Dipeptide Mimics, Libraries Combining Two Dipeptide Mimics with a Third Group, and Methods for Production Thereof

Abstract
Monovalent compounds having moieties comprising at least one amino acid side chain are bound to a core molecule, which also comprises a nucleophilic moiety bound to said core molecule. Monovalent compounds also comprise a macrocyclic ring, a nucleophilic moiety, and a spacer group. Monovalent compounds may be combined into bivalent and trivalent compounds, some of which may have a labeling tag. Methods of production of bivalent compounds and contemplated uses thereof are disclosed.
Description
BACKGROUND

Many proteins interact via two or more contact points that account for the majority of the binding energy between the two. Such a point of interaction may be termed a ‘hot-spot.’ Molecules may be designed having pharmacophores positioned with known separation to interact with these hot-spots. A molecule positioning two pharmacophores for interaction with hot spots may be termed a bivalent molecule. Bivalent compounds may have increased binding energy over similar monovalent compounds, since more than one pharmacophore may interact with the protein. Such compounds may be useful for studying protein-protein interactions, comprise a pharmaceutical lead compounds, or comprise pharmaceuticals.


For protein-protein interactions, studies have shown that amino acid side chain groups or side chains based on amino acid side chain groups contribute a majority of the binding energy, whereas main-chain carbonyl groups contribute relatively little toward the binding energy. Thus, pharmacophores bearing amino acid side chain groups or groups based on amino acid side chain groups are likely to have enhanced binding properties over compounds not having amino acid side chains. Drug leads utilizing unprotected amino acids as pharmacophores are undesirable from both a synthetic and pharmacological standpoint. In response to this need, peptidomimetics have been developed as a means to improve pharmacological properties and lessen synthetic burden. A number of different peptidomimetics have been prepared.


The ability to rapidly prepare libraries of compounds is advantageous for screening of new pharmacophores. Preparation of compound libraries is often achieved by combinatorial methods utilizing solid-phase syntheses. Solution-phase syntheses offer considerable handling advantages over solid-phase methods, but they are usually much slower than solid phase methods for production of compound libraries.


In view of the foregoing, it would be highly beneficial to design peptidomimetics having amino acid side chains or groups based on amino acid side chains, whose structures are amenable to rapid bivalent compound library syntheses by solution phase synthesis methods.


SUMMARY

In some aspects, the disclosure describes a compound whose structure is selected from the group consisting of




embedded image


R1 and R2 are comprised by at least one moiety comprising an amino acid side chain. R1 and R2 further comprise non-peptidic bonds. X1 comprises a core molecule selected from the group consisting of heteroarylenes, arylenes and heterocyclenes and a nucleophilic moiety bound to said core molecule. K1 and K2 comprise at least one spacer atom between said core molecule and said at least one moiety comprising an amino acid side chain


In other aspects, the disclosure describes a compound having the structure




embedded image


A1 comprises a macrocyclic ring comprising at least two amino acids, wherein said at least two amino acids are bound to each other in a ring comprising at least one peptide bond. Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof. S1 comprises a spacer group having at least one carbonyl moiety, wherein S1 does not comprise glycine.


In another aspect, the disclosure describes a compound having the structure




embedded image


B1 is a core molecule selected from the group consisting of heteroarylenes, arylenes, and heterocyclenes. P1 and P2 comprise an organic moiety comprising removal of a hydrogen atom from compounds disclosed herein. P1 and P2 are independently selected.


In still another aspect, the disclosure describes a compound having the structure




embedded image


P3 and P4 comprise an organic moiety comprising removal of a hydrogen atom from the nitrogen atom of the piperidine or piperazine ring of compounds disclosed herein. P3 and P4 are independently selected. P5 comprises a moiety selected from the group consisting of an organic moiety comprising removal of a hydrogen atom from the nitrogen atom of the piperidine or piperazine ring of compounds disclosed herein and a labeling tag T1. P5 is selected independently of P3 and P4.


In still another aspect, the disclosure provides a method of producing a library of compounds, comprising the following steps:


1) providing




embedded image


wherein T1 comprises a labeling tag;


2) reacting a first equivalent of a piperazine or piperidine compound disclosed herein or morpholine in the presence of a base and a solvent; 3) removing the solvent; and 4) reacting a second equivalent of a piperazine or piperidine compound disclosed herein or morpholine in the presence of a base and a solvent. Selection of said first equivalent and said second equivalent is conducted with the proviso that said first equivalent and said second equivalent are not both morpholine.


The disclosure also provides pharmaceutical compounds, pharmaceutical lead compounds, and pharmacological probes selected from the compounds described herein. The disclosure also provides compounds selected from the compounds described herein which demonstrate protein-protein interactions.


The foregoing has outlined rather broadly the features of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter, which form the subject of the claims.







DETAILED DESCRIPTION

In the following description, certain details are set forth such as specific quantities, sizes, etc. so as to provide a thorough understanding of the present embodiments disclosed herein. However, it will be obvious to those skilled in the art that the present disclosure may be practiced without such specific details. In many cases, details concerning such considerations and the like have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the present disclosure and are within the skills of persons of ordinary skill in the relevant art.


While most of the terms used herein will be recognizable to those of skill in the art, the following definitions are nevertheless put forth to aid in the understanding of the present disclosure. It should be understood, however, that when not explicitly defined, terms should be interpreted as adopting a meaning presently accepted by those of skill in the art.


“Alkyl,” as defined herein refers to groups comprising straight, branched, and cyclic substituents containing about 1 to about 20 carbons, or about 1 to about 10 carbons in some embodiments. Alkyl groups may have carbon-carbon double bonds and contain about 2 to about 20 carbons, or about 2 to about 10 carbons in some embodiments. Alkyl groups may also have carbon-carbon triple bonds and contain about 2 to about 20 carbons, or about 2 to about 10 carbons in some embodiments. In an embodiment, an alkyl group is a methyl group. Representative alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, ethenyl, propenyl, butenyl, pentenyl, acetylenely, propynyl, butynyl, pentynyl, hexynyl, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Alkyl groups may be substituted with heteroatoms in the carbon chain comprising the alkyl group, wherein heteroatoms include, but are not limited to oxygen, nitrogen, and sulfur. Alkyl groups may be substituted with one or more substituents, in certain embodiments one substituent, and in other embodiments three or four substituents.


“Amino acid side chain moieties,” as defined herein includes groups of atoms linked to the α-carbon of naturally-occurring amino acids and their derivatives, homologues, and analogues.


“Arylene,” as defined herein, is a monocyclic or polycyclic aromatic group having from about 5 to about 20 carbon atoms, at least one aromatic ring, and at least two substituents. In some embodiments, the arylene group has about 5 to about 12 carbon atoms. In an embodiment, the arylene is monocyclic and has 5 or 6 carbon atoms. Arylene groups may include, but are not limited to 1,2-, 1,3- and 1,4-disubstituted phenylene.


“Heteroarylene,” as defined herein, is a monocyclic or polycyclic aromatic ring having about 5 to about 15 atoms in the ring, wherein about 1 to about 5 of the atoms in the ring are heteroatoms, and said ring has at least two substituents. “Heteroatom,” as defined herein, is an atom other than carbon, including but not limited to nitrogen, oxygen, and sulfur. In an embodiment, a heteroarylene is monocyclic and has 5 or 6 atoms, wherein 1 to 3 of the atoms are heteroatoms.


“Heterocyclene,” as defined herein, is a monocyclic or polycyclic non-aromatic ring having about 5 to about 11 atoms in the ring, wherein about 1 to about 4 of the atoms in the ring are heteroatoms, and said ring has at least two substituents. Heteroatoms are atoms other than carbon that may include, but are not limited to, nitrogen, oxygen, and sulfur. In an embodiment, a heterocyclene is monocyclic and has 5 or 6 atoms, wherein 1 to 3 of the atoms are heteroatoms. In another embodiment, a heterocyclene is monocyclic and has 6 or 7 atoms, wherein 1 to 3 of the atoms are heteroatoms. In an embodiment, a heterocyclene is monocyclic, has 6 atoms, and 2 heteroatoms.


“Macrocyclic ring,” as defined herein, is a ring having more than about 12 atoms. In an embodiment, a macrocyclic ring has more than about 14 atoms. In an embodiment, a macrocyclic ring has 14 atoms. Macrocyclic rings may contain heteroatoms.


“Non-peptidic bond,” as defined herein, is a chemical bond not comprising a peptide bond. A non-peptidic bond may be an amide bond, provided the amide bond is not between two amino acids, wherein said amide bond between two amino acids is between the backbone amino and carboxylic acid groups of said amino acids. A non-peptidic bond may be a bond between two amino acids, if said bond comprises any one other atom than the backbone amino and carboxylic acid groups.


“Peptide bond,” as defined herein, is an amide bond formed between the backbone amino and carboxylic acid groups of amino acids, peptides, proteins, and any of their derivatives or analogs.


