The subject invention relates generally to combustors. More particularly, the subject invention relates to the introduction of diluent flow into a combustor.
Combustors typically include one or more fuel nozzles that introduce a fuel or a mixture of fuel and air to a combustion chamber where it is ignited. In some combustors, the fuel nozzles extend through holes disposed in a baffle plate of the combustor. In these combustors, it is often advantageous to introduce a volume of diluent, often nitrogen or steam, to the combustor to reduce NOx and/or CO emissions and/or augment output of the combustor. The diluent is urged from a chamber through a gap between the baffle plate and each fuel nozzle then flows along a periphery of the fuel nozzle where a portion of the diluent enters a plurality of air swirler holes and is mixed with air and introduced into the fuel nozzle. Under some conditions, however, the diluent is drawn toward a center hub of the combustor, away from the plurality of air swirler holes, by, for example, a region of low pressure near the center hub. When the diluent is drawn toward the center hub, the diluent effectiveness is reduced and may cause operability problems in the combustor such as blow out.
According to one aspect of the invention, a combustor includes at least one baffle plate including at least one through baffle hole and at least one fuel nozzle extending through the at least one through baffle hole. At least one diluent shroud is affixed to the at least one baffle plate and is configured to guide a diluent flow toward a mixing chamber of the at least one fuel nozzle.
According to another aspect of the invention, a method for introducing a diluent flow into a mixing chamber of a fuel nozzle includes urging the diluent flow from a plenum through a baffle plate gap between a baffle plate and an outer surface of the fuel nozzle. The diluent flow is directed via at least one diluent shroud extending from the baffle plate toward a plurality of air swirler holes extending through a fuel nozzle tip. The diluent flow is flowed through the plurality of air swirler holes into the mixing chamber.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Shown in
Referring now to
As shown in
A diluent shroud 66 is disposed at each baffle hole 32 and located radially outboard of the outer surface 64 of fuel nozzle 12. The diluent shroud 66 extends along the outer surface 64 forward from the baffle plate 30 toward a cap end 68 of the combustor 10. The diluent shroud 66 may be affixed to the baffle plate 30 by, for example, welding, brazing, one or more mechanical fasteners, or other attachment means. Further, in some embodiments, the diluent shroud 66 may be secured to the baffle plate 30 by friction via, for example, a press fit or an interference fit. The diluent shroud 66 extends perimetrically around the fuel nozzle 12, and in some embodiments is substantially cylindrically shaped.
As the diluent flow 40 flows from the plenum 38 and through the baffle hole 32, the diluent shroud 66 guides the diluent flow 40 toward the plurality of air swirler holes 62. A desired portion of the diluent flow 40 flows through the plurality of air swirler holes 62 and into the mixing chamber 64 where the diluent flow 40 mixes with the purge air flow 48 and the fuel flow 58.
A length 70 of the diluent shroud 66 is sufficient to direct the desired portion of the diluent flow 40 toward the plurality of air swirler holes 62 and prevents the desired portion of the diluent flow 40 from flowing toward the center hub 34. In some embodiments, the diluent shroud 66 may extend beyond the plurality of air swirler holes 62 to further ensure the desired portion of the diluent flow 40 is directed toward the plurality of air swirler holes 62. Further, in some embodiments, the diluent shroud 66 is positioned such that it is substantially concentric with the fuel nozzle 12 about a fuel nozzle axis 72. Positioning the diluent shroud 66 concentric with the fuel nozzle 12 increases a uniformity of diluent flow 40 around a perimeter of the fuel nozzle 12. Further, a shroud gap 74 may be substantially equal at each fuel nozzle 12 in the combustor 10 to increase a uniformity of diluent flow 40 throughout the combustor 10.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.