1. Field of the Invention
The present invention relates to memory module connectors in computer systems and controlling airflow to cool computer system components.
2. Background of the Related Art
In server systems, heat-generating electronic components are being packaged in increasingly dense enclosure configurations. Therefore, controlling and maintaining airflow for cooling has become vital to the optimal operation of these systems. Impedance to airflow within an enclosure caused by the presence of electrical and mechanical components poses a significant challenge to maintaining system operating temperatures within specification.
The need to control and maintain proper airflow is particularly applicable to main system memory, such as a dual in-line memory modules (DIMMs). DIMMs plug into DIMM connectors provided on the system board, which position the DIMMs perpendicular to or at a slight angle with the system board. DIMMs are usually grouped closely together and are oriented parallel to the airflow for optimum cooling and even airflow distribution.
One embodiment of the present invention provides a memory module connector. The memory module connector includes a connector base securable in electronic communication with a circuit board. The connector base defines a slot for removably receiving a lower edge of a memory module. An air baffle is pivotably secured to the connector base and pivotable from a first position extending along an upper edge of the memory module when the memory module is received in the slot to a second position angled downwardly toward the connector base when the memory module is not received in the slot.
Another embodiment of the invention provides a computer system. The computer system includes a system board and a powered airflow source configured for generating airflow in a direction parallel to the system board. The computer system further includes a plurality of memory module connectors arranged along the circuit board for removably receiving a plurality of memory modules. The memory module connectors position the memory modules in a parallel, spaced-apart relationship and place the received memory modules in electronic communication with the system board. An air baffle is pivotably secured to an end of each memory module connector. The air baffle is pivotable from a first position parallel to the airflow when the memory module connector is occupied by a memory module to a second position extending downwardly toward the connector base when the memory module connector is not occupied by a memory module.
An embodiment of the present invention is directed to a memory module connector having a pivotable air baffle that controls airflow at the memory module connector. When the memory module connector is occupied by a memory module, the air baffle may rest on an upper edge of the memory module in a position of minimal airflow impedance, substantially parallel to the system board and in general alignment with the airflow. When the memory module has been removed, the air baffle may be pivoted downward to a position of increased airflow impedance, with the air baffle angled toward the connector base and into the airflow, to offset the reduction in airflow impedance caused by the removal of the memory module from the memory module connector. The air baffle compensates for areas of reduced airflow impedance that would otherwise be present in populated regions of a memory system. Individually compensating for airflow impedance at the memory module connectors promotes a more uniform distribution of airflow and more reliable cooling of computer system components.
The dimensions of the air baffle may be selected so that substantially the same airflow impedance is presented by an unoccupied memory module (memory module removed, air baffle pivoted down) and an occupied memory module connector (memory module plugged-in, air baffle parallel to system board). Thus, airflow impedance remains fairly constant across a group of spaced-apart memory module connectors, even if some of the memory module connectors are unoccupied. Airflow to components downstream of the memory module connectors is therefore unaffected by the absence of a memory module in one or more of the memory module connectors.
The memory modules and memory module connectors in the following embodiments are DIMMs and DIMM connectors, which are currently the prevalent type of card-based memory module in the computer arts. One skilled in the art will appreciate, however, that aspects of the embodiments discussed herein may be used with other existing and future-developed types of memory modules and memory module connectors, and that the invention is not limited to use specifically with DIMMs. One skilled in the art will further appreciate that aspects of the embodiments discussed herein may also be used, more generally, with other types of electronic device cards used in computer systems.
The memory system 10 includes, by way of example, thirty-four DIMM connectors 30 arranged in two rows 30A, 30B on the system board 12. Each DIMM connector 30 may receive one DIMM 20, giving the memory system 10 a capacity of up to thirty-four DIMMs 20. However, the system board 12 may be configured with less than the maximum memory capacity, with fewer than all thirty-four DIMM connectors 30 receiving a DIMM 20. For example, the memory system 10 of
The DIMM connectors 30 mechanically secure the DIMMs 20 at an angle to the system board 12, which in this embodiment is at a right angle (i.e. perpendicular) to the system board 12. The DIMM connectors 30 in each row 30A, 30B are evenly spaced and arranged to position the DIMMs 20 in a parallel, spaced-apart relationship. A powered airflow source 11, which may include one or more fan or blower, generates airflow 15 by forced convection in a direction parallel to the system board 12 to cool the DIMMs 20 and various other heat-generating system components. The parallel, spaced-apart relationship of the DIMMs 20 and the perpendicular positioning of the DIMMs 20 relative to the system board 12 allows airflow to the memory system 10 to flow between the DIMMs 20 for cooling the DIMMs 20. Some of the airflow between the DIMMs 20 then flows to a pair of downstream heatsinks 14 to cool components, such as a CPU, in direct thermal contact with the heatsinks 14. It should be recognized that fans or blowers may be part of the same or different chassis as the system board, and may be positioned to the front or the rear of the system board, so long as air is drawn across the DIMM connectors.