It is to be understood that compounds provided herein may contain chiral centers. Such chiral centers may be of either the (R) or (S) configuration, or a mixture thereof. Compounds containing more than one chiral center may be enantiomerically pure, or be a mixture of stereoisomeric and diastereomeric forms.


Compounds disclosed herein are substantially pure. “Substantially pure,” as disclosed herein comprises a purity assay of >85% as determined by reversed-phase HPLC and identification of a molecular ion peak or fragment thereof by mass spectrometry (MS). A substantially pure compound may be a mixture of stereoisomers, which may be further separable if desired.


In a general aspect of the disclosure, a compound having the structure selected from the group consisting of




embedded image


is described. R1 and R2 are comprised by at least one moiety comprising an amino acid side chain, and R1 and R2 further comprise non-peptidic bonds. X1 comprises a core molecule selected from the group consisting of heteroarylenes, arylenes, and heterocyclenes. A nucleophilic moiety also comprises X1 with the nucleophilic moiety bound to the core molecule in some manner. X1 may be further comprised by at least one 1,2,3-triazine moiety bound to the core molecule. In an embodiment, two 1,2,3-triazine moieties are bound to the core molecule. K1 and K2 comprise at least one spacer atom between the core molecule and the at least one moiety comprising an amino acid side chain. Spacer atoms may comprise chains or rings of atoms and may contain single bonds, double bonds, triple bonds, and combinations thereof. Compounds comprising this aspect of the disclosure may be considered diamino acid peptidomimetics, since the compounds mimic two amino acids present in protein structures.


Amino acid side chain moieties, which comprise R1 and R2, may include a structural fragment including, but not limited to:




embedded image


Structural fragment, as used hereinabove, refers to a grouping of atoms comprising the amino acid side chain moieties listed hereinabove. R1 and R2 may be comprised solely by the amino acid side chain moieties comprising a structural fragment, or the structural fragment may be part of a larger grouping of atoms comprising R1 and R2. The point of attachment to the amino acid side chain moieties is indicated by the bond disconnection shown in the listing of moieties hereinabove. R1 and R2 may be independently selected and comprise any of the amino acid side chain moieties listed hereinabove.


The nucleophilic moiety comprising X1 comprises a moiety selected from piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof. In an embodiment of the disclosure, the nucleophilic moiety is piperidine. In another embodiment of the disclosure, the nucleophilic moiety is piperazine. The nucleophilic moiety may be bound directly to X1 in an embodiment. In another embodiment, the nucleophilic moiety may be bound to X1 through at least one spacer atom. The at least one spacer atom may comprise R1 or R2 or comprise additional atoms bound to X1. The nucleophilic moiety may provide a synthetic handle for further synthetic manipulation of the compounds.


The core molecule comprising X1 may be an aromatic ring in some embodiments, a heteroaromatic ring in other embodiments, or a heterocyclic ring in still other embodiments. Aromatic rings may include, but are not limited to, a 1,2-substituted phenyl ring, a 1,3-substituted phenyl ring, and a 1,4-substituted phenyl ring. An aromatic ring may be trisubstituted, such as a 1,2,4-substituted phenyl ring, a 1,2,5-substituted phenyl ring, a 1,2,3-substituted phenyl ring, and a 1,3,5-substituted phenyl ring. An aromatic ring may be tetrasubstituted, such as a 1,2,3,4-substituted phenyl ring, a 1,2,3,5-substituted phenyl ring, and a 1,2,4,5-substituted phenyl ring. An aromatic ring may be pentasubstituted, such as a 1,2,3,4,5-substituted phenyl ring. An aromatic ring may be hexasubstituted, such as a 1,2,3,4,5,6-substituted phenyl ring. A heteroaromatic ring may include, but is not limited to, a 1,2,3-triazole ring, a 1,3,4-oxadiazole ring, and a pyridine ring. A heterocyclic ring may include, but is not limited to a diketopiperazine ring. In embodiments of the disclosure, derivatives and analogs of any of these rings are contemplated.


In one aspect of the disclosure, a compound having the structure




embedded image


is described, wherein Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof, and wherein R1 and R2 are defined as detailed hereinabove.


In one aspect of the disclosure, a compound having the structure




embedded image


is described, wherein Z1, R1 and R2 are defined as detailed hereinabove. Z2 is a moiety that may include, but is not limited to —CH2—, —CH2CH2— and —CH2CH2O—, and n1 is an integer from 1-20. In an embodiment of the disclosure, a compound having the structure




embedded image


is described, wherein Z1, R1 and R2 are defined as detailed hereinabove.


In another aspect of the disclosure, a compound having the structure




embedded image


is described wherein Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof, and wherein R1 and R2 are defined as detailed hereinabove. Z3 and Z4 comprise moieties independently selected from the group consisting of CO2R3, CONR4R5, and CH2OH, wherein R3 is H or alkyl, R4 is H or alkyl, and R5 is H or alkyl. R4 and R5 are selected independently from one another. In an embodiment, the compound has the structure




embedded image


wherein Z1, R1, and R2 are defined as detailed hereinabove. R6 and R7 are independently selected from the group consisting of hydrogen and alkyl. In certain embodiments of the disclosure, R6 is methyl and R7 is H. In other embodiments of the disclosure, R6 is H and R7 is methyl. In still other embodiments of the disclosure, both R6 and R7 are methyl.


In another aspect of the disclosure, a compound having a structure




embedded image


is described, wherein Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof, and wherein R1 and R2 are defined as detailed hereinabove. In an embodiment, a compound having the structure




embedded image


is described, wherein Z1, R1 and R2 are defined as detailed hereinabove. Z2 is a moiety that may include, but is not limited to, —CH2—, —CH2CH2— and —CH2CH2O—, and n1 is an integer from 1-20. In an embodiment of the disclosure, a compound having the structure




embedded image


is described, wherein Z1, R1 and R2 are defined as detailed hereinabove


In another aspect of the disclosure, a compound having the structure




embedded image


is described, wherein Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof, and wherein R1 and R2 are defined as detailed hereinabove. R8, and R9 are independently selected from the group consisting of hydrogen and alkyl. In an embodiment, both R8 and R9 are hydrogen. In another embodiment, both R8 and R9 are methyl groups.


In another aspect of the disclosure, a compound having the structure




embedded image


is described, wherein Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof, and wherein R1 and R2 are defined as detailed hereinabove. R10 and R11 are independently selected from the group consisting of hydrogen and alkyl. In an embodiment, both R10 and R11 are hydrogen.


In another aspect of the disclosure, a compound having the structure




embedded image


is described, wherein Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof, and wherein R1 and R2 are defined as detailed hereinabove.


In still another aspect of the disclosure a compound having the structure




embedded image


is described, wherein Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof, and wherein R1 and R2 are defined as detailed hereinabove.


In the embodiments described hereinabove, the compounds may have the structure selected from the group, including but not limited to:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A general aspect of the disclosure describes compounds having the structure




embedded image


wherein A1 comprises a macrocyclic ring comprising at least two amino acids. The at least two amino acids are bound to each other in a ring comprising at least one peptide bond. Z1 comprises a nucleophilic moiety selected from the group consisting of piperidine, piperazine, pyrrolidine, azetidine, and any derivative or analog thereof. S1 comprises a spacer group having at least one carbonyl moiety, wherein S1 does not comprise glycine. In certain embodiments, the compound has a structure selected from the group of compounds, including but not limited to:




embedded image


Compounds produced hereinabove may be useful as monovalent diamino acid mimics. The compounds may also be useful as pharmaceuticals or pharmaceutical leads. They demonstrate utility in that two of these monovalent amino acid mimics may be assembled into one molecule to give a bivalent amino acid mimic. The monovalent compounds may be assembled into bivalent compounds using a their appended nucleophile in a non-limiting example. In practicing the disclosure to form monovalent and bivalent amino acid mimics, the compounds disclosed hereinabove may be synthesized in a protected form. Such a protected form may comprise protecting groups known to those skilled in the art. In non-limiting examples, amino groups may be protected with a tert-butoxycarbonyl group and carboxylic acids may be protected as t-butyl esters. Other protecting groups may be more advantageous for use with certain moieties, and the utility of substituting different protecting groups for a given situation will be evident to those skilled in the art.


The compounds disclosed hereinabove may comprise a fragment of a larger molecule, wherein the fragment comprises removal of a hydrogen atom from the secondary nitrogen of the piperidine or piperazine ring of any of the compounds. Said fragment may be bonded to any other molecule conceivable to one skilled in the art. In an embodiment, the compounds disclosed hereinabove may comprise a bivalent amino acid mimic.


