Various types of fractures (natural or drilling induced; open or closed) commonly occur in subsurface formations. Hence, fracture detection and characterization play an important role in fractured reservoir evaluation since different types of fractures are able to provide additional pathways to oil/gas flow. Fracture detection may also provide important information for optimizing well production and fracturing design if needed.
The presence of fractures filled with varied types of fluid may change the physical parameter distribution of a formation such as resistivity and velocity around wellbores. Therefore, different types of open/cased hole logging methods have been used for this purpose.
Multicomponent induction (MCI) logging has been developed for evaluation of various types of anisotropic formations (e.g., laminated shale-sand and low-resistivity reservoirs) by means of determined resistivity anisotropy (horizontal and vertical resistivities), dip, and dip azimuth. However, dip effects may induce errors during fracture detection using MCI.
To address some of the challenges described above, as well as others, a method for boundary layer dip angle effect (dip-effect) correction of MCI logging data (e.g., MCI logging components) may be used for enhancement of integrated fracture identification in a geological formation.
The illustrated tool 100 includes a transmitter 101, at least one bucking receiver 103, and at least one main receiver 103-107. In an example, the transmitter 101 and receivers 103-107 are distributed along the axis of the tool 100. Since each transmitter 101 and receiver 103-107 comprises a respective plurality of coils, the transmitter 101 is commonly referred to as a transmitter array 101 and each receiver 103-107 is commonly referred to as a receiver array 103-107.
The transmitter 101 may be a triaxial transmitter having transmitter coils Tx, Ty, and Tz aligned along their respective x, y, and z axes. The bucking receiver 103 includes mutually orthogonal collocated receiver coils Rx, Ry, and Rz that are each wound to have an opposite polarity to the respective transmitter coils Tx, Ty, and Tz. This enables the bucking receiver 103 to be insensitive to the direct transmission of the electromagnetic (EM) signals from the transmitter 101 and, thus, shield the main receivers 105-107 from being affected by the direct signal from the transmitter 101.
The main receivers 105-107 may be triaxial receivers having mutually orthogonal collocated receiver coils Rxm, Rym, and Rzm aligned along their respective x, y, and z axes. The receiver coils of the main receivers 105-107 are wound with the same polarity as the transmitter coils Tx, Ty, and Tz such that they are able to receive the EM signals back from the geological formation have the same polarity as the respective transmitted EM signal.
Voltages that are measured on all of the receivers 103-107 are calibrated into apparent conductivities. In general, all nine apparent conductivity components may be expressed as a 3-by-3 tensor or matrix for the multi-array triaxial induction tool operated at multiple frequencies:
The multi-array triaxial induction sensor 100 may be considered to include N triaxial subarrays (i.e., TR(1), TR(2), . . . , and TR(N), or further denoted as A1, A2, . . . , and AN). Lm is the transmitter-receiver spacing for the main receivers. La is the transmitter-receiver spacing of the bucking receivers and (xt, yt, zt) is the three-dimensional (3D) tool/measurement coordinate system used subsequently.
The various voltage measurements (e.g., component measurements) made by each of the receivers 103-107 may be identified by the particular one of the coils that was energized at the transmitter and the particular one of the coils at each receiver 103-107 for which a corresponding voltage is detected. Thus, for each receiver 103-107, there are nine component measurements: a detected voltage for each of the Rxm, Rym, and Rzm receiver coils corresponding to energizing of each of the Tx, Ty and Tz transmitter coils. In the explanation below, each component measurement is identified by a letter pair corresponding to the particular transmitter coil and the particular receiver coil. The nine component measurements are thus identifiable by MCI logging component references XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ. Component measurements that use the same transmitter and receiver dipole moment directions (e.g., XX, YY, ZZ) are typically referred to as “direct coupled” component measurements. Component measurements that use a different transmitter dipole moment than the one used for the receiver (e.g., XY, XZ, YX, YZ, ZX, ZY) are typically referred to as “cross-component” or “cross-coupled” measurements.