The parallel, evenly-spaced positioning of the DIMM connectors 30 does not, alone, guarantee an even distribution of the airflow 15 among the DIMMs 20. To help maintain a uniform airflow distribution, the DIMM connectors 30 in the memory system 10 each further include two opposing air baffles 32 pivotally coupled to the connector base 34 of each DIMM connector 30. When the DIMM connector 30 is occupied by a DIMM 20, the air baffles 32 are in a position of least airflow impedance (alternately referred to herein as the “first position”), aligned with the direction of the airflow 15. When the DIMM connector 30 is unoccupied (e.g. when the DIMM 20 is removed), the air baffles 32 may be pivoted to a position of increased airflow impedance (alternately referred to herein as the “second position”), which position may be directed downward at an angle to the airflow 15. The downward angling of the air baffles 32 of the unoccupied DIMM connectors 30 increases the impedance presented by the air baffle 32 to the airflow 15, in order to offset a reduction in airflow impedance caused by the absence of a DIMM in the unoccupied DIMM connectors 30 in region 16A. As a result, each unoccupied DIMM connector 30 desirably presents substantially the same airflow impedance as if a DIMM 20 were received in the DIMM connector 30. The air baffles 32 thereby equalize airflow impedance of DIMM connectors 30 along the rows 30A, 30B. This equalization of airflow impedance and correspondingly even distribution of airflow among the DIMM connectors 30 prevents an increased airflow rate (i.e. “air channeling”) at the unpopulated regions 16A, 16B due to the absence of DIMMs. Such air channeling would otherwise reduce airflow to the DIMMs 20 and divert much of the airflow around the downstream heatsinks 14 through, for example, region 16B. Thus, ample airflow is maintained to all of the DIMMs 20 and to the downstream heatsinks 14 for proper cooling of these components.
The DIMM 20, itself, may be a conventional DIMM known in the art. As understood in the art, the DIMM 20 includes a plurality of (e.g. nine) “DRAM” memory chips 22 per side of a substrate 26, and a plurality of (e.g. seventy-two) electrical terminals 24 along a card edge 25 of the DIMM 20. The electrical terminals 24 along the card edge 25 are electrically coupled to electrical terminals of the memory chips 22 along internal communication pathways on the wafer substrate 26. A slot 35 in the connector base 34 of the DIMM connector 30 is configured to frictionally receive the card edge 25 of the DIMM 20. Friction between the card edge 25 of the DIMM 20 and the slot 35 of the connector base 34 helps retain the DIMM 20 when frictionally received by the slot 35. The electrical terminals 24 are arranged to make electrical contact with corresponding electrical terminals (not shown) inside the slot 35. As generally understood in the art, a memory controller (not shown) communicates with the DIMMs 20 to read and write to selected memory chips 22 of the DIMM 20 using input/output (I/O) signals in combination with chip select (CS) signals.
A latch 36 is included at each end of the connector base 34. Although friction may be sufficient to retain the DIMM 20 in the slot 35, the latches 36 are optionally provided to lock the DIMM 20 in the slot 35. In particular, the latches 36 may include any of a variety of locking mechanisms generally known in the art for the purpose of securing a DIMM against removal from the base of a DIMM connector. Pivoting the latches 36 inward may activate such a locking mechanism to secure the DIMM 20, and pivoting the latches 36 back outward may release the DIMM 20. Optionally, the axial force of inserting the DIMM 20 into the slot 35 may actuate the latches 36 to lock the DIMM 20 in the slot 35, and an outward force may be applied to the latches 36 to subsequently release the DIMM 20.
The air baffle 32 and latch 36 at each end of the connector base 34 may be coupled or integrated with one another, such that the action of pivoting the integrated latch 36 and air baffle 32 may secure the DIMM 20 in the connector base 34 while simultaneously moving the air baffle 32 to a horizontal position parallel with the airflow and the system board 12. The air baffles 32 and latches 36 may alternatively be secured to the connector base 34 in a manner that allows the air baffles 32 and latches 36 to pivot independently of one another, such that pivoting the latches 36 inward to lock the DIMM 20 and pivoting the air baffles 32 inward may be performed separately and as two distinct actions.
In addition to the locking mechanism provided by the latches 36, the air baffles 32 may further secure the inserted DIMM 20 when the air baffles are pivoted into engagement with the upper edge 27 of the DIMM 20. Thus, although the DIMM 20 may be secured against removal from the slot 35 predominantly by the latches 36, the air baffles 32 may also help secure the DIMM 20 in the slot because they interfere with the removal of the DIMM 20 from the slot 35 when the air baffles 32 are in the position of
Moving the air baffle 32 from its position of
The width WB of the air baffle 32 is similar to (but is not required to be the same as) the width WD of the DIMM 20. To closely match the airflow impedance of each unoccupied DIMM connector 130 to the airflow impedance of each occupied DIMM connector 230, the width WB of the angled air baffle 32 may be chosen to be slightly greater than the width WD of the DIMM 20, as shown. The dimensions of the air baffle 32 may be chosen such that the vertical projected area (in the plane of
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, components and/or groups, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The terms “preferably,” “preferred,” “prefer,” “optionally,” “may,” and similar terms are used to indicate that an item, condition or step being referred to is an optional (not required) feature of the invention.
The corresponding structures, materials, acts, and equivalents of all means or steps plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but it not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
6278608 | Ater et al. | Aug 2001 | B1 |
6483699 | Salmonson et al. | Nov 2002 | B1 |
6542363 | White | Apr 2003 | B2 |
6771499 | Crippen et al. | Aug 2004 | B2 |
6778381 | Bolognia et al. | Aug 2004 | B1 |
7029307 | Ling et al. | Apr 2006 | B1 |
20070121286 | Foster, Sr. et al. | May 2007 | A1 |
20080101015 | Peterson et al. | May 2008 | A1 |