The present disclosure relates generally to dimmer switches, and more particularly, to dimmer switches including an air gap switch.
The present disclosure relates generally to dimmer switches, and more particularly, to dimmer switches including an air gap switch.
Electrical wiring systems often include one or more electrical wiring devices, such as dimmer switches, that control power to one or more loads. A dimmer switch has a main actuator for turning power ON/OFF to the load. An example of such an actuator includes a paddle or push pad capable of being depressed within a frame located on the front face of the dimmer. The dimmer switch also includes a dimmer actuator for controlling the amount of power to the load. In addition, agencies, such as Underwriters Laboratories (UL) and Canadian Standards Association (CSA), require certain electrical load control devices, including certain dimmer switches, to have an air-gap switch. An air-gap switch provides a mechanical means of disconnecting power to the dimmer.
U.S. Pat. No. 8,003,904, issued to Wu, discloses a dimmer switch having a first switch for coupling to a power source, a second switch, a dimmer module, and a main actuator movable between an operational position and a disconnected position. The main actuator includes a first switch actuator and a second switch actuator. The first switch may be a normally-closed air-gap switch including a lever in contact with the first switch actuator. Movement of the main actuator between the operational position and the disconnected position is effective to open the switch. The main actuator is pivotally coupled to a frame. A coupling between the main actuator and the frame includes a pivot in a pivot holder. A partial cylindrical surface of the pivot is in contact with a surface of the pivot holder which includes a first portion having a partial cylindrical surface and a second portion having a ramp surface.
U.S. Pat. No. 7,985,937, issued to Wu et al., discloses a switching device having a paddle actuator biased to a rest position and configured to pivot relative to a housing to a depressed position to engage an air-gap switch disposed within the housing. The air-gap switch is configured to change a first state of a load connected to the switching device when engaged by the paddle actuator. The paddle actuator is defined by a pair of opposing long sides and a pair of opposing short sides and has at least one slot defined therein parallel to the pair of opposing short sides thereof and centrally disposed between the pair of opposing long sides thereof. A rocker actuator is disposed in the at least one slot defined in the paddle actuator and is configured to pivot relative thereto to engage at least one switch. The at least one switch is configured to change a second state of the load connected to the switching device upon engagement by the rocker actuator.
There is a need for further dimmer switches, and more particularly, for dimmer switches having an air gap switch.
In a first aspect, the present disclosure provides a dimmer switch comprising an air-gap switch for coupling to a power source, a power semiconductor switch connected in series with the air-gap switch, the power semiconductor switch electronically controlling power to a load, a dimmer module, connected to the power semiconductor switch, for coupling to the load to deliver an adjustable level of power to the load, and a dimmer actuator movable between an operational position and a disconnected position wherein the dimmer actuator is configured to act as a single control mechanism for selectively engaging either the dimmer module to adjust the level of power delivered to the load when in the operational position or the air-gap switch when in the disconnected position.
In a second aspect, the present disclosure provides a dimmer switch comprising an air-gap switch for coupling to a power source, a power semiconductor switch connected in series with the air-gap switch, the power semiconductor switch electronically controlling power to a load, a dimmer module, connected to the power semiconductor switch, for coupling to the load to deliver an adjustable level of power to the load, and a dimmer actuator movable between an operational position and a disconnected position wherein the dimmer actuator is configured to act as a single control mechanism for selectively engaging either the dimmer module to adjust the level of power delivered to the load when in the operational position or the air-gap switch when in the disconnected position. The dimmer actuator comprises an elongated member having a first elongated side comprising a first outwardly extending post having a first axis, and an opposite second elongated side comprising a second outwardly extending post having a second axis offset from the first outwardly extending post, and the dimmer actuator being generally pivotable about the first post when in the operational position, and generally pivotable about the second post when in the disconnected position.
In a third aspect, the present disclosure provides a dimmer switch comprising an air-gap switch for coupling to a power source, a power semiconductor switch connected in series with the air-gap switch, the power semiconductor switch electronically controlling power to a load, a dimmer module, connected to the power semiconductor switch, for coupling to the load to deliver an adjustable level of power to the load, a dimmer actuator movable between an operational position and a disconnected position wherein the dimmer actuator is configured to act as a single control mechanism for selectively engaging either the dimmer module to adjust the level of power delivered to the load when in the operational position or the air-gap switch when in the disconnected position, and a frame having a central opening for accommodating a main actuator operable for engaging the power semiconductor switch, and a second opening for receiving the dimmer actuator, the dimmer actuator being connected about a first pivot axis relative to the frame when in the operational position, and connected about a second pivot axis relative to the frame different from the first pivot axis when in the disconnected position.
Additional features and advantages are realized through the concepts of the present disclosure. Other embodiments and aspects of the disclosure are described in detail herein and are considered a part of the claims.
