1H, s), 4.21–4.06 (4H, m); 13C NMR (CDCl3): δ 149.69, 131.89, 126.79, 112.83, 108.22, 98.60, 65.52.




embedded image


To a solution of the foregoing nitrile (5.0 g, 27.59 mmol) in ethanol (20 ml) was added a solution of hydroxylamine hydrochloride (3.7 equivalents) and sodium carbonate (1.7 equivalents) in water (50 ml). The resulting mixture was heated to 40° C. for 5 h, then cooled to room temperature. The colourless precipitate was isolated by filtration, dried under a stream of air and azeotroped with toluene (2×) to give 3-(1,3-dioxolan-2-yl)thiophene-2-amidoxime as an off-white solid (4.36 g). 1H NMR (DMSO-d6): δ 9.83 (1H, s), 7.48 (1H, d, J 5.18), 7.15 (1H, d, J 5.18), 6.05 (1H, s), 5.77 (2H, bs), 4.05 (2H, m), 3.91 (2H, m).




embedded image


The foregoing compound (4.35 g, 20.3 mmol) was suspended in dichloromethane (200 ml). Triethylamine (0.2 ml) and dimethyl acetylenedicarboxylate (2.89 g, 20.3 mmol) were added. The mixture was refluxed for 5 h, then another portion of dimethyl acetylenedicarboxylate (289 mg) was added and the mixture was left stirring at room temperature for 3 days. Evaporation gave a red oil, which was purified by flash chromatography (hexanes/ethyl acetate 3:1, then 2:1 with 0.2% methanol). The product was obtained as a yellow oil (6.38 g, two diastereomers 1.5:1*). 1H NMR (CDCl3): δ 7.67*, 7.64 (1H, d, J 5.17), 7.19*, 7.16 (1H, d, J 5.17), 7.08*, 6.70 (2H, bs), 6.02*, 5.99 (1H, s), 5.73, 5.69* (1H, s), 4.04 (2H, m), 3.93 (2H, m), 3.80*, 3.77 (3H, s), 3.62, 3.61* (3H, s). MS m/z (MH)+ 357.




embedded image


The foregoing compound (6.29 g, 17.65 mmol) was heated at reflux in xylene (120 ml) for 6 h and then cooled to room temperature. The rection was filtered to remove some black precipitate and the solution cooled to 0° C. An orange solid precipitated, which was collected by filtration. The solution was reduced to half of its volume under reduced pressure and the precipitate that formed upon cooling to 0° C. was collected and united with the first batch. Thus, 2.0 g of cyclized material was obtained. A portion of this material (512 mg) was heated to 50° C. in formic acid (50 ml) for 1 h. The formic acid was removed under reduced pressure and the remaining solid was azeotroped with toluene (2×) to obtain crude methyl 2-(3-formylthien-2-yl)-5,6-dihydroxypyrimidine-4-carboxylate (452 mg). This material was used without further purification. 1H NMR (DMSO-d6): δ 9.83 (1H, s), 7.48 (1H, d, J 5.18), 7.15 (1H, d, J 5.18), 6.05 (1H, s), 5.77 (2H, bs), 4.05 (2H, m), 3.91 (2H, m). MS m/z (M+H) 281.




embedded image


The crude foregoing product (80 mg, 0.29 mmol) was dissolved in methanol (1 ml) and N,N-dimethylformamide (2 ml) and treated with sodium methanolate (2 equivalents). The resulting red solution was added to a solution of benzyl triphenylphosphonium bromide (247 mg, 2 equivalents) and sodium methanolate (34 mg) in anhydrous methanol (5 ml), which was prepared 20 min before at room temperature. The resulting mixture was heated to reflux. After 4 h some of the methanol was evaporated under reduced pressure, ethyl acetate was added, and the solution was washed with hydrochloric acid (1N) and brine. After drying over sodium sulfate, filtration and evaporation under reduced pressure, an orange solid was obtained, which was treated with diethyl ether (5×7 ml). The remaining solid (60 mg) was dissolved in methanol (1 ml) and sodium hydroxide (1 ml, 0.5N) was added. After heating to 80° C. for 1 h, the reaction mixture was diluted with water, and then at room temperature hydrochloric acid (1N) was added dropwise until pH 2 was reached. The precipitate was isolated by filtration, washed with diethyl ether and then lyophilized from acetonitrile and water. 5,6-Dihydroxy-2-{3-[(E)-2-phenylethenyl]thien-2-yl}pyrimidine-4-carboxylic acid was obtained as a yellow powder (35 mg). 1H NMR (DMSO-d6): δ 13.00 (1H, bs), 8.03 (1H, bd, J 16.9), 7.71 (1H, d, J 5.2), 7.63 (1H, d, J 5.2), 7.59 (2H, d, J 7.5), 7.36 (2H, t, J 7.5), 7.27 (1H, d, J 7.7), 7.23 (1H, d, J 16.9). MS m/z 341 (M+H)+.