Using the above. Equation (1) may be written as:
where I,J=x/X,y/Y,z/Z, i=1, 2, . . . , N, j=1, 2, . . . , M,
From the above, one conductivity component σIJ(i,j) or IJ(i,j) of a tensor conductivity may be expressed further as:
σIJ(i,j)=kIJ(i,j)·HIJ(i,j), (3)
where kIJ(i,j) is the calibration factor for conversion from magnetic field (or inductive voltage) to apparent conductivity, and HIJ(i,j) is the measured magnetic field (or inductive voltage).
For simplicity, it is assumed that the formation includes only two different resistivity regions 210, 211 (i.e., formation layers). The examples included herein may be extended to additional formation layers.
Adjacent resistivity regions 210, 211 are separated by a boundary 200. The angle of this boundary 200 relative to a horizontal reference may be referred to as the formation layer boundary dip angle or simply dip and is denoted as θb. There may be an azimuthal offset angle of the dip angle with respect to a reference point on the tool 100.
The resistivity of the first region 210 is represented by horizontal resistivity Rh1 and vertical resistivity Rv1. The resistivity of the second region 211 is represented by horizontal resistivity Rh2 and vertical resistivity Rv2. The anisotropy dip angle for the first region 210 is then represented by θa1 and the anisotropy dip angle for the second region 211 is represented by θa2. The azimuthal offset angle of the dip angle with respect to a reference point on the tool 100 is represented by ϕb.
As described previously, the logging tool 100 makes measurements of the formation resistivity along the various axes of the transmitter and receiver coils. These measurements will be referred to subsequently as resistivity components of the formation: Ry for the resistivity measured along the y-axis, Rx for the resistivity measured along the x-axis, and Rz for the resistivity measured along the z-axis in a formation principal 3D coordinate system. Here Rx, Ry, and Rz are in the formation principal 3D coordinate system, where it is generally different from the tool coordinate system described previously.
The real earth model is described by 3D models. To understand the effects of formation properties, such as formation dip, on the conductivity components σIJ(i,j) or IJ(i,j), formation models such as radially one-dimensional (R1D) model, Zero dimensional (0D) model, and vertically one-dimensional (V1D) isotropic model may be considered and then used for real data processing (e.g., dip correction) and integrated interpretation.
The RID model is initially considered. In the RID model, that includes a borehole and a zero-dimensional (0D) BA resistivity-anisotropic formation, the measured HIJ(i,j) can be expressed as a complicated complex function:
H
IJ
(i,j)
=F
IJ
(i,j)(frequency,L,BD,Rm,ecc,eccAng,Rx,Ry,Rz,dip) (4)
where FIJ(i,j) is a function of variables tool frequency (e.g., frequency=12 k, 36 k, 60 k, 84 kHz), tool array spacing L (e.g., 17, 29, 50, 80-in), borehole size (BD), mud resistivity (Rm), tool eccentricity (ecc), tool eccentricity angle (eccAng), formation triaxial resistivity components Rx, Ry, Rz, and boundary layer dip angle. In Equation (4), there is no analytical solution for FIJ(i,j) so the numerical methods for obtaining FIJ(i,j) are used. These may include three-dimensional finite difference (3DFD) or finite element (FE).
In a zero-dimensional BA resistivity-anisotropic formation without a borehole (e.g., after the so-called borehole effect correction), HIJ(i,j) may be reduced as a function FIJ(i,j)(frequency,L,Rx,Ry,Rz,dip) of only six variables of tool frequency, array spacing L, triaxial resistivity components Rx, Ry, Rz. and dip:
H
IJ
(i,j)
=F
IJ
(i,j)(frequency,L,Rx,Ry,Rz,dip). (5)
In this case, a semi-analytical solution is obtained for function FIJ(i,j)(frequency,L,Rx,Ry,Rz,dip) or σIJ(i,j).
As the two special cases for Equation (5), at first we have the reduced equation for a zero dimensional TI resistivity-anisotropic formation:
H
IJ
(i,j)
=F
IJ
(i,j)(frequency,L,Rh,Rv,dip). (6)
where Rh and Rv denote the formation horizontal and vertical resistivity, and Rh=Rx=Ry, Rv=Rz. In this case, we have an analytical solution for function FIJ(i,j)(frequency,L,Rh,Rv,dip) or σIJ(i,j).
