This application claims benefit of U.S. Provisional Patent Application No. 61/216,182, filed May 13, 2009 by Sun et al. for “Dimmable LED Lamp.”
This application is related to commonly owned co-pending U.S. patent application Ser. No. 12/378,666 (publication no. 2009-0225529), filed Feb. 18, 2009 by Falicoff et al. for “Spherically emitting remote phosphor”; co-pending U.S. patent application Ser. No. 12/589,071 (publication no. 2010-0097002), filed Oct. 16, 2009 by Shatford et al. for “Quantum Dimming via Sequential Stepped Modulation of LED Arrays”; co-pending U.S. patent application Ser. No. 12/687,620, filed Jan. 14, 2010 by Falicoff et al. for “Heat sink with helical fins and Electrostatic Augmentation”; co-pending U.S. patent application Ser. No. 12/210,096 (publication no. 2009-0067179) filed Sep. 12, 2008 by Chaves et al. for “Optical Device for LED-Based Lamp”; U.S. Pat. No. 7,144,121 issued Dec. 5, 2006 to Miñano et al. for “Dichroic Beam Combiner Utilizing Blue LED with Green Phosphor”; and U.S. Pat. No. 7,286,296 issued Oct. 23, 2007 and No. 7,380,962 issued Jun. 3, 2008, both to Chaves, Falicoff et al. for “Optical Manifolds for Light Emitting Diodes.” All of the above patents and applications, together with any earlier provisional applications to which any of them relates, are incorporated herein by reference in their entirety.
Conventional incandescent lamps have an efficacy of 10 to 12 lumens per watt, so that a 60 W incandescent lamp (a common wattage) has a flux output of 600 to 720 lumens. In addition, the color temperature of these lamps is under 3000° K and they achieve a color rendering index (CRI) near 100. It would be desirable to have a retro-fit high efficiency solid state lamp that can replace a 60 to 75 W incandescent lamp, and that has a similar color temperature and a high CRI (above 85 and preferably 90 or more). Also, it would be desirable if the solid state lamp was dimmable (a major problem with the vast majority of the compact fluorescent bulbs that are at present the commonest substitutes for incandescent bulbs.) Finally, it would be desirable if the output from this solid state lamp replicate the spherical output from incandescent sources. Such a solid state device is especially needed at this time, because the European Union (EU) and the USA have mandated that incandescent lamp will be phased out in the near future (2010 for the EU). Current solid state replacement lamps are typically limited to a flux of around 400 to 480 lumens (equivalent to the flux output of a 40 W incandescent bulb), primarily because of thermal management issues. Also, the light output from these lamps does not match the spherical output from filament-based sources.
With embodiments of the lamps described herein, it is believed to be possible to meet all the aforementioned goals to at least some extent.
Embodiments of the present lamps make it possible to overcome the above mentioned thermal limitation by employing the helical vane cooling system described in the above-mentioned U.S. patent application Ser. No. 12/687,620. The invention also employs optical features taught in the above-mentioned U.S. patent application Ser. Nos. 12/210,096 and 12/378,666. These novel optical approaches provide solutions that make it possible to produce a spherical light output similar to that from an incandescent filament in a relatively small package. Embodiments of the present lamps make use of the driver and dimming systems taught in the above-mentioned U.S. patent application Ser. No. 12/589,071.
It is also desirable for the LED lamp to have a very high efficiency. This can be achieved using the approach known as “remote phosphor” taught in the above-mentioned U.S. Pat. Nos. 7,286,296 and 7,380,962. A further principle used in the present lamps to achieve high efficiency is to combine the output from blue LEDs, blue stimulated yellow or green phosphor, and red LEDs. Such a system can achieve high efficiencies without compromising the CRI of the source. This approach to achieving high efficiency was taught in the above-mentioned U.S. Pat. No. 7,144,121. In that patent the outputs from blue LEDs, green phosphor and red LEDs are combined via a dichroic mirror after first being collimated. In embodiments of the present lamps, the output from these three light sources is combined in a spherical phosphor mixing chamber. Embodiments of the present lamps have in common with the devices of U.S. Pat. No. 7,144,121 that the red light is first collimated but differ in that the blue light source is first collimated on its own and then concentrated and sent into a spherical mixing chamber. A portion of the blue light is used to excite the remote phosphor while the remainder escapes through the phosphor. (A small portion of this light is reflected back to the LEDs.) The phosphor layer, which acts as a homogenizer, may reside on the inside of a hollow glass or other transparent or translucent dielectric sphere or alternatively may reside on the outside of a solid or hollow dielectric sphere. In U.S. Pat. No. 7,144,121 the green phosphor is proximate to the blue LED light source, and the combined blue/green light is collimated. Embodiments of the present lamps have an advantage in that the phosphor mixing chamber both homogenizes the three wavelength sources and outputs the desired spherical beam output profile to emulate a filament source.