These and other compounds of the invention which can be prepared by analogous methods are set out in Tables I to XII below. Where “X1” appears in the Table it is not part of the group “R1” but represents the remainder of the molecule apart from R1. The IC50 values in μM of these compounds can be measured in the following way.


Test for Inhibition of Hepatitis C Virus RdRp


WO 96/37619 describes the production of recombinant HCV RdRp from insect cells infected with recombinant baculovirus encoding the enzyme. The purified enzyme was shown to possess in vitro RNA polymerase activity using RNA as template. The reference describes a polymerisation assay using poly(A) as a template and oligo(U) as a primer. Incorporation of tritiated UTP is quantified by measuring acid-insoluble radioactivity. The present inventors have employed this assay to screen the various compounds described above as inhibitors of HCV RdRp.


Incorporation of radioactive UMP was measured as follows. The standard reaction (1001 μl) was carried out in a buffer containing 20 mM tris/HCl pH 7.5, 5 mM MgCl2, 1 mM DTT, 50 mM NaCl, 1 mM EDTA, 2 OU Rnasin (Promega), 0.05% Triton X-100, 1 μCi [3H]-UTP (40 Ci/mmol, NEN), 10 μM UTP and 10 μg/ml poly(A). Oligo(U)12 (1 μg/ml, Genset) was added as a primer. The final NSSB enzyme concentration was 20 nM. After 1 h incubation at 22° C. the reaction was stopped by adding 100 μl of 20% TCA and applying samples to DE81 filters. The filters were washed thoroughly with 5% TCA containing 1M Na2HPO4/NaH2PO4, pH 7.0, rinsed with water and then ethanol, air dried, and the filter-bound radioactivity was measured in the scintillation counter. By carrying out the reaction in the presence of various concentrations of each of the compounds set out above it was possible to determine IC50 values for each compound utilizing the formula:

% residual activity=100/(1+[I]/IC50)s

where [I] is the inhibitor concentration and “s” is the slope of the inhibition curve.









TABLE I









embedded image













Ex. No.
R1





4 (CompoundNo. 21)


embedded image













42


embedded image







43


embedded image













2 (CompoundNo. 9)


embedded image













44


embedded image







45


embedded image







46


embedded image







47


embedded image







48


embedded image







49


embedded image







50


embedded image







51


embedded image







52


embedded image







53


embedded image







54


embedded image







55


embedded image







56


embedded image







57


embedded image







58


embedded image







59


embedded image







60


embedded image







61


embedded image







62


embedded image







63


embedded image







64


embedded image







65


embedded image







66


embedded image







67


embedded image







68


embedded image







69


embedded image







70


embedded image







71


embedded image







72


embedded image







73


embedded image







74


embedded image







75


embedded image







76


embedded image







77


embedded image







78


embedded image







79


embedded image







80


embedded image







81


embedded image







82


embedded image







83


embedded image







84


embedded image







85


embedded image







86


embedded image







87


embedded image







88


embedded image







89


embedded image







90


embedded image







91


embedded image







92


embedded image







93


embedded image







94


embedded image







95


embedded image







96


embedded image







97


embedded image







98


embedded image







99


embedded image







100


embedded image







101


embedded image







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image







108


embedded image







109


embedded image







110


embedded image







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image







120


embedded image







121


embedded image







122


embedded image







123


embedded image







124


embedded image







125


embedded image







126


embedded image







127


embedded image







128


embedded image







129


embedded image







130


embedded image







131


embedded image







132


embedded image







133


embedded image







134


embedded image







135


embedded image







136


embedded image







594


embedded image







595


embedded image







596


embedded image


















TABLE II









embedded image













Ex. No.
R1











137


embedded image







138


embedded image







139


embedded image







140


embedded image













3 (CompoundNo. 15)