A reduced equation for a zero dimensional resistivity-isotropic formation may be expressed as:
H
IJ
(i,j)
=F
IJ
(i,j)(frequency,L,Rt,dip). (7)
where Rt denotes the true formation resistivity, and Rt=Rx=Ry=Rz. In this case, an analytical solution for function may be expressed as FIJ(i,j)(frequency, L, Rt, dip) or σIJ(i,j).
In a so-called V1D formation model with BA anisotropy, the equation for determination of the apparent conductivity component may be expressed by:
σIJ(i,j)=kIJ(i,j)·HIJ(i,j)(frequency,L,Rx(z),Ry(z),Rz(z),dip(z)). (8)
where all three true resistivity components and relative dip angle are a function of depth z and they can be expressed as a piece-wise constant function of layer resistivity, boxcar function, and depth z, namely one of:
It is assumed that the V1D-BA formation is an N layer-bed formation, where N is the total number of the beds, Rx(k), Ry(k), Rz(k), and dip(k) are triaxial resistivities and dip of the kth layer, and Π(z, zk, zk+1) is a boxcar function and that can be expressed as Π(z, zk, zk+1)=H(z−zk)−H(z−zk+1). Here H(z−zk) and H(z−zk+1) are the two Heaviside step functions (or unit step functions).
In TI-anisotropy formations, it is typically assumed that there is no fracture but it can be observed that there is no difference between XX and YY in a vertical well (or dip=00) in
For the dip-effect correction of MCI borehole corrected (BHC) logs in both TI and BA anisotropic formations, the following equation is used for the correction:
BHC
(dec)(z)=BHC(z)+α(z)·[x(dip=0,z)−x(dip,z)], (9)
where BHC(dec) is the apparent conductivity of the dip-effect corrected MCI component, BHC(z) is one of the MCI components after the borehole correction, x(dip=0, z) is the computed component in a zero dimension or V1D TUBA formation at a 0° dip angle and x(dip, z) is the correspondent in a zero dimension or V1D TI/BA formation at a non-zero dip angle, and α(z) is a coefficient for adjusting the shoulder effect. For example, α(z)=1 in a true zero dimension formation. An example workflow for the dip-effect correction is shown in
For example, we have the equations for dip-effect correction of XX, YY, and ZZ components:
XX
(dec)(z)=XXBHC(z)+α(z)·[XX(dip=0,z)−XX(dip,z)] (10)
YY
(dec)(z)=YYBHC(z)+α(z)·[YY(dip=0,z)−YY(dip,z)] (11)
ZZ
(dec)(z)=ZZBHC(z)+α(z)·[ZZ(dip=0,z)−ZZ(dip,z)] (12)
If it is assumed that the formation dip angle and measured triaxial resistivities (Rx, Ry, Rz) are known based on the zero dimensional model, then the dip-effect correction may be determined as follows using Equation (7):
x(dip=0,z)−x(dip,z)=kIJ(i,j)·[HIJ(i,j)(frequency,L,Rx,Ry,Rz,dip=0)−HIJ(i,j)(frequency,L,Rx,Ry,Rz,dip)]. (13)
The geological formation resistivity that generates the formation resistivity data may be measured using the multi-triaxial induction sensor tool as shown in
In block 1102, the MCI BHC logs, the inverted formation resistivities, and the formation layer boundary dip angle are input to one of a plurality of different forward models 1103-1105. For example, the models may include the V1D isotropic model 1103, the TI model 1104, and/or the BA model 1105. Other embodiments may use different forward models.
The forward model 1103-1105 used in the subsequent calculations is chosen based on the formation resistivity data from block 1101. For example, if Rx=Ry=Rz (i.e., resistivity is the same in all directions of measurement), then the V1D isotropic model 1103 is used. If Rx=Ry≠Rz (i.e., resistivity is the same around tool but different below the tool), then the transversely isotropic (TI) model 1104 is used. If Rx≠Ry≠Rz (i.e., resistivity is different in all directions), then the biaxial anisotropic (BA) model 1105 is used.
In block 1107, the BHC log data for vertical and deviated (i.e., non-vertical) wells are determined based on the chosen forward model 1103-1105. This may be accomplished by using Equation (9) above. In that equation, the second term (α(z)·[x(dip=0, z)−x(dip, z)]) is the calculated borehole effect. In the second term, x(dip=0, z) represents log data at a vertical well and x(dip, z) represents log data at a deviated well having a dip effect.