In order to achieve a high CRI it is useful to employ the approach taught in U.S. Pat. No. 7,144,121 where the white light is created by a combination of blue, green/yellow and red light sources. Experiments carried out by the Inventors showed that a system that uses this approach to make white light can achieve a CRI above 90 and a system efficacy from 60 to 100 lumens per watt using currently available LED chips and phosphors.
Because of the thermal challenges of being confined to the volumetric envelope of a conventional incandescent lamp, the success of an LED substitute is as dependent upon the effectiveness of its heat-removal system as it is dependent upon the effectiveness of its optics or electronics. The present application describes embodiments of a complete dimmable LED lamp system, including helical fins enabling the LED light source to operate at much higher power levels than conventional LED lamp substitutes. Embodiments of the system include an array of red and blue LEDs mounted on a common board, which in turn has thermal vias connected to the helical vane thermal management system. This passive thermal system is configured to create an air current that cools the vanes over a wide range of orientations. This makes it possible to construct a device suitable as a replacement for A19 and other incandescent lamps. The prior art approach for solid state lamps is to use vertical or horizontal fins, which operate well only for certain orientations (for example, vertical fins orientated vertically).
In order to achieve the highest efficacy and CRI, embodiments of the lamp produce white light by combining the output of the blue and red LEDs with green or yellow light from a remote phosphor source. A portion of the blue light is used to excite the phosphor. In an embodiment, the phosphor is remote from the LEDs and resides on the inside surface of a glass sphere at the exit aperture of an optical transfer system. Alternatively, the phosphor can reside on the outside of a solid dielectric sphere. In this embodiment the phosphor is usually protected, either by its being immersed in a suitable material, such as epoxy, or by a covering.
The optical transfer system in these embodiments can consist of an open reflector and a solid dielectric optic. In an embodiment, the solid dielectric optic has both active and inactive surfaces. In general, an active surface is a surface that is contacted by light rays and guides the light, for example, by reflecting or refracting light rays, while an inactive surface is a surface that is not contacted by a significant proportion of light that will contribute to the light output of the lamp. The inactive surface or surfaces can provide a site for a feature used to hold and align the optic with respect to the LED array. A first active surface of this optic is a convex lens. The angular divergence of the light from the open reflector is reduced upon entering the convex lens. Light is transferred through the solid dielectric optic by a combination of TIR and direct radiation. In one embodiment there is a solid dielectric conical ejection feature at the end of the solid dielectric optic. In another embodiment there is a partial solid dielectric sphere. In both the conical feature and the spherical feature the base of the conical or spherical feature is smaller in area than the area inside the perimeter of the LED array. This is possible because of the change in index of refraction from air to a solid. In an embodiment, the conical feature is surrounded by the hollow glass sphere, which has the remote phosphor on its inside surface. The conical feature then ejects the light toward the remote phosphor. In the embodiment with the spherical ball at the end, the phosphor layer resides on the outside of the spherical dielectric. The phosphor layer also homogenizes the different wavelength light and ejects it in a spherical pattern similar to a traditional filament.
Part of the transfer optic may be exposed before it enters the sphere. The hollow glass sphere may then be mounted to an opaque shield which prevents light leakage from the sides of the transfer optic prior to its entry into the conical ejection feature. In the embodiment with the solid dielectric spherical emitter the sphere can be molded as one piece with the transfer optic. The opaque shield also is employed in this embodiment.
An exemplary system with equivalent output to a 60 W incandescent lamp consists of 9 light emitting diode chips, each approximately 1 mm by 1 mm in area. The preferred ratio of the number of blue chips to red chips is an integer. For example, for the case with 9 chips, there can be 4 blue chips and 4 red chips (and one empty space) or there can be 6 blue chips and 3 red chips. This preferred integer ratio makes it easier to dim the lamp using the quantum dimming approach of above-mentioned U.S. patent application Ser. No. 12/589,071. In the case where there are 4 blue and 4 red LEDs, there are four levels of output (25%, 50%, 75% and 100%), while in the case with 6 blue and 3 red LEDs, three levels can be obtained. This is possible without using pulse width modulation for either the blue or red sources. In the case where there is a non-integer ratio between the number of blue and red LEDs then the system still can work but one or more of the LEDs may require pulse width modulation in order to achieve a reasonable number of dimming levels without a color shift.