Various aspects of the present disclosure are particularly pointed out and distinctly claimed as examples in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
As explained in further detail below, dimmer actuator 500 may be pivotably coupled to frame 300 about a first pivot point or axis A and about a second pivot point or axis B, wherein the second pivot point or axis is different from the first pivot point or pivot axis. Dimmer actuator 500 may be disposed in an unbiased operational position (as shown in
As explained in further detail below, to disconnect power from dimmer switch 10, a user can move dimmer actuator 500 to its disconnected position, as shown in
With reference again to
With reference to
As shown in
As shown in
As shown in
As described in greater detail below, dimmer actuator 500 is generally movable or pivotable about two axes, e.g., first axis A for use in adjusting the power supplied to the load, and second axis B for use in actuating the air-gap switch. On a first side 526 of dimmer actuator 500, a first post 540 is disposed along axis A; and on second side 528 of dimmer actuator 500, a second post 550 is disposed along axis B. In one embodiment, pivot axis A may be generally disposed below a middle portion 521 of top surface 523 between first end 522 and second end 524. First side 526 and second side 528 of dimmer actuator 500 may be angled relative to each other. For example, in one embodiment, first side 526 may be substantially vertical, and second side 528 may be disposed at an angle. The distal end of first post 540 may include upper and lower chamfered surfaces 542 and 544. The upper portion of the dimmer actuator, which defines top surface 523 for the user to engage for operating the dimmer actuator, may have a greater thickness than the lower portion of dimmer actuator. A recess 536 may be disposed above pivot 550. The upper portion of the recess may be bordered by a curved surface 537.
Dimmer actuator 500 may toggle between two brightness controlling positions. For example, in a first brightness controlling position, such as shown in
Similarly, in a second brightness controlling position, by pressing end 522 downwardly, dimmer actuator leg 530 may engage a leaf spring 234, wherein the leaf spring actuates a second switch 242 for decreasing the power to the load; e.g., second switch 242 and leaf spring 234 may be a snap-action switch disposed within the upper housing 230. A second/bottom housing 270 (
With reference again to
With reference to
In addition, placing dimmer switch in its disconnected position by moving lifting lip 510 of dimmer actuator 500 in the direction of arrow D away from frame 300 may include frame 300 and dimmer actuator 500 having cooperating bearing surfaces. For example, upper edge portion 393 (
With reference again to
Thus, the present disclosure provides a dimmer with an air-gap switch that is actuated by the dimmer actuator. This configuration permits the air-gap switch to be located behind the switch plate assembly such that it is not visible to a user, allowing for improved appearance of the dimmer switch. Upon rotation of the dimmer actuator to its disconnected position as shown in
After using the dimmer actuator to physically disconnect the dimmer switch from the load (as shown in
From the present description, it will be appreciated that the pivots points or axes of the dimmer actuator may be placed in other spaced-apart locations. For example, while the second pivot is disposed in alignment with the downwardly depending leg, it will be appreciated that the second pivot may be disposed away from the second leg.
The air-gap switch, controlled by the dimmer actuator and described in greater detail below, may be a multi-terminal normally closed (NC) switch which makes a conductive path across its terminals when it is in its ON (closed) position and breaks the conductive path when it is in its disconnected (open) position. The air-gap switch is coupled in series with the power switch so that when the air-gap switch is in its ON position, the power switch and the dimmer actuator are enabled allowing a user to operate the dimmer. On the other hand, when the air-gap switch is in its disconnected position, electrical power is physically disconnected from the load so that the power switch and the dimmer actuator are disabled preventing a user from powering the load.
In a typical application, an electrical wiring system of a home may include dimmer switch 10 electrically coupled between an alternating current (AC) power source, such as a 120 Volts, 60 Hz power, and a load. For example, the dimmer switch can be connected to a light to control the brightness of the light or connected to a fan to control the speed of the fan. In the operational position, the dimmer actuator disengages the air-gap switch by placing the air-gap switch in its ON position allowing a user to operate the electrical load (e.g., light or fan).
With reference again to
For example, the dimmer switch may selectively provide a varying portion of the electrical energy available at the input to the load. Such a device, for example, may supply a fraction of the input voltage to the load with the fraction being selected by the user. For example, switch 950 such as, but not limited to, a solid state switching device or controllably conductive device may be a thyristor, a TRIAC, a SCR, a MOSFET, etc. Switch 950 may be controlled by controller 920 to provide adjustable power to the load, e.g., control the on/off state and the brightness level such as to a light.
The electrical energy flowing through load 900 can be a 120/220 volt AC (alternating current), 60/50 Hz signal. The AC signal (current and/or voltage) may be a sinusoidal voltage signal symmetrically alternating about a zero volt reference point. In one embodiment, the power switch may be controlled by the controller to limit the output voltage to a fraction of that of a full sine wave. Other suitable dimming mechanisms can be used without departing from the spirit of the disclosure.
With reference still to
The switch ON time period may be equal to, less than, or more than the switch OFF time period. The amount of current flowing through load 900 can depend on the duty cycle (ratio of switch ON time period to switch OFF time period) of the controller generated signal applied to the gate of switch 950 where provided by a TRIAC and, thus, the intensity of load 900, such as the intensity of light emitted if load 900 comprises a lighting element, also will depend on this signal.