embedded image













141


embedded image







142


embedded image







143


embedded image







144


embedded image







145


embedded image







146


embedded image







147


embedded image







148


embedded image







149


embedded image







150


embedded image







151


embedded image







152


embedded image







153


embedded image







154


embedded image







155


embedded image







156


embedded image







157


embedded image







158


embedded image







159


embedded image







160


embedded image







161


embedded image







162


embedded image







163


embedded image







164


embedded image







165


embedded image







166


embedded image







167


embedded image







168


embedded image







169


embedded image







170


embedded image







171


embedded image







172


embedded image







173


embedded image







174


embedded image







175


embedded image







176


embedded image







177


embedded image







178


embedded image







179


embedded image







180


embedded image







181


embedded image







182


embedded image







183


embedded image







184


embedded image







185


embedded image







186


embedded image







187


embedded image







188


embedded image







189


embedded image







190


embedded image







191


embedded image







192


embedded image







193


embedded image







194


embedded image







195


embedded image







196


embedded image







197


embedded image







198


embedded image







199


embedded image







200


embedded image







201


embedded image







202


embedded image







203


embedded image







204


embedded image







205


embedded image







206


embedded image







207


embedded image







208


embedded image







209


embedded image







210


embedded image







211


embedded image







212


embedded image







213


embedded image







214


embedded image







215


embedded image







216


embedded image







217


embedded image







218


embedded image







219


embedded image







220


embedded image







221


embedded image







222


embedded image







223


embedded image







224


embedded image







225


embedded image







226


embedded image







227


embedded image







228


embedded image







229


embedded image







230


embedded image







231


embedded image







232


embedded image







233


embedded image







234


embedded image







235


embedded image







236


embedded image







237


embedded image







238


embedded image







239


embedded image







240


embedded image







241


embedded image







242


embedded image







243


embedded image







244


embedded image







245


embedded image







246


embedded image







247


embedded image


















TABLE III









embedded image













Ex. No.
R1





248


embedded image







249


embedded image







1 (Compound No. 7)


embedded image







250


embedded image







251


embedded image







252


embedded image







253


embedded image


















TABLE IV









embedded image













Ex. No.
R1





254


embedded image







255


embedded image







256


embedded image







257


embedded image







258


embedded image







259


embedded image







260


embedded image







261


embedded image







262


embedded image







597


embedded image


















TABLE V









embedded image













Ex. No.






263


embedded image







264


embedded image







 6(CompoundNo. 27)


embedded image







265


embedded image







266


embedded image







267


embedded image







268


embedded image







269


embedded image







270


embedded image







271


embedded image







272


embedded image







273


embedded image







274


embedded image







275


embedded image







276


embedded image







277


embedded image







278


embedded image







279


embedded image







280


embedded image







281


embedded image







282


embedded image







283


embedded image







284


embedded image







285


embedded image







286


embedded image







287


embedded image







288


embedded image







289


embedded image







290


embedded image







291


embedded image







292


embedded image







293


embedded image







294


embedded image







295


embedded image







296


embedded image







297


embedded image







298


embedded image







299


embedded image







300


embedded image







301


embedded image







302


embedded image







303


embedded image







304


embedded image







305


embedded image







306


embedded image







307


embedded image







308


embedded image







309


embedded image







310


embedded image







311


embedded image







312


embedded image







313


embedded image







314


embedded image







315


embedded image







316


embedded image







317


embedded image







318


embedded image







319


embedded image







320


embedded image







321


embedded image







322


embedded image







323


embedded image







324


embedded image







325


embedded image







326


embedded image







327


embedded image







328


embedded image







329


embedded image







330


embedded image







331


embedded image







332


embedded image







333


embedded image







334


embedded image







335


embedded image







336


embedded image







337


embedded image







338


embedded image







339


embedded image







340


embedded image







341


embedded image







342


embedded image







343


embedded image







344


embedded image







345


embedded image







346


embedded image







347


embedded image







348


embedded image







349


embedded image







350


embedded image







351


embedded image







352


embedded image







353


embedded image







354


embedded image







355


embedded image







356


embedded image







357


embedded image







358


embedded image







359


embedded image







360


embedded image







361


embedded image







362


embedded image







363


embedded image







364


embedded image







 5(CompoundNo. 24)