In block 1109, the dip effects on the BHC log data are determined based on the selected forward model, as shown in Equations 10-12. In block 1111, the dip-effect corrected BHC log data are calculated as shown in Equation (13) by removing (i.e., subtracting) the dip-effect from the BHC log data. This may be accomplished by subtracting the log data with the dip-effect (e.g., from the deviated well) from the log data without the dip-effect (e.g., from the vertical well). Block 1113 outputs these corrected log data to be used as shown in the workflow of
The determination of formation anisotropy and boundary layer dip angle are based on different forward models. From the subsequent workflow of
The process begins, in block 1210, with the acquisition of formation resistivity data using a downhole tool. For example, the tool of
The acquired formation resistivity data is input to a pre-processing block (block 1212) that may perform any processing needed prior to the determination of the formation properties. For example, this processing may access a library of data, in block 1214, that comprises calibration and temperature correction data. The library 1214 may provide the data used in block 1212 to perform any calibration and/or temperature correction of the acquired data, depth alignment, data quality evaluation, and/or filtering and horn reductions. These preprocessing steps are for purposes of illustration only as other steps may be performed or a subset of the disclosed pre-processing steps may be performed.
In block 1218, the pre-processed data is input to an inversion process to determine geological formation properties (e.g., horizontal resistivity (Rh), vertical resistivity (Rv), formation boundary layer dip angle, dip azimuth) as discussed previously with reference to
In block 1222, the resulting formation properties are input to a borehole correction process (e.g., MCI BHC) to remove the borehole effect. This block 1222 may also access the MCI library 1216 for data.
The borehole corrected data from block 1222 is input to the MCI dip-effect correction block 1100 and the post processing block 1226. As described previously with reference to
The MCI dip-effect corrected data from block 1100 is also input to a ZZ-array processing block 1224. The ZZ-array processing block 1224 may use a pre-calculated ZZ-process library 1220 to provide skin-effect correction, 2D software focusing, and R1D inversion (or formation profiling) of the MCI dip-effect corrected data. The processing block 1224 outputs array compensated resistivity tool data (e.g., R90, R60, . . . , R10 logs with 1-ft, 2-ft, and 4-ft vertical resolutions) to block 1230.
The BHA 1320 may include drill collars 1322, a downhole tool 1324, stabilizers, sensors, an RSS, a drill bit 1326, as well as other possible components. The drill bit 1326 may operate to create the borehole 1312 by penetrating the surface 1304 and the subsurface formations 1390. The BHA 1320 may further include a downhole tool including the multi-array, triaxial induction sensor tool 100 of
During drilling operations within the borehole 1312, the drillstring 1308 (perhaps including the drill pipe 1318 and the BHA 1320) may be rotated by the rotary table 1310. Although not shown, in addition to or alternatively, the BHA 1320 may also be rotated by a motor (e.g., a mud motor) that is located downhole. The drill collars 1322 may be used to add weight to the drill bit 1326. The drill collars 1322 may also operate to stiffen the BHA 1320, allowing the BHA 1320 to transfer the added weight to the drill bit 1326, and in turn, to assist the drill bit 1326 in penetrating the surface 1304 and subsurface formations 1390.
During drilling operations, a mud pump 1332 may pump drilling fluid (sometimes known by those of ordinary skill in the art as “drilling mud”) from a mud pit 1334 through a hose 1336 into the drill pipe 1318 and down to the drill bit 1326. The drilling fluid can flow out from the drill bit 1326 and be returned to the surface 1304 through an annular area 1340 between the drill pipe 1318 and the sides of the borehole 1312. The drilling fluid may then be returned to the mud pit 1334, where such fluid is filtered. In some examples, the drilling fluid can be used to cool the drill bit 1326, as well as to provide lubrication for the drill bit 1326 during drilling operations. Additionally, the drilling fluid may be used to remove subsurface formation cuttings created by operating the drill bit 1326.