An advantage of the compounds disclosed hereinabove as monovalent amino acid mimics is that the syntheses of most of the compounds may be conducted directly from amino acid starting materials. This feature allows a wide range of amino acid side chains to be incorporated into the monovalent compounds. Through methods known to those skilled in the art, side chains that are analogs, derivatives, or homologues of naturally-occurring amino acid side chains may be incorporated into the molecules as well. In another aspect, amino acid side chains may be incorporated into the compounds to mimic proteins that are involved in any protein-protein interaction of interest. In a non-limiting example, the amino acid side chains may be those derived from the group including, but not limited to, Trp, Arg, Tyr, Lys, Glu, Ser, Asn and Leu. Another advantage of the monovalent amino acid mimics is that the amino acid side chains may be incorporated at a variety of separations and presentation angles by choice of the core molecule. Further, the organic framework is relatively rigid. These differences in distance and presentation angle may correspond to proximal amino acids in any secondary structural element, such as turns, helices, sheets, and loops, in a protein of interest. In yet another advantage, syntheses of the compounds do not require amino acid protection. Yet another advantage of the compounds, is that they contain a nucleophilic group, which allows the monovalent compounds to be assembled into bivalent compounds, again without the requirement for protecting groups. Said nucleophilic group may or may not influence the pharmacological or biological activity in the monovalent or bivalent compounds. In summary, the compounds present the following advantages: 1) convenient preparation of a plurality of amino acid side chains and derivatives, 2) rigid frameworks to which the amino acid side-chains are bound, 3) variable separation and presentation angles of the amino acid side chains, allowing mimicking of various protein secondary structures, and 4) incorporation of a nucleophilic group which allows assembly of the monovalent compounds into divalent compounds.


Another aspect of the present disclosure is a compound having the structure




embedded image


wherein B1 is a core molecule selected from the group consisting of heteroarylenes, arylenes, and heterocyclenes. P1 and P2 are independently selected and comprise an organic moiety comprising removal of a hydrogen atom from any of the compounds disclosed hereinabove. The compound may be further comprised by a labeling tag T1 which is bound to B1. In embodiments of the disclosure, T1 may be a group such as a fluorescein tag, a biotin tag, a polyether tag, or a 1,2,3-triazole-functionalized polyether tag, in non-limiting examples. The compound may also be further comprised by a third organic moiety comprising removal of a hydrogen atom from the compounds disclosed hereinabove bound to B1, wherein said third organic moiety is selected independently of P1 and P2.


In another general aspect of the disclosure, a compound having the structure




embedded image


is described, wherein P3 and P4 comprise an organic moiety comprising removal of a hydrogen atom from the nitrogen atom of the piperidine or piperazine ring of the compounds disclosed hereinabove. P3 and P4 are independently selected. P5 comprises a moiety selected from the group consisting of an organic moiety comprising removal of a hydrogen atom from the nitrogen atom of the piperidine or piperazine ring of the compounds disclosed hereinabove and a labeling tag T1. P5 is selected independently of P3 and P4. In an embodiment, the compound has the structure




embedded image


wherein P3, P4, and T1 are defined as described hereinabove. In a further embodiment, at least one of P3 and P4 may further comprise a morpholinyl group (structure p below), with the proviso that both P3 and P4 are not a morpholinyl group.




embedded image


In embodiments wherein there is a labeling tag T1, T1 may be a group such as a fluorescein tag, a biotin tag, a polyether tag, or a 1,2,3-triazole-functionalized polyether tag, in non-limiting examples. In certain embodiments, the labeling tag T1 may be selected from the group, including but not limited to the following structures:




embedded image


These labeling tags are representative of the groups that may be useful for tagging the library and should not be considered limiting of the disclosure. For example, fragment 1, may be useful for fluorescence detection assays. Fragment 2 may be useful in strepavidin-based assays. Fragment 3 may be useful for conveying improved water solubility. Fragment 3 also bears functionality beneficial for synthesizing fragment 4, which has a 1,2,3-triazine moiety appended to its polyether chain. Fragment 4 may be useful for impregnation of the compounds comprising fragment 4 into a liposome structure.


Compounds comprising P3, P4, and T1 may comprise a combinatorial library. By way of non-limiting example, an exemplary member of the library of bivalent compounds may be made from a P3 fragment comprising removal of a hydrogen atom from the piperazine ring of b, a P4 fragment comprising removal of a hydrogen atom from the piperazine ring of d, and a labeling tag comprising 1. Such a library member has the structure:




embedded image


The fragments comprising P3 and P4 may be chosen from any compound disclosed hereinabove, with the proviso that both P3 and P4 are not morpholinyl. Further any valid combination of P3 and P4 may be combined with any combination of T1. Members of the library may be expressed in the shorthand form P3P4T1, wherein P3, P4, and T1 describe the individual fragments bound to the central triazine core comprising the library. P3 may be selected from the group including, but not limited to, a, A, b, B, c, C, d, D, e, E, f, F, g, G, h, H, i, I, j, J, k, K, l, L, m, M, n, N, o, O, p, q, Q, r, R, s, S, t, T, u, U, v, V, w, W, x, X, y, Y, z, Z, a′, A′, b′, B′, c′, C′, d′, D′, e′, E′, f′, F′, g′, G′, h′, H′, i′, I′, j′, J′, k′, K′, l′, L′, m′, M′, n′, N′, o′, O′, p′, P′, q′, Q′, r′, R′, s′, S′, t′, T′, u′, U′, v′, V′, w′, W′, x′, X′, y′, Y′, z′, Z′, a″, A″, b″, B″, c″, C″, d″, D″, e″, E″, f″, F″, g″, G″, h″, H″, i″, I″, j″, J″, k″, K″, l″, L″, m″, M″, n″, N″, o″, O″, p″, P″, q″, Q″, r″, R″, s″, S″, t″, T″, u″, U″, v″, V″, w″, W″, x″, X″, y″, Y″, z″, Z″, a′″, A′″, b′″, B′″, c′″, C′″, d′″, D′″, e′″, E′″, f′″, F′″, g′″, G′″, h′″, H′″, i′″, I′″, j′″, J′″, k′″, K′″, l′″, L′″, m′″, M′″, n′″, N′″, o′″, O′″, p′″, P′″, q′″, Q′″, r′″, R′″, s′″, S′″, t′″, T′″, u′″, U′″, v′″, V′″, w′″, W′″, x′″, X′″, y′″, Y′″, z′″, Z′″, a″″, A″″, b″″, B″″, c″″, C″″, d″″, D″″, e″″, and E″″. P4 may be selected from the group including, but not limited to, a, A, b, B, c, C, d, D, e, E, f, F, g, G, h, H, i, I, j, J, k, K, l, L, m, M, n, N, o, O, p, q, Q, r, R, s, S, t, T, u, U, v, V, w, W, x, X, y, Y, z, Z, a′, A′, b′, B′, c′, C′, d′, D′, e′, E′, f′, F′, g′, G′, h′, H′, i′, I′, j′, J′, k′, K′, l′, L′, m′, M′, n′, N′, o′, O′, p′, P′, q′, Q′, r′, R′, s′, S′, t′, T′, u′, U′, v′, V′, w′, W′, x′, X′, y′, Y′, z′, Z′, a″, A″, b″, B″, c″, C″, d″, D″, e″, E″, f″, F″, g″, G″, h″, H″, i″, I″, j″, J″, k″, K″, l″, L″, m″, M″, n″, N″, o″, O″, p″, P″, q″, Q″, r″, R″, s″, S″, t″, T″, u″, U″, v″, V″, w″, W″, x″, X″, y″, Y″, z″, Z″, a′″, A′″, b′″, B′″, c′″, C′″, d′″, D′″, e′″, E′″, f′″, F′″, g′″, G′″, h′″, H′″, i′″, I′″, j′″, J′″, k′″, K′″, l′″, L′″, m′″, M′″, n′″, N′″, o′″, O′″, p′″, P′″, q′″, Q′″, r′″, R′″, s′″, S′″, t′″, T′″, u′″, U′″, v′″, V′″, w′″, W′″, x′″, X′″, y′″, Y′″, z′″, Z′″, a″″, A″″, b″″, B″″, c″″, C″″, d″″, D″″, e″″, and E″″. T1 may be selected from the group including, but not limited to, 1, 2, 3, and 4. All allowable combinations may comprise the library. For the non-limiting example presented hereinabove, the shorthand notation describing the library compound is bd1.


In another general aspect, the present disclosure provides a method of producing a library of compounds comprising: 1) providing




embedded image


wherein T1 comprises a labeling tag; 2) reacting a first equivalent of any of the monovalent compounds described hereinabove or morpholine with the compound of step 1 in the presence of a base and a solvent; 3) removing the solvent; and 4) reacting a second equivalent of any of the monovalent compounds described hereinabove or morpholine with the compound produced in step 2 of the method. Selection of said first equivalent and said second equivalent is conducted with the proviso that said first equivalent and said second equivalent are not both morpholine. In certain embodiments of the method, the base is potassium carbonate. In certain embodiments of the method, T1 is selected from the group including, but not limited to




embedded image




embedded image


The method used to prepare the library of bivalent compounds is advantageous in that it is an entirely solution phase method. An additional advantage of the method is that the intermediate produced in step 2 may generally be used without further purification following removal of the solvent in step 3. Finally, the library may be synthesized from monovalent fragments comprising the monovalent compounds hereinabove, wherein the amino acid side chain moieties of the monovalent compounds do not require protection. It is further notable that the nucleophilic group comprising the monovalent compounds was designed specifically to ensure chemoselective reaction over the protein amino acid side chains. Further, the method utilizes different solvents in steps 2 and 4 to ensure monoaddition to the triazine core during coupling of the first monovalent compound.