embedded image







365


embedded image







366


embedded image







367


embedded image







368


embedded image







369


embedded image







370


embedded image







371


embedded image







372


embedded image







373


embedded image







374


embedded image







375


embedded image







376


embedded image







377


embedded image







378


embedded image







379


embedded image







380


embedded image







381


embedded image







382


embedded image







383


embedded image







384


embedded image







385


embedded image







386


embedded image







387


embedded image







388


embedded image







389


embedded image







390


embedded image







391


embedded image







392


embedded image







393


embedded image







394


embedded image







395


embedded image







396


embedded image







397


embedded image







398


embedded image







399


embedded image







400


embedded image







401


embedded image







402


embedded image







403


embedded image







404


embedded image







405


embedded image







406


embedded image







407


embedded image







408


embedded image







409


embedded image







410


embedded image







411


embedded image







412


embedded image







413


embedded image







414


embedded image







415


embedded image







416


embedded image







417


embedded image







418


embedded image







419


embedded image







420


embedded image







421


embedded image







422


embedded image







423


embedded image







424


embedded image







425


embedded image







426


embedded image







427


embedded image







428


embedded image







429


embedded image







430


embedded image







431


embedded image







432


embedded image







433


embedded image







434


embedded image







435


embedded image







436


embedded image







437


embedded image







438


embedded image







439


embedded image







440


embedded image







441


embedded image







442


embedded image







443


embedded image







444


embedded image







445


embedded image







446


embedded image







447


embedded image







448


embedded image







449


embedded image







450


embedded image







451


embedded image







452


embedded image







453


embedded image







598


embedded image







599


embedded image







600


embedded image







601


embedded image







602


embedded image







603


embedded image







604


embedded image







605


embedded image







606


embedded image







607


embedded image







608


embedded image







609


embedded image







610


embedded image







611


embedded image







612


embedded image







613


embedded image







614


embedded image







615


embedded image







616


embedded image







617


embedded image







618


embedded image







619


embedded image







620


embedded image







621


embedded image







622


embedded image







623


embedded image







624


embedded image







625


embedded image







626


embedded image







627


embedded image







 9(CompoundNo. 628)


embedded image


















TABLE VI









embedded image













Ex. No.
R1





454


embedded image







455


embedded image







456


embedded image







457


embedded image







458


embedded image


















TABLE VIIa









embedded image













Ex. No.
R1





459


embedded image







460


embedded image







461


embedded image



















TABLE VIIb







462


embedded image


















TABLE VIII









embedded image













Ex. No.
R1





463


embedded image







464


embedded image







465


embedded image







466


embedded image







467


embedded image







7 (Com-poundNo. 36)


embedded image







469


embedded image







470


embedded image







471


embedded image







472


embedded image







473


embedded image







474


embedded image







475


embedded image







476


embedded image







477


embedded image







478


embedded image







479


embedded image







480


embedded image







481


embedded image







482


embedded image







483


embedded image







484


embedded image







485


embedded image







486


embedded image







487


embedded image







488


embedded image







489


embedded image







490


embedded image







491


embedded image







492


embedded image







493


embedded image







494


embedded image







495


embedded image







496


embedded image







497


embedded image







498


embedded image







499


embedded image







500


embedded image







501


embedded image







502


embedded image







503


embedded image







504


embedded image







505


embedded image







506


embedded image







507


embedded image







508


embedded image







509


embedded image







510


embedded image







511


embedded image







512


embedded image







513


embedded image







514


embedded image







515


embedded image







516


embedded image







517


embedded image







518


embedded image







519


embedded image







520


embedded image







521


embedded image







522


embedded image







523


embedded image







524


embedded image







525


embedded image







526


embedded image







527


embedded image







528


embedded image







529


embedded image







530


embedded image







531


embedded image







532


embedded image







533


embedded image







534


embedded image







535


embedded image







536


embedded image







537


embedded image







538


embedded image







539


embedded image







540


embedded image







541


embedded image







542


embedded image







543


embedded image







544


embedded image







545


embedded image







546


embedded image







547


embedded image







548


embedded image







549


embedded image







550


embedded image







551


embedded image







552


embedded image







553


embedded image







554


embedded image







555


embedded image







556


embedded image







629


embedded image







8 (Com-poundNo. 630)


