Embodiments of the present invention are in the field of renewable energy and, in particular, arrangements of diodes and heat spreaders for solar modules.
Light-emitting diode (LED) and photovoltaic (PV) devices are two common types of optoelectronic devices. Thermal management and assembly of optoelectronic systems, such as systems including LED and PV devices, may be considered when evaluating such systems for fabrication and deployment. For example, the area of systems of devices with cell interconnects and diodes is one area ripe for improvements in thermal management, stress management, and assembly. Challenges for the fabrication and deployment of such systems include a possible need for a low resistance thermal path in the interconnects, as well as a flexible accommodation of cells and diodes coupled to the interconnects.
Arrangements of diodes and heat spreaders for solar modules are described herein. In the following description, numerous specific details are set forth, such as specific arrangements of diodes and heat spreaders, in order to provide a thorough understanding of embodiments of the present invention. It will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known fabrication techniques, such as lamination techniques, are not described in detail in order to not unnecessarily obscure embodiments of the present invention. Furthermore, it is to be understood that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
Disclosed herein are diodes and heat spreaders for solar modules. In one embodiment, a solar module includes a backsheet. The solar module also includes a low profile, surface-mount diode disposed above the backsheet. The solar module also includes a pair of ribbon interconnects, each ribbon interconnect coupled to the low profile, surface-mount diode and penetrating the backsheet. The solar module also includes a heat spreader mounted directly above the low profile, surface-mount diode. In one embodiment a solar module includes a backsheet. The solar module also includes a diode disposed under the backsheet. The solar module also includes a pair of ribbon interconnects, each ribbon interconnect coupled to the diode and completely covered by the backsheet. The solar module also includes a heat spreader mounted directly above the diode.
Certain solar applications such as single-axis concentrator photovoltaic (CPV) systems require a linear arrangement of cells and a large number of diodes per string to manage higher cell temperatures and optical non-uniformities. Diodes are commonly used in photovoltaic systems to bypass cells that are electrically mismatched from others in the string. This mismatch may arise from factors such as shading or performance inconsistencies. When a cell is mismatched, its operating voltage may be modified to accommodate the string current, and the cell can be forced into reverse bias. This can cause severe heating and system performance degradation. Diodes are implemented to minimize heating and to optimize power production in mismatched circumstances.
In a typical photovoltaic module, bypass diodes are electrically connected in parallel to a string of cells. The cells are often connected in a serpentine arrangement, which may eliminate the need for long diode interconnects across the terminals of the string. Instead, an interconnect tab connected to each terminal is penetrated through a module backsheet and connected to a diode that is mounted within a junction box. However, certain applications such as single-axis concentrator photovoltaic systems require a linear arrangement of cells and a larger number of diodes per string to manage higher cell temperatures and optical non-uniformities. A centralized junction box may require a complicated bypass circuit and many busbars for diode connections. Furthermore, the junction box may need to be prohibitively large to accommodate a large number of diodes. It may be preferential to mount bypass diodes in individual packages alongside the strings being protected in applications that require a large number of diodes.
In accordance with embodiments of the present invention, a plurality diodes is incorporated into a simple, low-profile package that can be installed with minimal interference to other laminate features. In an embodiment, diodes are connected to ribbon interconnects that penetrate through a backsheet along the length of a solar module. The diodes may be low-profile, surface-mount devices that are soldered directly to the ribbons. In an embodiment, in order to manage the heating of the diodes, a heat spreader is mounted directly above the leads of one or more of the diodes. In an embodiment, the heat spreader is mounted to the backsheet with thermal adhesive to provide electrical insulation and thermal conduction. Thus, embodiments of the present invention may include using an integrated approach of mounting a heat spreader onto a diode with thermal adhesive, connecting diode leads, or just a diode, directly to a pair of ribbon interconnects, or fabricating a solar module package with a very low profile in order to minimize influences on surrounding systems (e.g., heat sinks) or to integrate directly into a laminate.
