Not Applicable
Not Applicable
Not Applicable
Not Applicable
This invention relates to improvements in an exercise dip bar. More particularly, the present dip bar is removably secured to an exercise power cage and provides for a variety of different exercise configurations.
One of the more common forms of strength conditioning is with the use equipment that utilizes just the weight of the user. These exercises are typically dips, pull-ups and push-ups. For dips the user grasps two, spaced tubes or bars and pushes down with their arms to elevate their body. For pull-ups the two parallel bars are placed above the body and the user grasps the two bars to lift their body up. When push-ups are being performed, the two bars are placed near or above the ground. The user places their feet on the ground and pushes on the two parallel bars to lift only about half of their body weight. There are other variations depending upon the amount of strength that is required for the exercise and the range of motion. These exercises utilize chest and triceps muscles. To accommodate taller and shorter people the bars are typically placed on power cages that provide a plurality of connection locations to set the height of the bars.
A number of patents and or publications have been made to address these issues. Exemplary examples of patents and or publication that try to address this/these problem(s) are identified and discussed below.
U.S. Pat. No. 4,620,701 issued on Nov. 4, 1986 to Daniel R. Mojden and is titled Adjustable Exercise Apparatus. This patent discloses an adjustable exercise apparatus with a pair of elongated handle members capable of being grasped by an exercising individual. The handles extend, in cantilevered fashion, from a support bar which is disposed substantially horizontally. The horizontal bar is connected to a vertical pillar by a vertical angle adjusting arrangement and the pillar is mounted upon a stationary base. The vertical angle adjusting arrangement permits the horizontal bar and connected handles to be adjusted into any one of a plurality of mutually parallel positions angularly spaced apart from one another in respective vertical planes. This patent only allows the bar(s) to operate on a post frame.
U.S. Pat. No. 7,781,360 issued on Jan. 18, 2011 and U.S. Pat. No. 7,918,770 issued on Apr. 5, 2011, both to Richard J. Hoole are titled Adjustable Weight-Loaded Dip-Chin Machine. These patents disclose an adjustable weight-loaded dip-chin machine. Dip bars and chin bars with means for vertical adjustment are mounted on columns, which in turn are mounted on a base. An arm is pivotally attached to the base, and weights can be added to an arm spindle attached to the arm. A belt is attached to the arm, and weights added to the arm spindle resist upward motion of an exerciser performing dips or chins. Dip bars incorporate a plurality of dip bar legs, each a differing distance from the other dip bar. While these patents use separate bars, the bars only operate and slide on the vertical columns.
U.S. Patent Application Publication 2009/0023566 was published on Jan. 22, 2009 to Phillip Florczak and is titled Exercise System and Related Methods. This publication discloses a system and methods for facilitating exercise. It provides a portable apparatus on which a human can engage in a wide variety of exercises. The system includes an apparatus which, in one embodiment, includes support elements joinable by a stabilizer and supported on bases that form a system base. The attachment for the exercise only operate on the proprietary frame.
What is needed is a dip bar for a power cage. The dip bar in this disclosure provides a solution that operates with a power cage and provides more options for exercise that are not possible with prior art dip bars.
It is an object of the dip bar for a power cage to allow for installation on different sizes of power cage tubes. Cage frames are typically constructed with box tubes that vary in size of 2 inches by 2 inches or 2 inches by 3 inches. These common sizes require some versatility in the mounting to accept the different dimensions of the cage frame. The dip bar being disclosed accommodates both sizes of power cages.
It is an object of the dip bar for a power cage to provide multiple orientations of installation of the dip bar on the frame of a power cage. The dip bar wraps partially around the frame to provide multiple locations to grasp the dip bar and provides different spacing from the power cage uprights or stanchions. The dip bar is secured to the frame to allow the frame and dip bar to be placed in various directions on a power cage.
It is an object of the dip bar for a power cage to securely retain the dip bar onto the power cage. The frame of the dip bar has a rod, post or tube the passes through cage frame to prevent the dip bar from sliding on the power cage. Because the power cage is constructed with multiple holes for locating supports, any of the multiple holes can be used to locate and retain the frame of the dip bar onto the power cage.
It is another object of the dip bar for a power cage to include a safety retainer that prevents undesirable dis-engagement with the power cage. The safety retainer is a pin with a spring-loaded ball. Once the frame is placed onto the power cage the pin is inserted through holes in the frame, depending upon the tubing of the power cage, to prevent the frame from sliding out of engagement in the power cage. The pin is placed through the frame where the spring-loaded ball extends to retain the pin and the frame on the power cage.