As described above, controller 920 may provide such gating signals to the gate of switch 950 where provided by a TRIAC through a control line to turn it on and control the amount of current flowing through load 900. In addition, dimmer switch 10 can also be configured so that activation of one of main actuator switches 930, e.g., via pressing an upper portion of main actuator 400 (
In some embodiments, the frame may also include an opening for a power indicator (e.g., an LED) to indicate the status of the power switch. For an embodiment in which a power indicator is an LED, the LED may be configured to be ON when the dimmer is switched OFF allowing a user to locate the dimmer in a dark room. When the dimmer is switched ON, the LED may be configured to be OFF. Alternatively, the LED may be configured to be ON at a certain brightness when the dimmer is switched OFF and at a different brightness when the dimmer is switched OFF; e.g., LED is at a lower brightness when the dimmer is switched off and at a higher brightness when the dimmer is switched ON, or vice versa. Similarly, the brightness of the LED could be dependent upon a detected brightness level, e.g., as determined by a photocell (not shown).
In other embodiments, the dimming module may include two actuators, e.g., a main actuator and a dimmer actuator. Each actuator may interact with some interface element of the device in order to indicate to the device's controller that the actuator has undergone some operation. The main actuator, at least in one embodiment, interacts with two tactile switches, one is actuated when the top portion of the main actuator is depressed and the other is actuated when the bottom portion of the main actuator is depressed; these actuations are registered by the controller (typically, up for ON and down for OFF). Two tactile switches are not necessarily needed and the main actuator can be configured to simply “toggle” a single tactile switch with the controller interpreting the toggles accordingly. The dimmer actuator, in one preferred embodiment, interacts with two tactile switches in similar fashion to the main actuator but actuation of the dimmer actuator by a user is registered/interpreted by the controller as “increase” and “decrease”, typically up for increase and down for decrease (bright and dim). Additionally, in accordance with the present disclosure, the dimmer actuator also interacts with a separate switch which functions to physically break the connection between the AC power supply provided by the premise's wiring and the electrical load; e.g., air gap switch, or a snap-action switch such as a MICRO SWITCH. Other than the air-gap switch, which is a physical make-break switch, actuations of the tactile switches for ON/OFF and dim/bright may be inputs that are provided to a controller which interprets such inputs and acts accordingly to control, either directly or indirectly through intermediary circuitry, a controllably conductive switch (e.g., a TRIAC, SCR, MOSFET, etc.; preferably the controllably conductive switch is bi-directional) by providing a control signal to the controllably conductive switch to render it conductive for some portion of each AC half-cycle in accordance with the brightness level set by the dimmer actuator.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments and/or aspects thereof may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments without departing from their scope.
While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments, they are by no means limiting and are merely exemplary. Many other embodiments will be apparent to those of ordinary skill in the art upon reviewing the above description. The scope of the various embodiments should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
It is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
While the disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions, or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various embodiments of the disclosure have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This written description uses examples to describe the disclosure, and also to enable any person skilled in the art to practice the present disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5012495 | Munroe et al. | Apr 1991 | A |
5262678 | Flowers et al. | Nov 1993 | A |
5945647 | Hoskins | Aug 1999 | A |
6005308 | Bryde et al. | Dec 1999 | A |
7170018 | Ilkhanov | Jan 2007 | B2 |
7345998 | Cregg et al. | Mar 2008 | B2 |
7663325 | McDonough et al. | Feb 2010 | B2 |
7670039 | Altonen et al. | Mar 2010 | B2 |
7985937 | Wu et al. | Jul 2011 | B2 |
8003904 | Wu | Aug 2011 | B2 |
8138435 | Patel et al. | Mar 2012 | B2 |
8173920 | Altonen et al. | May 2012 | B2 |
8459812 | Wu et al. | Jun 2013 | B2 |
8536473 | Goyal et al. | Sep 2013 | B2 |
8669720 | Goyal et al. | Mar 2014 | B2 |
8717718 | Kamor et al. | May 2014 | B2 |
20070193863 | Wu | Aug 2007 | A1 |
20100101924 | Wu et al. | Apr 2010 | A1 |
20100214756 | Feldstein | Aug 2010 | A1 |
20120257316 | Kamor et al. | Oct 2012 | A1 |
20130162167 | Gallo | Jun 2013 | A1 |
20130162168 | Ostrovsky | Jun 2013 | A1 |
Entry |
---|
Adam Kevelos, pending U.S. Appl. No. 14/455,610, filed Aug. 8, 2014, “Electrical Dimmer Having Dimming Level Indicator Assembly”. |
Product Brochure for the Mural Collection, Leviton Manufacturing Co., Inc., Melville, New York, 12 pages, 2000. |
Product Brochure for The Mural Collection II, Leviton Manufacturing Co., Inc., Melville, New York, 7 pages, 2002. |
Number | Date | Country | |
---|---|---|---|
20160044764 A1 | Feb 2016 | US |