Any of the monovalent and bivalent compounds described hereinabove and derivatives thereof may be pharmaceuticals. Any of the monovalent and bivalent compounds described hereinabove may pharmaceutical leads. A derivative or analog of a pharmaceutical lead may be a pharmaceutical. In another embodiment of the disclosure, compounds having a labeling tag may be useful for conducting pharmacological assays. In another embodiment, compounds having a labeling tag may be pharmacological probes. For example, a non-limiting use of the monovalent and divalent compounds may comprise demonstrating protein-protein interactions.


The compounds disclosed hereinabove have been designed to mimic certain proteins implicated in protein-protein interactions of particular interest. For instance, certain monovalent compounds have been designed with side-chains that correspond to amino acid residues at putative ‘hot-spots’ for the neurotrophins (NGF, BDNF, NT-3, NT-4) interacting with their receptors (TrkA, TrkB, TrkC, and p75), for the tumor necrosis factors (TNFα and TNFβ) interacting with their receptors (including p55 and p75), and for the so called “BH3-only proteins” (Bad, Bim, Bid, and Noxa) interacting with other Bc12 proteins (eg Bc12, Mc11, Bc1W, Bc1B, Bax, Bak and Bok). These protein targets are merely exemplary and are not meant to be limiting of the protein targets that may interact with the compounds described in the disclosure.


EXAMPLES

The following experimental examples are included to demonstrate particular aspects of the present disclosure. It should be appreciated by those of skill in the art that the methods described in the examples that follow merely represent exemplary embodiments of the disclosure. Those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments described and still obtain a like or similar result without departing from the spirit and scope of the present disclosure.


Example 1
Synthesis and Characterization of Protected Monovalent Compounds

Monovalent compounds were synthesized with their amino groups protected as t-butoxycarbonyl derivatives. For compounds having carboxylic acid groups, the carboxylic acid was protected as the t-butyl ester derivative. Phenols were either protected as the t-butyl ester derivative or left unprotected. The protecting groups are removed only just prior to coupling with a with a triazine derivative to prepare a library compound. Analyses, including 1H and 13C NMR, MS, and HPLC were conducted on the fully protected monovalent precursor compounds. The following experimental data was obtained:


The following general method may be used to prepare protected monovalent compounds a through o (Scheme 1). Synthesis of protected monovalent compound 1 is demonstrated in Scheme 2 as a representative example.




embedded image




embedded image


Characterization data for protected monovalent compounds a through o follows:




embedded image



1H NMR (300 MHz, CDCl3) δ 5.42 (d, 1H, J=10.5 Hz), 5.28 (s, 1H), 4.56 (s, 2H), 3.67-3.29 (m, 12H), 2.36 (m, 1H), 1.04 (s, 18H), 1.02-0.78 (m, 8H); 13C NMR (75 MHz, CDCl3) δ 166.9, 156.2, 154.6, 145.5, 121.7, 80.8, 79.5, 64.7, 46.3, 44.0 (b), 42.5, 40.5, 38.2, 28.7, 28.5, 28.4, 26.3, 25.0, 24.7, 15.9, 10.6; MS (ESI, m/z) 531 (M+Li)+.




embedded image



1H NMR (300 MHz, CDCl3) δ 7.48 (s, 1H), 5.21 (s, 2H), 4.60 (s, 1H), 3.61-3.52 (m, 8H), 3.12 (m, 2H), 2.75 (t, 2H, J=7.5 Hz), 1.71 (m, 2H), 1.55 (m, 2H), 1.52 (s, 9H), 1.43 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 164.0, 156.2, 154.6, 148.4, 122.7, 80.9, 79.3, 51.2, 45.3, 43.8 (b), 42.4, 40.5, 29.8, 28.7, 28.6, 26.7, 25.5; MS (ESI, m/z) 467 (M+H)+.




embedded image



1H NMR (300 MHz, CDCl3) δ 8.75 (b, 1H), 7.71 (s, 1H), 5.40 (d, 1H, J=10.5 Hz), 3.67-3.04 (m, 8H), 3.02 (t, 2H, J=7.2 Hz), 2.74 (t, 2H, 7.2 Hz), 1.23 (s, 9H), 0.97-0.76 (m, 8H); 13C NMR (75 MHz, CDCl3) δ 176.4, 167.0, 154.8, 147.0, 120.6, 80.9, 63.6, 46.3, 44.0 (b), 42.5, 38.1, 33.6, 28.5, 24.7, 21.1, 15.9, 10.7; MS (ESI, m/z) 422 (M−H)+.




embedded image



1H NMR (300 MHz, CD3OD) δ 7.75 (b, 1H), 5.45 (s, 2H), 3.82 (t, 2H, J=6.3 Hz), 3.60-3.52 (m, 8H), 2.91 (t, 2H, J=6.3 Hz), 1.47 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 164.1, 154.6, 146.2, 123.7, 80.9, 61.7, 51.1, 45.4, 43.8 (b), 42.4, 31.2, 28.6; MS (ESI, m/z) 340 (M+H)+.




embedded image



1H NMR (300 MHz, CD3OD) δ 7.74 (s, 1H), 5.49 (s, 2H), 4.00 (m, 1H), 3.60-3.54 (m, 8H), 2.81 (d, 2H, J=6.3 Hz), 1.47 (s, 9H), 1.20 (d, 3H, J=6.3 Hz); 13C NMR (75 MHz, CDCl3) δ 164.1, 154.6, 145.8, 123.9, 80.9, 67.3, 51.1, 45.4, 44.0 (b), 42.4, 35.2, 28.6, 23.2; MS (ESI, m/z) 360 (M+Li)+.




embedded image



1H NMR (300 MHz, CDCl3) δ 7.74 (s, 1H), 5.28 (d, 1H, 7.5 Hz), 3.89 (s, 2H), 3.72-3.17 (m, 8H), 2.94 (m, 4H), 2.55 (m, 1H), 1.42 (s, 9H), 0.99 (m, 3H), 0.74 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 166.9, 154.6, 146.2, 120.7, 80.8, 65.1, 61.0, 46.3, 44.2 (b), 43.6, 42.5, 32.2, 28.6, 19.7, 18.6; MS (ESI, m/z) 382 (M+H)+.




embedded image



1H NMR (300 MHz, CD3OD) δ 7.98 (s, 1H), 5.74 (d, 1H, J=5.7 Hz), 4.83 (s, 2H), 4.46 (m, 1H), 3.66-3.12 (m, 8H), 3.05 (t, 2H, J=6.6 Hz), 2.73 (m, 2H), 1.67 (m, 2H), 1.54 (m, 2H), 1.48 (s, 9H), 1.44 (s, 9H), 1.13 (d, 3H, J=6.3 Hz); 13C NMR (75 MHz, CD3OD) δ 167.2, 158.3, 156.0, 148.3, 124.0, 81.6, 79.7, 68.3, 66.1, 46.8, 43.5 (b), 43.3, 40.9, 30.3, 28.8, 28.6, 27.6, 25.9, 20.1; MS (ESI, m/z) 511 (M+H)+.




embedded image



1H NMR (300 MHz, CD3OD) δ 7.93 (s, 1H), 5.88 (t, 1H, J=7.2 Hz), 4.05 (m, 1H), 3.71-3.05 (m, 8H), 2.86 (m, 2H), 2.84 (d, 2H, J=6.3 Hz), 2.14 (m, 2H), 1.39 (m, 11H), 1.27 (m, 1H), 1.20 (d, 3H, J=6.3 Hz); 13C NMR (75 MHz, CD3OD) δ 167.5, 157.4, 155.0, 145.2, 122.4, 80.6, 78.7, 66.8, 59.9, 45.6, 43.6 (b), 42.3, 39.6, 35.0, 31.9, 29.2, 27.7, 27.5, 22.7, 21.9; MS (ESI, m/z) 531 (M+Li)+.




embedded image



1H NMR (300 MHz, CD3OD) δ 7.95 (s, 1H), 6.00 (q, 1H, J=6.6 Hz), 3.68-3.34 (m, 10H), 2.83 (t, 2H, J=7.5 Hz), 1.80 (m, 2H), 1.76 (d, 3H, J=6.6 Hz), 1.74 (s, 9H), 1.54 (s, 9H); 13C NMR (75 MHz, CD3OD) δ 168.0, 163.5, 156.5, 155.0, 153.0, 147.2, 121.5, 83.3, 80.6, 79.2, 55.7, 45.4, 44.0 (b), 42.3, 40.0, 28.7, 27.4, 27.1, 22.5, 17.2; MS (ESI, m/z) 609 (M+H)+.