Embodiments of the present invention may address the need for a simple and low cost diode package that can be mounted on or within the backsheet of a photovoltaic module in any frequency. Although such an arrangement has been designed for a linear arrangement of cells, it may be utilized in any photovoltaic module layout. For example, in the simplest embodiment, diodes are connected to ribbon interconnects that penetrate a backsheet along the length of a module. A heat spreader may be included but must be electrically insulating on one or both sides to prevent shorting of the diode leads. In one embodiment, a thin copper or aluminum strip coated in a ceramic insulator is used to this end. In an embodiment, the heat spreader is mounted to the backsheet with thermal adhesive to provide electrical insulation and thermal conduction. In an embodiment, the heat spreader also serves to electrically isolate the diode and leads from the surroundings.
In an aspect of the present invention, a package for a solar module may include a surface mount diode disposed above a backsheet of the package. For example,
Referring to
In accordance with an embodiment of the present invention, the low profile, surface-mount diode 104 is attached directly to each of the ribbon interconnects, as depicted in
Referring again to
Thus, a solar module may be provided where interconnects beyond a backsheet penetration location remain within the boundaries of a heat spreader. In an embodiment, such an arrangement ensures that diode leads are electrically insulated from an outside environment by the combination of a thermal adhesive and dielectric layers disposed underneath the heat spreader. In an embodiment, the arrangement also minimizes the possibility of the diode leads shorting due to burrs or poor dielectric coverage near the edges of the heat spreader. Although it may be necessary to have dielectric coverage only on the underside of the heat spreader, total coverage may be preferred to further reduce the possibility of exposing voltage to an external environment.
In accordance with an embodiment of the present invention, completely insulating a heat spreader eliminates the need to electrically ground the heat spreader. It may be necessary to mount diode leads as close as possible to the heat spreader since they are better coupled thermally to the diode die. That is, in one embodiment, the diode temperature is minimized if there is a low resistance thermal pathway between the diode die and the heat spreader. This may be a primary motivator for inverting the diode, as is effectively the arrangement described in association with
Although the arrangement described above in association with
Referring to
In accordance with an embodiment of the present invention, the diode 204 is attached directly to each of the ribbon interconnects 206, as depicted in
In another aspect of the present invention, it is to be understood that non-uniform backsheet surface profiles can be induced by adding additional components within a laminate, which may lead to delamination and backsheet damage. In extreme cases, sharp edges may completely penetrate the backsheet. In order to minimize these effects, in accordance with one or more embodiments of the present invention, a heat spreader is fabricated or selected to be as thin as possible and stamped to have beveled edges to create a more gradual increase in thickness to accommodate a diode package. Accordingly, in an embodiment, the diode and the heat spreader may be candidates for thickness reduction.
Alternatively, in another embodiment, the encapsulation thickness may be modified to accommodate the thickness of the heat spreader and diode. As such, since the encapsulant may serve to bind the diode and interconnects, the thermal adhesive may be used only to thermally couple the diode leads to the heat spreader. Thus, in one embodiment, thermal adhesive need not be included below the diode or diode leads and around the diode package.
In another aspect of the present invention, the above described solar modules may be included in larger solar systems including many such solar modules. For example, in accordance with an embodiment of the present invention, a solar system includes a plurality of solar cells. A backsheet covers the plurality of solar cells. A plurality of low profile, surface-mount diodes is coupled to the plurality of solar cells. Each low profile, surface-mount diode is disposed above the backsheet. For each low profile, surface-mount diode, also included is a respective pair of ribbon interconnects. Each ribbon interconnect is coupled to the low profile, surface-mount diode and penetrating the backsheet. Also included for each low profile, surface-mount diode is a respective heat spreader mounted directly above the low profile, surface-mount diode. Thus, the solar system includes a plurality of solar modules similar to the solar module described in association with
In an embodiment, each low profile, surface-mount diode rises less than 10 millimeters above the backsheet. In an embodiment, each low profile, surface-mount diode is attached directly to each ribbon interconnect of the respective pair of ribbon interconnects. In an embodiment, the respective heat spreader is composed of a thin metal strip coated, by a thermally conductive dielectric, on at least one side of the metal strip. In one such embodiment, the respective heat spreader is mounted to the backsheet with a thermal adhesive. In an embodiment, each ribbon interconnect of the respective pair of ribbon interconnects includes four or more bends, a first bend for penetration of the backsheet, a second bend for bringing each ribbon interconnect into a plane of a surface of the backsheet, a third bend to bring each ribbon interconnect vertical, and a fourth bend to bring each ribbon interconnect of the respective pair of ribbon interconnects coplanar with one another and for coupling to the low profile, surface-mount diode.