embedded image







631


embedded image







632


embedded image







633


embedded image







634


embedded image







635


embedded image







636


embedded image







637


embedded image







638


embedded image







639


embedded image







640


embedded image







641


embedded image







642


embedded image







643


embedded image







644


embedded image







645


embedded image







646


embedded image







647


embedded image







648


embedded image







649


embedded image







650


embedded image


















TABLE IX









embedded image















Ex. No.
R1







557


embedded image









558


embedded image









651


embedded image









652


embedded image



















TABLE X









embedded image















Ex. No.
A1
R1
R2





559
S


embedded image




embedded image







560
O


embedded image




embedded image







561
O


embedded image




embedded image







562
S


embedded image




embedded image


















TABLE XI









embedded image















Ex. No.
R1







563


embedded image









564


embedded image









565


embedded image









566


embedded image









567


embedded image









568


embedded image









569


embedded image









570


embedded image









571


embedded image









572


embedded image






















TABLE XIIa







Ex. No.



















573


embedded image









574


embedded image






















TABLE XIIb









575


embedded image









576


embedded image




















TABLE XIIc





Ex. No.
















577


embedded image







578


embedded image







579


embedded image







580


embedded image







581


embedded image







582


embedded image







583


embedded image







584


embedded image







585


embedded image







586


embedded image







587


embedded image







588


embedded image







589


embedded image







590


embedded image







591


embedded image







592


embedded image







593


embedded image










Claims
  • 1. A compound of formula (I), or a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof:
  • 2. A compound as claimed in claim 1 wherein Ar represents thienyl, oxazolyl, thiazolyl, furyl, isoquinolinyl, indolyl, isoxazolyl, pyrazolopyrimidinyl or pyrazinyl, any of which groups is optionally substituted.
  • 3. A compound represented by formula (III), or a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof:
  • 4. A compound as claimed in claim 2 wherein Ar represents optionally substituted thienyl.
  • 5. A compound as claimed in claim 4 represented by formula (XI), or a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof:
  • 6. A compound of formula (I), or a tautomer thereof, or a pharmaceutically acceptable salt thereof:
  • 7. A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1, or a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof, in association with a pharmaceutically acceptable carrier.
  • 8. A process for the preparation of a compound of formula (I) as defined in claim 1, which comprises hydrolysis of the corresponding methyl or other ester of formula 2.
  • 9. A compound of formula (III), or a tautomer thereof, or a pharmaceutically acceptable salt thereof:
  • 10. A pharmaceutical composition comprising a derivatized compound of formula (I) as defined in claim 6, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable carrier.
  • 11. A pharmaceutical composition comprising a compound of formula (III) as defined in claim 3, or a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof in association with a pharmaceutically acceptable carrier.
  • 12. A pharmaceutical composition comprising a derivatized compound of formula (III) as defined in claim 9, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable carrier.
  • 13. A method of inhibiting hepatitis C virus polymerase which comprises administering to a subject in need of such inhibition an effective amount of: (A) a compound of formula (I), a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof:
  • 14. A method of treating or preventing an illness due to hepatitis C virus, which comprises administering to a subject suffering from the condition a therapeutically or prophylactically effective amount of: (A) a compound of formula (I), a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof:
  • 15. A compound, or a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof, selected from the group consisting of:
  • 16. A compound, or a tautomer thereof, or a pharmaceutically acceptable salt or ester thereof, selected from the group consisting of:
Priority Claims (1)
Number Date Country Kind
0017676 Jul 2000 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP01/07955 7/11/2001 WO 00 7/9/2003
Publishing Document Publishing Date Country Kind
WO02/06246 1/24/2002 WO A
US Referenced Citations (3)
Number Name Date Kind
4769458 Arold et al. Sep 1988 A
5420129 Breu et al. May 1995 A
6436943 Stoltefuss et al. Aug 2002 B1
Foreign Referenced Citations (3)
Number Date Country
WO 9205159 Apr 1992 WO
19817265 Apr 1998 WO
WO 0013708 Mar 2000 WO
Related Publications (1)
Number Date Country
20040106627 A1 Jun 2004 US