It is another object of the dip bar for a power cage for the dip bar to be positionable at different heights on a power cage to perform different types of exercises. Depending upon the height where the dip bar is located a variety of exercises can be performed. Placing the dip bar high on the power cage allows for pull-ups. Placing the dip bar at a middle height of the power cage allows for dips, and lower locations on the power cage provides of push-ups with varying levels of intensity and inverted push-ups can also be performed by lifting oneself from under the dip bars.
It is still another object of the dip bar for a power cage to allow for several widths of spacing between the dip bars. Because the dip bar wraps around the frame at different distances from the frame the distance between the uprights or stanchions of the power cage allows for different exercises based upon the distance between the dip bar and the shoulder width of the user.
Various objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.
It will be readily understood that the components of the present invention, as generally described and illustrated in the drawings herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the system and method of the present invention, as represented in the drawings, is not intended to limit the scope of the invention, but is merely representative of various embodiments of the invention. The illustrated embodiments of the invention will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout.
20 stanchion (2×3)
21 stanchion (2×2)
22 hole
29 ground
30 dip bar
31 near side (frame)
32 back side (frame)
33 far side (frame)
34 post
35 fillet
36 lower position
37 middle position
38 top position
39 weld
40 straight tube
41 return tube
42 angle tube
49 gusset
50 angle bend
51 weld
52 return bend
60 2×2 inside hole 60A 2×2 outside hole
61 2×3 inside hole 61A 2×3 outside hole
62 2×3 outside hole 62A 2×3 outside hole
63 stanchion
70 pin
71 ring
72/72A spring loaded ball
74 outside pin placement
75 inside pin placement
80 difference
81 large
82 small.
The post 34 is welded or otherwise secured to the back 32 of the frame. The frame has three sides, the back side 32, the inside frame 31 and the far side frame 33. In addition to providing a support for the post 34, the sides 31, 32 and 33 of the frame provide structure to the dip bar 30 that reduces movement and tipping of the dip bar 30. The inside frame 31 and the far side frame 33 have a plurality of holes. The holes allow for the placement of a retaining pin through the frame. The retaining pin is located based upon the visible hole and the size of tubing that is used in the power cage 20.
The retaining pin has a pin 70 with a spring loaded ball 72 on one end and a ring 71 on the second end. The spring-loaded ball 72 is depressed as the pin 70 is passed into a hole, and the spring-loaded ball 72A expands out of the diameter of the pin 70 when the spring-loaded ball 72 is not in a hole. The ring 71 prevents pushing the pin 70 too far through a hole and also allows for connection of a tether to keep the pin 70 with the dip bar 30.
In this example, when the dip bar 30 is used with a 2×3 stanchion 20 the pin 70 is placed into hole 62A and then through hole 62. Alternatively, the pin can be placed through hole 61A (not visible) located under the bent tube and then through hole 61. The selection of the upper or lower holes are selected based upon visibility or user preference. The pin 70 can also be placed through the frame in the opposite direction without a difference in operation or security. When the dip bar 30 is used on a 2×2 stanchion, holes 60 and 60A can be used to secure the dip bar 30 onto a 2×2 power cage stanchion. The holes 60, 60A and 61, 61A and 62, 62A are concentrically aligned and sized to accept the pin 70 there through.
The frame and the joined components are made of metal, and preferably made of steel that has been surface treated, such as painted or powder coated. The frame has a tube welded or otherwise secured to the frame. The tube is welded or otherwise secured to the back 32 of the frame. The straight tube 40 is welded to the flat back surface of the frame. The straight tube 40 then has an angle bend 50 with a return tube 41 and a return bend 52 that terminates at the near side 31 of the frame where the angle tube 42 is welded 51 or otherwise secured. One or a plurality of gussets 49 are welded 39 to the tubes and frame to increase the strength of the dip bar 30.
The different bends of the dip bars 30 allow for different distances based on the placements of the dip bar 30 on a power cage.
In summary, each dip bar 30 has essentially three grasp positions, and on a 2×2 stanchion each dip bar 30 can be placed in two essential orientations on each stanchion. Placing the dip bar 30 on the narrow or wide side of the cage provides additional grip distances. This combination provides 12 different grasp and spacing for a user. On a 2×3 stanchion each dip bar 30 can be placed in two orientations. This gives 6 different grasps and spacing for a user. The grips can be angled to the user body or parallel to the user body.
Thus, specific embodiments of a dip bar for a power cage have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims.