The present invention relates in general to the field of fluorescent lamps, more particularly a dimmable light generating device comprising a fluorescent lamp.
There is a general tendency to replace the traditional incandescent lamps by other types of light sources, such as LEDs and gas discharge lamps. LEDs and gas discharge lamps have, with respect to each other, some advantages and disadvantages, and a designer may choose to use either an LED or a gas discharge lamp, depending on his design considerations.
A light source, be it an incandescent lamp, an LED or a gas discharge lamp, is designed for nominal operation at a nominal lamp voltage and a nominal lamp current, resulting in a nominal lamp power and a nominal light output. If, in a certain situation, a user wishes to have more light, he may replace the current lamp by a more powerful lamp, or by a lamp of a different type having a higher light output. Conversely, if a user wishes to have less light, he may replace a lamp by another lamp having a lower light output. However, this is very cumbersome, so there is a general desire to be able to dim a lamp, i.e. to drive a lamp with a power below its nominal power such that the light output is less than the nominal light output.
The present invention relates particularly to the field of driving a gas discharge lamp at reduced power, i.e. in a dimmed state.
A gas discharge lamp has a negative resistance characteristic, and therefore a ballast device is needed for driving the lamp. Although, in principle, it is possible to drive a gas discharge lamp with DC current, an electronic ballast typically provides a high frequency alternating current. Dimming can for instance be achieved by reducing the magnitude of the lamp current, or by switching the lamp on and off at a certain duty cycle.
Several problems and disadvantages are associated with the different mechanisms for dimming a gas discharge lamp, depending among others on the specific use, especially if it is desirable that the lamp is dimmed to a very low level of less than 1% of the nominal light output. A particular light generating device to which the present invention relates is a so-called wake-up light, which is a device which, triggered for instance by a clock, gradually increases its light output from zero to maximum. One of the problems for such an application is associated with ignition. For its ignition, a gas discharge lamp requires a relatively high voltage. As a result, if the lamp is to be ignited in the dimmed condition with a light output close to zero, the lamp may produce a light flash on ignition and then reduce its light output to the desired dim level. Such a light flash is undesirable.
A further problem is that it is very difficult to maintain lamp stability at a very low dim level.
In the case of gas discharge lamps having filament electrodes, the electrodes need to be supplied by an electrode heating current in order to keep the electrodes at an optimum operative temperature. However, in typical electronic ballasts, the filaments are only heated in the ignition phase, and during dimming the temperature of the filaments may become too low. Thus, it may be necessary to provide a separate electrode heating circuit, but such circuits tend to be complex and relatively expensive.
In a linear gas discharge lamp, the electrodes are arranged at opposite ends of a longitudinal lamp tube. The traditional TL lamp is an example of such a linear lamp. A disadvantage of such a lamp is that the lamp sockets for receiving the lamp terminals in a luminaire must be arranged at a relatively large distance from each other. As an alternative, so-called compact gas discharge lamps have been developed, where the lamp tube can be considered as being folded so that the lamp comprises an even number of tube segments arranged parallel next to each other, while the lamp ends with the lamp electrodes are located next to each other at the same longitudinal end of the lamp. Such a lamp can easily be mounted on a lamp base having a screw cap for screwing the lamp into a standard screw fitting, for instance in order to replace traditional incandescent lamps. In such a lamp type, in the case of application as a wake-up light with very low dim levels, an instability problem may occur in that the lamp, during the first stage of the wake-up sequence, will only emit light from lamp portions close to the electrodes, which portions relatively slowly grow away from the electrodes towards the other end of the lamp, while the intermediate tube segments do not emit light.
The present invention specifically aims to provide a solution to this problem.
To this end, a compact lamp according to the present invention is provided with an auxiliary electrode, which auxiliary electrode is arranged outside the tube segments, is capacitively coupled to all tube segments, and possibly contacts all tube segments, and said auxiliary electrode being coupled to a reference voltage level.
Further advantageous elaborations are mentioned in the dependent claims.
It is noted that U.S. Pat. No. 2,864,035 discloses the use of an external electrode for a linear gas discharge lamp. This document however gives no suggestion as to how an external electrode should be designed in the case of a compact gas discharge lamp.
These and other aspects, features and advantages of the present invention will be further explained by the following description of one or more preferred embodiments with reference to the drawings, in which same reference numerals indicate same or similar parts, and in which:
A lamp as described above is generally known. An example of such a lamp is a PL-C lamp, commercially available from Philips. Therefore, a further explanation of this lamp design is not needed here.
The controller 140 generates control signals for the first two controllable switches 111, 112 such that either one switch 111 is open (non conductive) while the other switch 112 is closed (conductive) or vice versa. These switches are opened/closed at substantially the same moment, with a slight delay in order to prevent that these switches are both closed at the same moment. Both switches are operated at a duty cycle of 50%, so that they are open just as long as they are closed. The switching frequency, hereinafter indicated as bridge switching frequency, may by way of example be in the order of 100 kHz.
The controller 140 generates control signals for the second set of two controllable switches 113, 114 in a similar manner. The switching frequency for this second set of switches is exactly the same as for the first set of switches. As an operating parameter, the controller 90 can vary the phase difference Δφ between the two sets of switches. If the two sets are operated exactly in phase (Δφ=0°), nodes A and B will always have mutually the same potential, so there will be no current flowing in the lamp 1. If the two sets are operated exactly out of phase (Δφ=180°), nodes A and B will be at opposite supply line voltage potentials, and an alternating lamp current I having the switching frequency will flow in the lamp 1. Inductors 131 and 132 and capacitor 133 operate as a resonant circuit, and the amplitude of the lamp current depends on the switching frequency.
For operating at a reduced light output level, the controller 140 operates in a duty cycle mode, wherein the lamp current is generated in bursts of alternating current separated by current-free periods. The repetition frequency is lower than the switching frequency; typically, the repetition frequency may for instance be in the order of about 100 Hz.
Dimming can be achieved by changing the switching frequency and/or by changing the duty cycle of the current bursts.
The lamp can be operated at fairly moderate dimming levels. In such a case, the lamp is ignited in normal operating conditions. However, there are situations where it is desirable that the lamp is operated at extremely low dimming levels. This is especially true in the case of wake-up lamps, in which case the lamp has to be started at a light output level close to zero. Then, a problem is that a situation may occur that light is only generated in a proximal portion of the first tube segment 11 and a proximal portion of the fourth tube segment 14, close to the respective electrode 21 and 22. This is believed to be caused by the fact that the operating conditions are insufficient to cause a proper discharge, and a capacitive current is flowing via the glass envelope of the tube segments. Slowly, these light generating portions grow towards the distal ends of the first and fourth tube segments 11, 14, and then the second and third tube segments 12, 13 may start to generate light, but it is also possible that the second and third tube segments 12, 13 do not contribute to the light output at all. All in all, the lamp may show erratic and unstable behavior.
The auxiliary electrode 310 may be electrically floating, i.e. not electrically connected to any member of the electronic driver. However, an improved effect is obtained if the auxiliary electrode 310 is connected to a reference voltage. Suitable sources for such a reference voltage are ground, or one of the lamp electrodes. In a preferred embodiment, the auxiliary electrode 310 is connected to a voltage midway between the lamp electrode potentials.
There are several possible shapes for the auxiliary electrode 310.
The plate-shaped body of auxiliary electrode 310 may be substantially flat, so that the first and second main surfaces are substantially flat surfaces, being in contact with the four tube segments 11, 12, 13, 14 over substantially their entire length.
In the above-described embodiments, the auxiliary electrode always comprises one electrode body that contacts all tube segments. In an alternative embodiment, the auxiliary electrode comprises a plurality of electrode bodies electrically connected to each other, wherein each electrode body contacts a respective tube segment.
In all of the embodiments discussed above, the external electrode is in mechanical contact with all four tube segments. Consequently, the external electrode may exert transverse forces on the tube segments, depending on the exact design and dimensioning of the external electrode, and it may be that such forces are undesirable in view of the risk of breakage of tube segments.
The auxiliary electrode 810 is formed as a planar plate 811, which is intended to be placed just like the plate-shaped embodiment of
The auxiliary electrode 810 is placed with its lips around either the first or the fourth tube segment, i.e. a tube segment containing an electrode, the choice depending on the direction into which the lips are bent; in the embodiment shown, this would be the fourth tube segment 14. The lips firmly clamp the auxiliary electrode 810 to this tube segment 14, with the plate 811 being in mechanical contact with this tube segment 14 over substantially its entire height. The plate 811 is further in mechanical contact with the neighboring tube segment 13, held in place by the J-shaped lips 814, yet without hardly any transverse force. Although the plate 811 is not in mechanical contact with the two opposite tube segments 11, 12, its position is at such a short distance from these two tube segments 11, 12 that its advantageous effect described above is reduced only slightly.
Summarizing, the present invention provides a compact gas discharge lamp 301 comprising four (or more) interconnected tube segments 11, 12, 13, 14 provided with an external electrode 310 that extends at least throughout the length of the tube segments and that is in contact with all tube segments. Several embodiments of the external electrode are disclosed. The external electrode is preferably connected to a node C midway between the lamp electrodes, for which purpose a capacitive divider 441, 442 is arranged parallel to the lamp.
While the invention has been illustrated and described in detail in the drawings and foregoing description, it should be clear to a person skilled in the art that such illustration and description are to be considered illustrative or exemplary and not restrictive. The invention is not limited to the disclosed embodiments; rather, several variations and modifications are possible within the protective scope of the invention as defined in the appending claims.
For instance, the driver 400 may be located within the base 2, but it is also possible that a luminaire has a receptacle for the base 2 and that this receptacle is provided with the driver 400.
Further, for the sake of completeness it is noted that the auxiliary electrode will be provided with an electrical connector attached to it or formed as an integral part, but this is not illustrated for the sake of simplicity.
Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. A computer program may be stored/distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. Any reference signs in the claims should not be construed as limiting the scope.
In the above, the present invention has been explained with reference to block diagrams, which illustrate functional blocks of the device according to the present invention. It is to be understood that one or more of these functional blocks may be implemented in hardware, where the function of such (a) functional block(s) is performed by individual hardware components, but it is also possible that one or more of these functional blocks are implemented in software, so that the function of such (a) functional block(s) is performed by one or more program lines of a computer program or a programmable device such as a microprocessor, microcontroller, digital signal processor, etc.
Number | Date | Country | Kind |
---|---|---|---|
07123192 | Dec 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2008/055134 | 12/8/2008 | WO | 00 | 6/9/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/077911 | 6/25/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2864035 | Davis | Dec 1958 | A |
4931696 | Brower | Jun 1990 | A |
5055738 | Yorifuji et al. | Oct 1991 | A |
5300860 | Godyak et al. | Apr 1994 | A |
5821699 | Moisin | Oct 1998 | A |
6367947 | Itaya et al. | Apr 2002 | B1 |
6727664 | Miller et al. | Apr 2004 | B2 |
6812645 | Baarman | Nov 2004 | B2 |
7173254 | Sauska et al. | Feb 2007 | B2 |
20020101164 | Yan | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
0186244 | Jul 1986 | EP |
58112237 | Jul 1983 | JP |
11111218 | Apr 1999 | JP |
2003346551 | Dec 2003 | JP |
8804471 | Jun 1988 | WO |
2007046002 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100253232 A1 | Oct 2010 | US |