embedded image



1H NMR (300 MHz, CDCl3) δ 11.44 (s, 1H), 8.36 (s, 1H), 7.62 (s, 1H), 5.33 (d, 1H, J=9.9 Hz), 3.61-3.11 (m, 10H), 2.71 (m, 2H), 2.32 (s, 1H), 1.93 (m, 2H), 1.43 (s, 18H), 1.32 (s, 9H), 0.94 (m, 5H), 0.74 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 166.9, 163.7, 156.4, 154.5, 153.4, 147.6, 119.8, 83.2, 80.5, 79.3, 63.4, 46.2, 43.4, 42.4 (b), 38.4, 37.9, 34.0, 28.8, 28.4, 28.2, 24.6, 23.3, 15.9, 10.6; MS (ESI, m/z) 651 (M+H)+.




embedded image



1H NMR (3000 MHz, CD3OD) δ 7.89 (s, 1H), 7.79 (s, 1H), 5.44 (s, 2H), 3.56-3.30 (m, 10H), 2.77 (t, 2H, J=7.5 Hz), 1.94 (m, 2H), 1.52 (s, 9H), 1.46 (s, 18H); 13C NMR (75 MHz, CD3OD) δ 165.3, 163.4, 156.5, 155.0, 153.0, 147.0, 124.2, 83.3, 80.6, 79.2, 50.9, 44.7, 43.4, 42.7 (b), 42.0, 39.8, 28.8, 27.5, 27.1, 22.4; MS (ESI, m/z) 595 (M+H)+.




embedded image



1H NMR (300 MHz, CD3OD) δ 7.91 (s, 1H), 5.87 (t, 1H, J=7.2 Hz), 3.72-3.33 (m, 8H), 3.04 (t, 2H, J=7.5 Hz), 2.74 (t, 2H, J=7.2 Hz), 2.18 (m, 2H), 1.69 (2 Hz); 13C NMR (75 MHz, CD3OD) δ 167.4, 157.3, 154.9, 121.3, 80.5, 78.6, 59.9, 47.1, 45.6, 44.0 (b), 42.3, 39.7, 31.9, 31.6, 29.3, 27.8, 27.6, 25.0, 22.7, 22.1, 13.1; MS (ESI, m/z) 537 (M−H)+.




embedded image



1H NMR (300 MHz, CDCl3) δ 7.62 (b, 1H), 7.27 (s, 1H), 5.81 (q, 1H, J=7.2 Hz), 3.75-3.20 (m, 8H), 3.03 (t, 2H, J=7.2 Hz), 2.75 (t, 2H, J=7.2 Hz), 1.68 (d, 3H, J=7.2 Hz), 1.43 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 176.4, 167.1, 154.9, 146.9, 120.6, 80.9, 55.4, 45.8, 44.0 (b), 42.6, 33.5, 28.6, 21.1, 18.9; MS (ESI, m/z) 380 (M−H)+.




embedded image



1H NMR (300 MHz, CDCl3) δ 7.88 (s, 1H), 6.92 (d, 2H, J=8.4 Hz), 6.72 (d, 2H, J=8.4 Hz), 5.88 (t, 1H, J=7.8 Hz), 3.87 (t, 2H, J=6.0 Hz), 3.52-3.16 (m, 9H), 2.93 (m, 3H), 1.43 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 166.8, 156.6, 154.7, 145.7, 130.6, 125.8, 121.8, 116.1, 81.0, 61.5, 60.6, 46.0, 43.4, 42.7 (b), 42.5, 39.1, 28.6; MS (ESI, m/z) 446 (M+H)+.




embedded image



1H NMR (300 MHz, CD3OD) δ 7.91 (s, 1H), 6.5.4 (s, 1H), 5.87 (t, 1H, J=7.2 Hz), 3.72-3.33 (m, 8H), 3.04 (t, 2H, J=7.5 Hz), 2.74 (t, 2H, J=7.2 Hz), 2.18 (m, 2H), 1.69 (2 Hz); 13C NMR (75 MHz, CD3OD) δ 167.4, 157.3, 154.9, 121.3, 80.5, 78.6, 59.9, 47.1, 45.6, 43.6 (b), 42.3, 39.7, 31.9, 31.6, 29.3, 27.8, 27.6, 25.0, 22.7, 22.1, 13.1; MS (ESI, m/z) 523 (M+H)+.


The following general method may be used to prepare protected monovalent compounds q through e′ (Scheme 3). Synthesis of protected monovalent compound q is demonstrated in Scheme 4 as a representative example.




embedded image




embedded image


Characterization data for protected monovalent compounds q through e′ follows:




embedded image



1H NMR (500 MHz, CD3OD) δ 8.44 (d, J=3.0 Hz, 1H), 8.34 (d, J=11.0 Hz, 1H), 8.21 (d, J=9.5 Hz, 1H), 7.79 (s, 1H), 7.71 (s, 1H), 7.44 (d, J=7.5 Hz, 1H), 7.27 (d, J=8.0 Hz, 1H), 7.04 (t, J=7.5 Hz, 1H), 6.98-6.95 (m, 3H), 6.89 (s, 1H), 6.62 (d, J=8.5 Hz, 2H), 5.80-5.77 (m, 1H), 5.55 (dd, J=9.5, 6.0 Hz, 1H), 3.81-3.67 (m, 15H), 1.45 (s, 9H), 1.42 (s, 9H); 13C NMR (125 MHz, CD3OD) δ 171.7, 170.3, 168.8, 157.7, 156.2, 147.2, 138.1, 137.8, 133.0, 131.2, 128.2, 127.4, 125.0, 124.79, 124.76, 124.5, 123.5, 123.2, 122.6, 120.1, 118.8, 116.3, 112.4, 109.3, 84.5, 81.6, 66.5, 65.2, 53.6, 44.8, 43.2, 38.2, 29.3, 28.6, 28.0; MS (MALDI) calcd for C45H52N9O8 (M+H)+ 846, found 846.




embedded image



1H NMR (500 MHz, CD3OD) δ 8.53 (s, 1H), 8.36 (s, 1H), 8.27 (s, 1H), 7.84 (s, 1H), 7.72 (s, 1H), 7.45 (d, J=8.0 Hz, 1H), 7.27 (d, J=8.5 Hz, 1H), 7.21 (s, 1H), 7.04 (t, J=7.5 Hz, 1H), 6.96 (t, J=7.3 Hz, 1H), 6.90 (s, 1H), 5.80-5.77 (m, 1H), 5.49-5.46 (m, 1H), 3.77-3.38 (m, 16H), 2.98 (t, J=6.5, 2 H), 2.31-2.23 (m, 2H), 1.45 (s, 9H), 1.34 (s, 9H), 1.33-1.14 (m, 4H); 13C NMR (125 MHz, CDCl3) δ 171.6, 170.6, 170.4, 158.4, 156.2, 147.6, 138.1, 137.8, 132.9, 129.4, 128.8, 128.6, 128.1, 125.0, 124.8, 124.5, 123.5, 122.9, 122.6, 120.1, 118.8, 112.4, 109.3, 81.6, 79.8, 67.2, 65.1, 64.2, 53.6, 45.0 (br), 43.2, 40.7, 32.5, 30.1, 29.3, 28.7, 28.6, 24.0; MS (MALDI) calcd for C44H57N10O9 (M+H)+ 869 found 869.




embedded image



1H NMR (500 MHz, CDCl3) δ 8.38 (s, 1H), 8.27 (d, J=5.0 Hz, 1H), 8.10 (s, 1H), 7.93 (s, 1H), 7.89 (s, 1H), 7.77 (s, 1H), 7.51 (d, J=7.5 Hz, 1H), 7.35 (d, J=8.0 Hz, 1H), 7.18 (t, J=7.5 Hz, 1H), 7.12 (t, J=7.5 Hz, 1H), 6.81 (s, 1H), 5.76-5.73 (m, 1H), 5.41 (dd, J=9.5, 6.0 Hz, 1H), 3.79 (s, 3H), 3.75-3.35 (m, 10H), 2.05-2.01 (m, 1H), 1.49 (s, 9H), 1.48 (s, 9H), 1.47-1.37 (m, 2H), 0.99 (d, J=3.3 Hz, 3H), 0.95 (d, J=3.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 169.8, 168.9, 168.8, 168.3, 154.5, 146.5, 146.3, 136.7, 136.0, 131.6, 131.5, 126.7, 124.0, 123.8, 123.2, 122.4, 120.7, 119.8, 119.7, 118.0, 111.5, 108.7, 83.6, 80.3, 63.4, 62.1, 53.2, 47.6, 43.7 (br), 42.1, 41.6, 29.0, 28.3, 27.9, 24.7, 22.6, 21.3; MS (MALDI) calcd for C42H54N9O7 (M+H)+ 796, found 796.