A workstation 1392 including a controller 1396 may include modules comprising hardware circuitry, a processor, and/or memory circuits that may store software program modules and objects, and/or firmware, and combinations thereof that are configured to execute at least the methods of
These implementations can include a machine-readable storage device having machine-executable instructions, such as a computer-readable storage device having computer-executable instructions. Further, a computer-readable storage device may be a physical device that stores data represented by a physical structure within the device. Such a physical device is a non-transitory device. Examples of a non-transitory computer-readable storage medium can include, but not be limited to, read only memory (ROM), random access memory (RAM), a magnetic disk storage device, an optical storage device, a flash memory, and other electronic, magnetic, and/or optical memory devices.
A drilling platform 1386 equipped with a derrick 1388 that supports a hoist 1490 can be seen. Drilling oil and gas wells is commonly carried out using a string of drill pipes connected together so as to form a drillstring that is lowered through a rotary table 1310 into the borehole 1312. Here it is assumed that the drillstring has been temporarily removed from the borehole 1312 to allow the wireline logging tool body 1420, such as a probe or sonde with the resistivity imaging tool 1300, to be lowered by wireline or logging cable 1474 (e.g., slickline cable) into the borehole 1312. Typically, the wireline logging tool body 1420 is lowered to the bottom of the region of interest and subsequently pulled upward at a substantially constant speed.
During the upward trip, at a series of depths, the tool with the multi-array, triaxial induction sensor tool 100 may be used to image the formation and perform formation parameter retrieval including formation resistivity data. The resulting formation resistivity data may be communicated to a surface logging facility (e.g., workstation 1392) for processing, analysis, and/or storage of the formation parameters. The workstation 1392 may have a controller 1396 that is able to execute any methods disclosed herein and to operate as part of a resistivity imaging tool system.
The system 1500 may include a controller 1520, a memory 1530, and a communications unit 1535. The memory 1530 may be structured to include a database. The controller 1520, the memory 1530, and the communications unit 1535 may be arranged to operate as a processing unit to control operation of the downhole tool 100 and execute any methods disclosed herein in order to determine the formation parameters.
The communications unit 1535 may include communications capability for communicating from downhole to the surface or from the surface to downhole. Such communications capability can include a telemetry system such as mud pulse telemetry. In another example, the communications unit 1535 may use combinations of wired communication technologies and wireless technologies.
The system 1500 may also include a bus 1537 that provides electrical conductivity among the components of the system 1500. The bus 1537 can include an address bus, a data bus, and a control bus, each independently configured or in an integrated format. The bus 1537 may be realized using a number of different communication mediums that allows for the distribution of components of the system 1500. The bus 1537 may include a network. Use of the bus 1537 may be regulated by the controller 1520.
The system 1500 may include display unit(s) 1560 as a distributed component on the surface of a wellbore, which may be used with instructions stored in the memory 1530 to implement a user interface to monitor the operation of the tool 1506 or components distributed within the system 1500. The user interface may be used to input parameter values for thresholds such that the system 1500 can operate autonomously substantially without user intervention in a variety of applications. The user interface may also provide for manual override and change of control of the system 1500 to a user. Such a user interface may be operated in conjunction with the communications unit 1535 and the bus 1537.
These implementations can include a machine-readable storage device having machine-executable instructions, such as a computer-readable storage device having computer-executable instructions. Further, a computer-readable storage device may be a physical device that stores data represented by a physical structure within the device. Such a physical device is a non-transitory device. Examples of machine-readable storage devices can include, but are not limited to, read only memory (ROM), random access memory (RAM), a magnetic disk storage device, an optical storage device, a flash memory, and other electronic, magnetic, and/or optical memory devices.
Many embodiments may be realized. Several examples will now be described.
Example 1 is a method comprising: measuring geological formation resistivity to generate formation resistivity data; performing a borehole correction (BHC) on the formation resistivity data to generate BHC log data; selecting a forward model based on the formation resistivity data; determining a dip-effect on the BHC log data based on the selected forward model; and generating dip-effect corrected BHC log data based on removal of the dip-effect from the BHC log data.
In Example 2, the subject matter of Example 1 can optionally include transmitting electromagnetic signals from a triaxial transmitter having coils aligned along x, y, and z axes; receiving electromagnetic signals from the geological formation in response to the transmitted electromagnetic signals, wherein a triaxial receiver is configured to receive the electromagnetic signals along the x, y, or z axes; and determining the formation resistivity data in response to the received electromagnetic signals wherein Rx represents the resistivity along the x-axis, Ry represents the resistivity along the y-axis, and Rz represents the resistivity along the z-axis in the formation principal coordinate system.
In Example 3, the subject matter of Examples 1-2 can optionally include: selecting a first model when Rx=Ry=Rz; selecting a second model when Rx=Ry≠Rz; and selecting a third model when Rx≠Ry≠Rz.
In Example 4, the subject matter of Examples 1-3 can optionally include wherein the first model comprises an isotropic model.
In Example 5, the subject matter of Examples 1-4 can optionally include wherein the second model comprises a transversely isotropic model.
In Example 6, the subject matter of Examples 1-5 can optionally include wherein the third model comprises a biaxial anisotropic model.
In Example 7, the subject matter of Examples 1-6 can optionally include wherein generating dip-effect corrected BHC log data based on the dip-effect comprises subtracting BHC log data from a deviated well having dip-effect from BHC log data of a vertical well without dip-effect.
In Example 8, the subject matter of Examples 1-7 can optionally include determining a formation layer boundary dip angle based on the formation resistivity data.
In Example 9, the subject matter of Examples 1-8 can optionally include wherein measuring the geological formation resistivity comprises measuring vertical resistivity, horizontal resistivity, and anisotropy dip angles for each formation region.
Example 10 is a non-transitory computer readable medium that stores instructions for execution by processing circuitry to perform operations to correct borehole corrected (BHC) log data for dip-effect, the operations: select a forward model from a plurality of forward models based on formation resistivity data; determine a dip-effect on the BHC log data based on the selected forward model; and generate dip-effect corrected BHC log data based on removal of the dip-effect from the BHC log data.
In Example 11, the subject matter of Example 10 can optionally include wherein the operations further select the forward model from one of an isotropic model, a transversely isotropic model, or a biaxial anisotropic model.
In Example 12, the subject matter of Examples 10-11 can optionally acquire the formation resistivity data, and perform a borehole correction (BHC) on the formation resistivity data to generate BHC log data.
In Example 13, the subject matter of Examples 10-12 can optionally include wherein the operations to acquire the formation resistivity data comprise a multi-triaxial induction sensor tool transmitting electromagnetic signals into the formation and receiving resulting electromagnetic signals from the formation.
In Example 14, the subject matter of Examples 10-13 can optionally include wherein the BHC data comprises data where a borehole effect has been removed.
In Example 15, the subject matter of Examples 10-14 can optionally include wherein the operations further determine a formation layer boundary relative dip angle.
In Example 16, the subject matter of Examples 10-15 can optionally perform skin effect correction on the dip-effect corrected BHC ZZ log data; and perform 2D software focusing or RID inversion of the dip-effect corrected BHC ZZ log data.
Example 17 is a system comprising: a triaxial sensor comprising: transmit coils aligned along respective x, y, and z axes and configured to transmit electromagnetic signals into a geological formation along the x, y, and z axes; and receive coils aligned along the respective x, y, and z axes and configured to receive resulting electromagnetic signals from the geological formation in response to the transmitted electromagnetic signals, the received electromagnetic signals representative of formation resistivity data; and control circuitry coupled to the triaxial sensor, the control circuitry configured to determine horizontal resistivity, vertical resistivity, and formation layer boundary dip angle based on the formation resistivity data; correct the formation resistivity data to remove borehole effect and generate borehole corrected (BHC) data, select a forward model based on the formation resistivity data, determine a dip-effect on the BHC data based on the selected forward model, remove the dip-effect from the BHC data to generate dip-effect corrected BHC data.
In Example 18, the subject matter of Example 17 can optionally include wherein the control circuitry is further configured to select the forward model based on electromagnetic signals detected by each of the receive coils.
In Example 19, the subject matter of Examples 16-18 can optionally include wherein the electromagnetic signal detected by each respective receive coil is representative of a formation resistivity along the axis aligned with the respective receive coil.
In Example 20, the subject matter of Examples 16-19 can optionally include wherein the control circuitry is further configured to determine the dip effect based on a dip angle between multiple resistivity formation regions.
This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/021681 | 3/10/2016 | WO | 00 |