In another example, in accordance with another embodiment of the present invention, a solar system includes a plurality of solar cells. A backsheet covers the plurality of solar cells. A plurality of diodes is coupled to the plurality of solar cells, each diode disposed under the backsheet. For each diode, also included is a respective pair of ribbon interconnects. Each ribbon interconnect is coupled to the diode and completely covered by the backsheet. Also included for each diode is a respective heat spreader mounted directly above the diode. Thus, the solar system includes a plurality of solar modules similar to the solar module described in association with
In an embodiment, each ribbon interconnect of the respective pair of ribbon interconnects is above the diode, and the diode is completely covered by the backsheet. In one such embodiment, the diode is attached directly to each ribbon interconnect of the respective pair of ribbon interconnects. In an embodiment, the respective heat spreader is composed of a thin metal strip having beveled edges and coated, by a thermally conductive dielectric, on at least one side of the metal strip. The respective heat spreader is completely covered by the backsheet. In one such embodiment, the respective heat spreader is mounted, via the thermally conductive dielectric, to the respective pair of ribbon interconnects with a thermal adhesive.
It is to be understood that the above described arrangements for solar modules and solar systems may provide benefits additional to those described above. For example, in one embodiment, by placing diodes in cell laminates, J-shaped busbars need not be included in a solar module package. In another embodiment, since the diodes are included in a cell laminate, needs for specialized or additional packaging to accommodate diodes are no longer required. In another embodiment, interconnects between diodes and a cell laminate are substantially, if not entirely, maintained within the laminate which aids in prevention of interconnect burring or shorting. Also, in one embodiment, since less, if not all, of the material of the interconnects is no longer exposed, the interconnects may not require electrical grounding.
Thus, arrangements of diodes and heat spreaders for solar modules have been disclosed. In accordance with an embodiment of the present invention, a solar module includes a backsheet. A low profile, surface-mount diode is disposed above the backsheet. A pair of ribbon interconnects, each ribbon interconnect is coupled to the low profile, surface-mount diode and penetrates the backsheet. A heat spreader is mounted directly above the low profile, surface-mount diode. In one embodiment, the low profile, surface-mount diode rises less than 10 millimeters above the backsheet. In accordance with another embodiment of the present invention, a solar module includes a backsheet. A diode is disposed under the backsheet. Each ribbon interconnect of a pair of ribbon interconnects is coupled to the diode and completely covered by the backsheet. A heat spreader is mounted directly above the diode. In one embodiment, each of the pair of ribbon interconnects is above the diode, and the diode is completely covered by the backsheet.