embedded image



1H NMR (300 MHz, CD3OD) δ 8.56 (s, 1H), 8.37 (s, 1H), 8.28 (s, 1H), 7.86 (s, 1H), 7.74 (s, 1H), 7.45 (d, J=7.8 Hz, 1H), 7.28 (d, J=8.4 Hz, 1H), 7.05 (t, J=7.4 Hz, 1H), 6.97 (t, J=7.4 Hz, 1H), 6.90 (s, 1H), 5.80 (dd, J=9.3, 5.4 Hz, 1H), 5.47 (dd, J=9.9, 5.4 Hz, 1H), 3.79 (s, 3H), 3.78-3.40 (m, 10H), 2.61-2.38 (m, 2H), 2.45 (t, J=6.9 Hz, 2H), 1.47 (s, 9H), 1.46 (s, 9H), 1.41 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 171.7, 170.6, 169.2, 167.7, 155.0, 146.5, 146.0, 137.1, 136.7, 131.9, 131.9, 127.0, 123.9, 123.6, 123.4, 123.3, 122.3, 121.9, 121.5, 118.9, 117.6, 111.3, 108.2, 83.5, 80.9, 80.5, 64.0, 62.9, 52.4, 43.7 (br), 42.1, 30.9, 28.2, 27.4, 27.1, 27.0, 26.9; MS (MALDI) calcd for C45H58N9O9 (M+H)+ 868, found 868.




embedded image



1H NMR (500 MHz, CD3OD) δ 9.53 (s, 1H), 8.30 (d, J=4.0 Hz, 1H), 8.19 (d, J=5.0 Hz, 1H), 7.80 (s, 1H), 7.68 (s, 1H), 7.44 (d, J=8.0 Hz, 1H), 7.26 (d, J=8.5 Hz, 1H), 7.02 (t, J=7.5 Hz, 1H), 6.95 (t, J=7.5 Hz, 1H), 6.87 (s, 1H), 5.75 (dd, J=9.5, 5.0 Hz, 1H), 5.66 (dd, J=6.0, 3.5 Hz, 1H), 4.36 (dd, J=12.0, 5.5 Hz, 1H), 4.14 (dd, J=12.5, 3.5 Hz, 1H), 3.77 (s, 3 H), 3.75 (s, 3H), 3.74-3.38 (m, 10H), 1.44 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 171.6, 170.4, 169.1, 156.2, 147.2, 147.1, 138.1, 137.8, 133.0, 132.9, 128.2, 125.0, 124.9, 124.5, 123.7, 123.4, 122.6, 120.1, 118.8, 112.5, 109.4, 81.6, 66.3, 65.1, 62.8, 53.62, 53.61, 42.4 (br), 43.2, 29.3, 28.6; MS (MALDI) calcd for C36H42N9O8 (M+H)+ 728, found 728.




embedded image



1H NMR (500 MHz, CD3OD) δ 8.64 (t, J=1.5 Hz, 1H), 8.51 (s, 1H), 8.38 (t, J=1.5 Hz, 1H), 7.88 (s, 1H), 7.83 (t, J=1.5 Hz, 1H), 6.96 (d, J=8.5 Hz, 2H), 6.63 (d, J=8.5 Hz, 2 H), 5.57 (dd, J=10.0, 6.0 Hz, 1H), 5.44 (dd, J=11.0, 5.5 Hz, 1H), 3.77-3.38 (m, 10H), 2.28-2.22 (m, 1H), 2.10-2.04 (m, 1H), 1.47 (s, 9H), 1.46 (s, 9H), 1.43 (s, 9H), 1.42-1.39 (m, 1H), 0.98 (d, J=6.5 Hz, 3H), 0.94 (d, J=5.0 Hz, 3H); 13C NMR (125 MHz, CD3OD δ 171.7, 169.6, 168.8, 157.7, 156.2, 147.5, 147.2, 138.3, 133.2, 131.2, 127.4, 125.0, 124.5, 123.2, 122.8, 116.4, 84.5, 84.4, 81.7, 66.6, 63.5, 44.0 (br), 43.3, 41.6, 38.3, 28.6, 28.11, 28.09, 26.1, 23.0, 21.5; MS (MALDI) calcd for C43H58N8O8Na (M+Na)+ 837, found 837.




embedded image



1H NMR (500 MHz, CDCl3) δ 8.33 (s, 1H), 8.13 (s, 1H), 8.08 (s, 1H), 7.90 (s, 1H), 7.84 (s, 1H), 7.12 (d, J=8.0 Hz, 2H), 7.06 (d, J=8.0 Hz, 2H), 5.50 (t, J=7.3 Hz, 1H), 5.40 (dd, J=9.0, 5.0 Hz, 1H), 4.60 (s, 1H, N—H), 3.78 (s, 6H), 3.75-3.38 (m, 10H), 3.07 (br, 2H), 2.25-2.13 (m, 2H), 1.53-1.23 (m, 40H); 13C NMR (125 MHz, CDCl3) δ 169.7, 169.1, 167.0, 155.9, 154.4, 151.5, 150.3, 146.8, 146.3, 136.7, 132.2, 131.5, 131.4, 129.9, 124.0, 123.8, 123.7, 121.5, 120.2, 119.8, 84.0, 83.5, 80.2, 64.6, 62.7, 53.1, 47.6, 43.5 (br), 42.1, 39.8, 38.3, 32.4, 29.2, 28.28, 28.26, 27.7, 27.6, 22.8; MS (MALDI) calcd for C50H68N9O12 (M+H)+ 988, found 988.




embedded image



1H NMR (500 MHz, CD3OD) δ 8.60 (s, 1H), 8.50 (s, 1H), 8.37 (s, 1H), 7.88 (s, 1H), 7.83 (s, 1H), 6.97 (d, J=8.0 Hz, 2H), 6.63 (d, J=8.0 Hz, 2H), 5.57 (dd, J=10.0, 6.5 Hz, 1H), 5.48 (dd, J=9.5, 5.5 Hz, 1H), 3.77-3.39 (m, 10H), 2.60-2.56 (m, 1H), 2.49-2.42 (m, 1H), 2.26 (m, 2H), 1.47 (s, 9H), 1.46 (s, 9H), 1.43 (s, 9H), 1.42 (s, 9H); 13C NMR (125 MHz, CD3OD) δ 172.9, 171.8, 168.9, 168.8, 157.7, 156.2, 147.6, 147.2, 138.3, 133.2, 133.1, 131.2, 127.4, 125.0, 124.6, 124.5, 123.3, 123.1, 116.4, 84.7, 84.5, 82.1, 81.7, 66.6, 64.1, 44.4 (br), 43.3, 38.3, 32.1, 28.6, 28.32, 28.25, 28.12, 28.10; MS (MALDI) calcd for C46H63N8O10 (M+H)+ 887, found 887.




embedded image



1H NMR (500 MHz, CD3OD) δ 8.64 (s, 1H), 8.52 (s, 1H), 8.39 (s, 1H), 7.89 (s, 1H), 7.84 (s, 1H), 6.97 (d, J=8.0 Hz, 2H), 6.63 (d, J=8.5 Hz, 2H), 5.71 (dd, J=6.5, 4.0 Hz, 1H), 5.57 (dd, J=9.5, 6.0 Hz, 1H), 4.38 (dd, J=12.0, 6.5 Hz, 1H), 4.16 (dd, J=12.0, 3.0 Hz, 1H), 3.82 (s, 3H), 3.79-3.39 (m, 10H), 1.46 (s, 9H), 1.44 (s, 9H); 13C NMR (125 MHz, CD3OD) δ 171.8, 169.1, 168.8, 157.7, 156.2, 147.3, 147.2, 138.3, 133.2, 133.1, 131.2, 127.4, 125.0, 124.55, 124.49, 123.8, 123.3, 116.3, 84.6, 81.6, 66.6, 66.4, 62.8, 53.6, 44.5 (br), 43.3, 38.3, 28.6, 28.1; MS (MALDI) calcd for C37H47N8O9 (M+H)+ 747, found 747.




embedded image



1H NMR (500 MHz, CDCl3) δ 8.39 (s, 1H), 8.14 (s, 2H), 7.91 (s, 2H), 5.44-5.40 (m, 2 H), 4.56 (br, 1H, N—H), 3.80 (s, 3H), 3.78-3.40 (m, 8H), 3.08 (br, 2H), 2.34-2.26 (m, 1H), 2.21-2.17 (m, 1H), 2.08-1.98 (m, 2H), 1.54-1.24 (m, 32H), 0.98 (d, J=6.5 Hz, 3H), 0.94 (d, J=6.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 169.8, 169.1, 168.3, 155.9, 154.5, 146.9, 146.7, 136.8, 131.7, 131.5, 124.0, 123.9, 123.8, 119.8, 119.6, 83.5, 80.3, 79.2, 62.8, 62.0, 53.1, 47.7, 43.6 (br), 42.1, 41.7, 39.9, 32.5, 29.3, 28.3, 27.9, 24.7, 22.8, 22.6, 21.3; MS (MALDI) calcd for C42H64N9O9 (M+H)+ 838, found 838.