The above and other aspects, features and advantages of the present invention will be apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
A better understanding of certain features and advantages of the present invention will be obtained by reference to the following detailed description and accompanying drawings, which set forth illustrative embodiments in which various principles of the invention are utilized.
For clarity, a gap is shown between shroud 104 and sphere 102, 154. However, shroud 104 may touch sphere 102, 154 unless it would obstruct a part of the sphere through which light is intended to emerge. In
Optional external reflector 118 is provided on part of the external surface of sphere 102, to conserve its light and prevent light from going towards the lower body of the lamp, where the light would be wasted. External reflector 118 is shown as separate lines for clarity but would actually usually be a very thin coating on the external surface of sphere 102. External reflector 118 may be omitted. Conical ejector 152 directs little light to the part of the sphere 154 immediately around the base of the ejector 152, so the amount of wasted light is relatively small. Also, in some uses the support ring 106 and cooling fins 128 (see
Conical ejector 152 in
As shown in
The wider, inlet end of concentrator 116 is convex, and acts as a convex lens 117, collecting and starting to concentrate the diverging light from the cone 122. The convex end 117 and the sidewalls of concentrator 116 have shapes tailored to work with cone 122 so that nearly all the light from cone 122 reaches conical ejector 152. There will, however, be some inevitable Fresnel reflectance from the convex surface 117 back into cone 122. Some of the light reflected from the convex surface 117 is retro-reflected by reflector 122 at angles at which it will enter surface 117 but will not stay within the sidewalls of concentrator 116. Instead this stray light escapes as leakage that could be highly noticeable. The interior surface of shroud 104 is mirrored, and has the functions of masking, intercepting, and returning this stray light.
On the upper left of
On the upper right of
On the lower left of
On the lower right of
In the first example 201, 202 a combination of quantum dimming for the blue chips with pulse width modulation for the red chips is used, whereas in the second example 203, 204 only quantum dimming is needed. Further control of chip luminosity is obtained through modifying the level of current for activated LEDs either up or down, although overdriving can accelerate chip ageing. By adjusting the current of each LED and by incorporating pulse width modulation for at least the reds, a wide range of color temperatures is possible for every dimming level.
Various blue and red chips may require a different ratio than the 6:3 shown in
Various modifications of the described embodiments are possible. For example the ejector 152 has been described as a cone, and the emitter 102 or 154 has been described as a sphere. Those shapes are simple to design, simple to manufacture, and provide in operation a good approximation to the light output distribution of a conventional incandescent bulb (approximately spherical except for a shadow around the base 112). However, the conical ejector 152 need not be exactly conical, the sphere need not be exactly spherical, and other shapes entirely may be substituted. The skilled person will understand how to select a shape that will provide a desired light output distribution, and even shapes that provide a less than optimal light distribution may be selected for other reasons, including the appearance of the lamp 100, 150 itself.
The cone 122 between the LED array 124 and the lens 117 may be replaced by a differently shaped collimator. However, the cone 122 is simple to fabricate, because it can be rolled from a piece of flat reflective material, and is adequate for the purpose, when assisted by the lens 117, of ensuring that almost all the light from the LED chips 124 enters the concentrator 116 within the acceptance angle of the concentrator.
Although the lamp 100, 150 is shown with an Edison screw fitting 112 that is standard for mounting and power supply in the USA, of course a different form of fitting may be substituted. That may be done for compatibility with other standards (at least three sizes of Edison screw fitting are standard in the USA alone) or with the standards of other places, or for incompatibility with standards, to compel or prevent fitting of the lamp 100, 150 in selected receptacles.
Although
The preceding description of the presently contemplated best mode of practicing the invention is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The full scope of the invention should be determined with reference to the Claims.
Number | Name | Date | Kind |
---|---|---|---|
20080013316 | Chiang | Jan 2008 | A1 |
20090067179 | Chaves et al. | Mar 2009 | A1 |
20090225529 | Falicoff et al. | Sep 2009 | A1 |
20100208488 | Luo | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2004-193049 | Jul 2004 | JP |
10-2005-0029384 | Mar 2005 | KR |
10-2005-0090707 | Sep 2005 | KR |
WO 2006001928 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100289395 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61216182 | May 2009 | US |