This application claims the benefit of U.S. Provisional Application No. 61/370,242, filed Aug. 3, 2010, the entire contents of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4153474 | Rex | May 1979 | A |
4323719 | Green | Apr 1982 | A |
4373783 | Anderson | Feb 1983 | A |
4456332 | Anderson | Jun 1984 | A |
4468848 | Anderson et al. | Sep 1984 | A |
4468849 | Anderson et al. | Sep 1984 | A |
4481378 | Lesk | Nov 1984 | A |
4502200 | Anderson et al. | Mar 1985 | A |
4567316 | Hollaus et al. | Jan 1986 | A |
4640734 | Roberts et al. | Feb 1987 | A |
4643543 | Mohn et al. | Feb 1987 | A |
4643544 | Loughran | Feb 1987 | A |
4759803 | Cohen | Jul 1988 | A |
5180441 | Cornwall et al. | Jan 1993 | A |
5248346 | Fraas et al. | Sep 1993 | A |
5298768 | Okazaki et al. | Mar 1994 | A |
5334496 | Pond et al. | Aug 1994 | A |
5344496 | Stern et al. | Sep 1994 | A |
5389158 | Fraas et al. | Feb 1995 | A |
5409549 | Mori | Apr 1995 | A |
5498297 | O'Neill et al. | Mar 1996 | A |
5580395 | Yoshioka et al. | Dec 1996 | A |
5616185 | Kukulka | Apr 1997 | A |
5660644 | Clemens | Aug 1997 | A |
5697192 | Inoue | Dec 1997 | A |
5865905 | Clemens | Feb 1999 | A |
5899199 | Mills | May 1999 | A |
5990415 | Green et al. | Nov 1999 | A |
6034322 | Pollard | Mar 2000 | A |
6131565 | Mills | Oct 2000 | A |
6198171 | Huang et al. | Mar 2001 | B1 |
6323478 | Fujisaki et al. | Nov 2001 | B1 |
6359209 | Glenn et al. | Mar 2002 | B1 |
6442937 | Stone | Sep 2002 | B1 |
6531328 | Chen | Mar 2003 | B1 |
6553729 | Nath et al. | Apr 2003 | B1 |
6607942 | Tsao et al. | Aug 2003 | B1 |
6635507 | Boutros et al. | Oct 2003 | B1 |
7183587 | Negley et al. | Feb 2007 | B2 |
7304326 | Suehiro et al. | Dec 2007 | B2 |
7468485 | Swanson | Dec 2008 | B1 |
7554031 | Swanson et al. | Jun 2009 | B2 |
7709730 | Johnson et al. | May 2010 | B2 |
7714341 | Keun et al. | May 2010 | B2 |
7820906 | Johnson et al. | Oct 2010 | B2 |
7825327 | Johnson et al. | Nov 2010 | B2 |
7906793 | Negley | Mar 2011 | B2 |
7932461 | Johnson et al. | Apr 2011 | B2 |
7952057 | Johnson et al. | May 2011 | B2 |
7968791 | Do et al. | Jun 2011 | B2 |
7985919 | Roscheisen et al. | Jul 2011 | B1 |
8039777 | Lance et al. | Oct 2011 | B2 |
8049150 | Johnson et al. | Nov 2011 | B2 |
8071930 | Wylie et al. | Dec 2011 | B2 |
8083362 | Finot et al. | Dec 2011 | B2 |
8125000 | Kim et al. | Feb 2012 | B2 |
20040074490 | Mills et al. | Apr 2004 | A1 |
20050035444 | Huang | Feb 2005 | A1 |
20050141195 | Pokharna et al. | Jun 2005 | A1 |
20060054210 | Proisy et al. | Mar 2006 | A1 |
20060060867 | Suehiro | Mar 2006 | A1 |
20060097385 | Negley | May 2006 | A1 |
20060124953 | Negley et al. | Jun 2006 | A1 |
20060137733 | Schripsema et al. | Jun 2006 | A1 |
20060170094 | Subramanian et al. | Aug 2006 | A1 |
20070074755 | Eberspacher et al. | Apr 2007 | A1 |
20070151598 | De Ceuster et al. | Jul 2007 | A1 |
20070257274 | Martter et al. | Nov 2007 | A1 |
20080011348 | Aoyama et al. | Jan 2008 | A1 |
20080035198 | Teppe et al. | Feb 2008 | A1 |
20080083450 | Benoit et al. | Apr 2008 | A1 |
20090032093 | Fang | Feb 2009 | A1 |
20090056699 | Mills et al. | Mar 2009 | A1 |
20090056785 | Johnson et al. | Mar 2009 | A1 |
20090056786 | Johnson et al. | Mar 2009 | A1 |