embedded image



1H NMR (500 MHz, CD3OD) δ 8.61 (s, 1H), 8.60 (s, 1H), 8.34 (s, 1H), 7.85 (s, 2H), 5.72-5.70 (m, 1H), 5.44 (dd, J=9.0, 5.5 Hz, 1H), 4.38 (dd, J=12.0, 6.0 Hz, 1H), 4.17 (d, J=9.5 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.77-3.42 (m, 8H), 3.00 (t, J=6.5 Hz, 2H), 2.37-2.25 (m, 2H), 1.58-1.19 (m, 22H); 13C NMR (125 MHz, CDCl3) δ 171.6, 170.7, 169.1, 158.4, 156.2, 147.6, 147.3, 138.2, 133.1, 132.9, 125.0, 124.5, 124.4, 123.7, 122.9, 81.6, 79.8, 66.3, 64.2, 62.8, 53.6, 44.4 (br), 43.3, 40.8, 32.5, 30.2, 28.8, 28.7, 28.6, 24.1; MS (MALDI) calcd for C36H52N9O10 (M+H)+ 770, found 770.




embedded image



1H NMR (500 MHz, CDCl3) δ 8.39 (s, 1H), 8.24 (s, 1H), 8.14 (s, 1H), 7.92 (s, 2H), 5.42 (dd, J=10.0, 5.0 Hz, 1H), 5.18 (d, J=8.5 Hz, 1H), 4.54 (br, 1H, N-—H), 3.81 (s, 3H), 3.80-3.42 (m, 8H), 3.10-3.07 (m, 2H), 2.31-2.04 (m, 3H), 1.63-1.26 (m, 33H), 1.05 (d, J=6.5 Hz, 3H), 0.91 (t, J=7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 169.8, 169.1, 167.8, 155.9, 154.5, 146.9, 146.5, 136.8, 131.8, 131.5, 124.0, 123.9, 123.8, 119.9, 119.7, 83.6, 80.3, 68.4, 62.8, 53.1, 47.6, 43.4 (br), 42.1, 39.9, 38.8, 32.5, 29.3, 28.3, 27.9, 25.1, 22.8, 15.5, 10.8; MS (MALDI) calcd for C42H64N9O9 (M+H)+ 838, found 838.




embedded image



1H NMR (500 MHz, CD3OD) δ 8.86 (s, 1H), 8.64 (s, 1H), 8.42 (s, 1H), 7.89 (s, 2H), 5.71 (dd, J=6.0, 3.5 Hz, 1H), 5.45 (dd, J=10.5, 5.0 Hz, 1H), 4.38 (dd, J=12.0, 6.0 Hz, 1H), 4.16 (dd, J=12.0, 3.0 Hz, 1H), 3.82 (s, 3H), 3.81-3.45 (m, 8H), 2.29-2.22 (m, 1H), 2.10-2.04 (m, 1H), 1.47 (s, 9H), 1.46 (s, 9H), 1.46-1.34 (m, 1H), 0.98 (d, J=6.5 Hz, 3H), 0.95 (d, J=6.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 171.7, 169.6, 169.0, 156.2, 147.5, 147.2, 138.2, 133.1, 133.0, 125.0, 124.5, 124.4, 123.8, 122.9, 84.4, 81.6, 66.3, 63.5, 62.8, 53.6, 44.5 (br), 43.2, 41.5, 28.6, 28.1, 26.0, 23.0, 21.5; MS (ESI) calcd for C34H49N8O8 (M+H)+ 697, found 697.




embedded image



1H NMR (500 MHz, CD3OD) δ 8.66 (s, 1H), 8.62 (s, 1H), 8.44 (s, 1H), 7.90 (s, 2H), 5.50-5.44 (m, 2H), 3.82-3.45 (m, 8H), 2.60-2.55 (m, 1H), 2.48-2.44 (m, 1H), 2.27-2.22 (m, 3 H), 2.10-2.04 (m, 1H), 1.48 (s, 9H), 1.47 (s, 9H), 1.46 (s, 9H), 1.42 (s, 9H), 1.41-1.34 (m, 1 H), 0.98 (d, J=6.5 Hz, 3H), 0.95 (d, J=7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 172.9, 171.8, 169.6, 168.9, 156.2, 147.7, 147.6, 138.4, 133.2, 133.1, 125.0, 124.6, 123.1, 122.9, 84.7, 84.5, 82.1, 81.7, 64.1, 63.5, 44.8 (br), 43.3, 41.6, 32.1, 28.6, 28.32, 28.27, 28.12, 28.11, 26.1, 23.0, 21.5; MS (MALDI) calcd for C37H53N8O10 (M+H)+ 769, found 769.




embedded image



1H NMR (500 MHz, CD3OD) δ 8.62 (s, 1H), 8.60 (s, 1H), 8.38 (s, 1H), 7.87 (s, 2H), 5.70 (dd, J=6.0, 3.5 Hz, 1H), 5.48 (dd, J=10.0, 5.5 Hz, 1H), 4.49 (dd, J=12.0, 6.0 Hz, 1H), 4.17 (dd, J=11.5, 3.0 Hz, 1H), 3.82 (s, 3H), 3.81-3.45 (m, 8H), 2.60-2.55 (m, 1H), 2.50-2.43 (m, 1H), 2.27 (t, J=7.3 Hz, 2H), 1.47 (s, 9H), 1.45 (s, 9H), 1.42 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 172.8, 171.7, 169.1, 168.9, 156.2, 147.7, 147.4, 138.3, 133.2, 133.0, 125.0, 124.6, 124.5, 123.8, 123.1, 84.7, 82.1, 81.6, 66.3, 64.1, 62.9, 53.6, 44.5 (br), 43.3, 32.2, 28.6, 28.3, 28.2, 28.1; MS (ESI) calcd for C43H65N8O9 (M+H)+ 837, found 837.


The following general methods may be used to prepare protected monovalent compounds f′ through m′ (Schemes 5 and 6). Synthesis of a protected monovalent compound from this group is demonstrated in Scheme 7 as a representative example.




embedded image




embedded image




embedded image


Characterization data for protected monovalent compounds f′ through m′ follows:




embedded image



1H NMR (500 MHz, CDCl3) δ 4.93 (br, 1H), 4.85 (d, 1H, J=16.1 Hz), 4.42-4.32 (m, 2H), 3.77 (d, 1H, J=1.7 Hz), 3.66 (d, 1H, J=16.1 Hz), 3.62-3.32 (m, 8H), 3.06 (s, 3H), 1.43 (s, 9H), 1.27 (d, 3H, J=6.5 Hz). 13C NMR (125 MHz, CDCl3) δ 168.0, 165.4, 164.7, 154.2, 80.5, 71.2, 68.7, 52.0, 47.8, 44.4, 42.0, 36.1, 28.2, 19.7. Desired MS 399.22 (M+H). MS Found (ESI, m/z) 399.22 (M+H)




embedded image



1H NMR (500 MHz, CDCl3) δ 5.26 (t, 1H, J=7.6 Hz), 4.69 (br, 1H), 4.03 (d, 1H, J=17.4 Hz), 3.96-3.81 (m, 3H), 3.58-3.30 (m, 6H), 3.27-3.18 (m, 2H), 3.03-2.93 (m, 2H), 2.87 (s, 3H), 1.80-1.58 (m, 2H), 1.45-1.37 (m, 2H), 1.35 (s, 9H), 1.31 (s, 9H), 1.20-1.12 (m, 2H). Desired MS 548.32 (M+Na). MS Found (ESI, m/z) 548.30 (M+Na)




embedded image



1H NMR (500 MHz, CDCl3) δ 5.26 (t, 1H, J=7.6 Hz), 4.60 (br, 1H), 4.11 (br, 1H), 3.83 (d, 1H, J=17.6 Hz), 3.74 (d, 1H, J=4.3 Hz), 3.60-3.31 (m, 6H), 3.27-3.11 (m, 2H), 3.04-2.97 (m, 2H), 2.88 (s, 3H), 1.88-1.78 (m, 2H), 1.59-1.47 (m, 2H), 1.47-1.39 (m, 2H), 1.35 (s, 9H), 1.33 (s, 9H), 1.31-1.24 (m, 1H), 1.24-1.14 (m, 2H), 0.89 (t, 3H, J=7.3 Hz), 0.83 (d, 3H, J=6.8 Hz). 13C NMR (125 MHz, CDCl3) δ 167.8, 162.9, 164.0, 155.8, 154.2, 80.1, 78.9, 66.6, 51.1, 45.6, 45.2, 41.9, 39.8, 38.6, 33.3, 29.5, 28.3, 28.2, 28.1, 26.2, 23.2, 14.5, 11.7. Desired MS 582.38 (M+H). MS Found (ESI, m/z) 582.39 (M+H).