20090056787 | Johnson et al. | Mar 2009 | A1 |
20090095284 | Klotz | Apr 2009 | A1 |
20090134421 | Negley | May 2009 | A1 |
20090139557 | Rose et al. | Jun 2009 | A1 |
20090215304 | Faust et al. | Aug 2009 | A1 |
20100089435 | Lockenhoff | Apr 2010 | A1 |
20100147364 | Gonzalez et al. | Jun 2010 | A1 |
20100154788 | Wells et al. | Jun 2010 | A1 |
20100163014 | Johnson et al. | Jul 2010 | A1 |
20100175740 | Johnson et al. | Jul 2010 | A1 |
20100193014 | Johnson et al. | Aug 2010 | A1 |
20100236626 | Finot et al. | Sep 2010 | A1 |
20100294336 | Johnson et al. | Nov 2010 | A1 |
20100319682 | Klotz | Dec 2010 | A1 |
20110023940 | Do et al. | Feb 2011 | A1 |
20110030764 | Seo et al. | Feb 2011 | A1 |
20110132457 | Finot | Jun 2011 | A1 |
20110186130 | Finot et al. | Aug 2011 | A1 |
20110226309 | Do et al. | Sep 2011 | A1 |
20110226310 | Johnson et al. | Sep 2011 | A1 |
20110265869 | Finot et al. | Nov 2011 | A1 |
20110265871 | Lamarche | Nov 2011 | A1 |
20120012156 | Linderman et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
10041271 | Mar 2002 | DE |
202004005198 | Aug 2004 | DE |
2340993 | Mar 2000 | GB |
05-152596 | Jun 1993 | JP |
2001-298134 | Oct 2001 | JP |
2006-019532 | Jan 2006 | JP |
2007184542 | Jul 2007 | JP |
2007194521 | Aug 2007 | JP |
2007214247 | Aug 2007 | JP |
1020070070183 | Jul 2007 | KR |
1020090014153 | Feb 2009 | KR |
WO9957493 | Nov 1999 | WO |
WO2007096157 | Aug 2007 | WO |
WO2007096158 | Aug 2007 | WO |
WO2008022409 | Feb 2008 | WO |
WO 2008107205 | Sep 2008 | WO |
WO2008153922 | Dec 2008 | WO |
WO2009023063 | Feb 2009 | WO |
WO2009029275 | Mar 2009 | WO |
WO2009029277 | Mar 2009 | WO |
WO 2009110757 | Sep 2009 | WO |
Entry |
---|
International Search Report and Written Opinion of PCT/US2011/044747, filed Jul. 20, 2011. |
Bardwell, Karen et al., “Minimizing End Shadowing Effects on Parabolic Concentrator Arrays,” IEEE, 1980, pp. 765-770. |
Carroll, Don et al. “Production of the Alpha Solarco Proof-of-Concept Array,” IEEE, 1990, pp. 1136-1141. |
Edenburn, Michael W., et al. “Shading Analysis of a Photovoltaic Cell String Illuminated by a Parabolic Trough Concentrator,” IEEE, 1981, pp. 63-68. |
Quagan, Robert J., “Laser Diode Heat Spreaders,” Ion Beam Milling, Inc., website copyright 2010, http://www.ionbeammilling.com/default.asp, 9 pgs. |
Shepard, Jr., N. F. et al., “The Integration of Bypass Diodes with Terrestrial Photovoltaic Modules and Arrays,” IEEE, 1984, pp. 676-681. |
Stern, T. G., “Interim results of the SLATS concentrator experiment on LIPS-II (space vehicle power plants),” Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE , vol., No., pp. 837-840 vol. 2, 1988. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=105822&isnumber=3239. |
Vivar Garcia, Marta, “Optimisation of the Euclides Photovoltaic Concentrator,” 2009, 390 pages. |
International Search Report and Written Opinion of the International Searching Authority, PCT Appl. No. PCT/US2010/040884 (dated Jan. 25, 2011), 6 pages. |
International Search Report and Written Opinion of the International Searching Authority, PCT Appl. No. PCT/US2010/056386 (dated Nov. 11, 2010), 10 pages. |
Number | Date | Country | |
---|---|---|---|
20120031464 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61370242 | Aug 2010 | US |