embedded image



1H NMR (500 MHz, CDCl3) δ 5.22 (t, 1H, J=7.6 Hz), 4.69 (br, 1H), 4.10 (br, 1H), 3.88-3.78 (m, 2H), 3.60-3.09 (m, 8H), 3.05-2.96 (m, 2H), 2.89 (s, 3H), 2.30-2.17 (m, 2H), 2.13-2.04 (m, 1H), 1.95-1.85 (m, 1H), 1.85-1.76 (m, 1H), 1.67-1.57 (m, 1H), 1.49-1.28 (m, 29H), 1.23-1.12 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 171.1, 167.6, 165.6, 163.5, 155.8, 154.2, 81.0, 80.1, 78.8, 61.6, 51.2, 45.2, 45.0, 41.9, 39.8, 32.2, 30.3, 29.5, 28.2, 28.1, 28.0, 27.9, 26.3, 23.0. Desired MS 676.40 (M+H). MS Found (ESI, m/z) 676.40 (M+H)




embedded image



1H NMR (500 MHz, CDCl3) δ 6.76 (t, 1H, J=5.6 Hz), 4.83 (d, 1H, J=4.8 Hz), 4.67 (d, 1H, J=16.3 Hz), 4.40-4.33 (m, 2H), 3.77 (d, 1H, J=1.9 Hz), 3.68 (d, 1H, J=16.3 Hz), 3.55-3.49 (m, 2H), 3.42-3.32 (m, 6H), 3.17 (q, 2H, J=6.7 Hz), 3.04 (s, 3H), 2.31-2.15 (m, 4H), 1.59-1.51 (m, 2H), 1.42 (s, 9H), 1.32-1.17 (m, 15H). 13C NMR (125 MHz, CDCl3) δ 171.9, 167.4, 167.0, 164.9, 154.5, 80.3, 71.6, 68.6, 51.9, 49.4, 45.3, 41.2, 39.7, 36.2, 33.2, 29.1, 29.1, 29.0, 29.0, 28.3, 26.6, 25.1, 20.1. Desired MS 582.38 (M+H). MS Found (ESI, m/z) 582.38 (M+H).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.22 (t, 1H, J=5.6 Hz), 4.82-4.74 (m, 1H), 4.71 (t, 1H, J=7.8 Hz), 4.07 (d, 1H, J=17.3 Hz), 3.87-3.79 (m, 2H), 3.50-3.44 (m, 2H), 3.35-3.25 (m, 6H), 3.15-2.94 (m, 4H), 2.87 (s, 3H), 2.28-2.04 (m, 5H), 1.96-1.81 (m, 2H), 1.63-1.38 (m, 5H), 1.35 (s, 9H), 1.33 (s, 9H), 1.31 (s, 9H), 1.24-1.09 (m, 16H). 13C NMR (125 MHz, CDCl3) δ 171.6, 171.1, 168.6, 166.0, 163.2, 155.8, 154.3, 80.9, 80.0, 78.7, 61.6, 55.6, 45.5, 45.2, 41.0, 39.8, 39.3, 38.4, 33.1, 32.1, 30.2, 29.3, 29.2, 29.1, 29.1, 28.9, 28.2, 28.1, 27.8, 26.9, 26.5, 26.5, 25.0, 23.0. Desired MS 837.56 (M+H). MS Found (ESI, m/z) 837.57 (M+H).




embedded image



13C NMR (125 MHz, CDCl3) δ 171.7, 168.8, 164.4, 163.4, 155.9, 154.4, 80.1, 79.1, 78.9, 55.4, 51.6, 45.6, 45.2, 41.1, 39.3, 33.2, 33.0, 29.3, 29.2, 29.2, 29.2, 29.2, 29.0, 28.3, 28.2, 28.2, 26.7, 26.6, 25.1, 22.8. Desired MS 709.48 (M+H). MS Found (ESI, m/z) 709.47 (M+H).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.30 (t, 1H, J=5.0 Hz), 4.75-4.69 (m, 2H), 4.07 (d, 1H, J=17.5 Hz), 3.83 (d, 1H, J=17.5 Hz), 3.76 (d, 1H, J=4.1 Hz), 3.50-3.44 (m, 2H), 3.35-3.25 (m, 6H), 3.15-2.94 (m, 4H), 2.86 (s, 3H), 2.21 (t, 2H, J=7.5 Hz), 1.88-1.76 (m, 2H), 1.57-1.38 (m, 6H), 1.35 (s, 9H), 1.31 (s, 9H), 1.29-1.09 (m, 17H), 0.88 (t, 3H, J=7.2 Hz), 0.80 (d, 3H, J=6.8 Hz). 13C NMR (125 MHz, CDCl3) δ 171.6, 168.8, 165.2, 163.7, 155.8, 154.3, 80.0, 78.8, 66.4, 55.6, 46.0, 45.1, 41.0, 39.8, 39.2, 38.4, 33.1, 33.1, 29.3, 29.2, 29.1, 29.1, 28.9, 28.2, 28.1, 26.9, 26.5, 26.1, 25.0, 23.1, 14.3, 11.7. Desired MS 765.54 (M+H). MS Found (ESI, m/z) 765.54 (M+H).


The following general method may be used to prepare protected monovalent compounds n′ through g″ (Schemes 8 and 9). Synthesis of protected monovalent compound v′ is demonstrated in Scheme 10 as a representative example.




embedded image




embedded image




embedded image


Characterization data for protected monovalent compounds n′ through g″ follows:




embedded image



1H NMR (500 MHz, CDCl3) δ 6.59 (d, 1H, J=8.2 Hz), 5.42-5.36 (m, 1H), 5.22 (d, 1H, J=8.5 Hz), 4.98-4.89 (m, 1H), 4.65 (br, 1H), 4.10 (br, 2H), 3.78 (dd, 1H, J=3.2, 9.4 Hz), 3.15-2.94 (dd, 1H, J=3.9, 9.4 Hz), 3.12-2.99 (m, 2H), 2.81-2.65 (br, 2H), 2.39-2.30 (m, 1H), 1.94-1.75 (m, 4H), 1.70-1.57 (m, 2H), 1.51-1.31 (m, 31H), 1.06 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.2, 167.1, 165.4, 156.1, 155.0, 154.6, 80.3, 80.0, 79.6, 79.1, 73.8, 62.1, 46.9, 46.5, 42.9, 39.9, 33.2, 29.4, 28.4, 28.4, 28.3, 28.2, 27.2, 22.3. Desired MS 719.44 (M+Na). MS Found (ESI, m/z) 719.42 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.77 (br, 1H), 5.32-5.23 (m, 2H), 4.98-4.89 (m, 1H), 4.70 (br, 1H), 4.09 (br, 2H), 3.12-3.01 (m, 2H), 2.72 (br, 2H), 2.41-2.17 (m, 4H), 2.12-2.02 (m, 1H), 1.96-1.74 (m, 4H), 1.69-1.55 (m, 2H), 1.52-1.32 (m, 40H). 13C NMR (125 MHz, CDCl3) δ 174.4, 172.2, 167.3, 166.4, 156.1, 155.1, 154.6, 81.2, 80.4, 79.6, 79.1, 47.1, 45.3, 42.9, 39.9, 33.2, 31.2, 29.4, 28.5, 28.4, 28.4, 28.3, 28.3, 28.0, 22.3. Desired MS 761.45 (M+Na). MS Found (MALDI, m/z) 761.06 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.95 (br, 1H), 5.66-5.58 (m, 1H), 5.24-5.13 (m, 1H), 5.03-4.93 (m, 1H), 4.73-4.63 (m, 1H), 4.25-4.05 (br, 2H), 3.16-3.06 (m, 2H), 3.06-2.97 (m, 1H), 2.88 (ddd, 1H, J=2.3, 5.2, 16.5 Hz), 2.78 (br, 2H), 2.35 (tt, 1H, J=3.7, 11.5 Hz), 2.00-1.79 (m, 4H), 1.73-1.62 (m, 2H), 1.57-1.36 (m, 40H). 13C NMR (125 MHz, CDCl3) δ 174.0, 169.6, 167.4, 165.6, 156.1, 155.0, 154.6, 82.3, 80.4, 79.6, 79.2, 47.0, 43.0, 42.2, 40.0, 37.6, 33.4, 33.2, 29.4, 28.4, 28.3, 28.3, 28.0, 22.3, 22.2. Desired MS 747.44 (M+Na). MS Found (MALDI, m/z) 747.16 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.92 (d, 2H, J=8.5 Hz), 6.85 (d, 2H, J=8.5 Hz), 6.34 (d, 1H, J=8.2 Hz), 5.58-5.51 (m, 1H), 5.22 (d, 1H, J=8.5 Hz), 4.96-4.86 (m, 1H), 4.69 (br, 1H), 4.05 (br, 2H), 3.21 (dd, 1H, J=6.2, 14.0 Hz), 3.15-3.01 (m, 3H), 2.74-2.60 (br, 2H), 2.21 (tt, 1H, J=3.7, 11.5 Hz), 1.91-1.60 (m, 4H), 1.60-1.30 (m, 33H), 1.28 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.0, 171.2, 167.3, 166.2, 156.1, 155.1, 154.6, 129.8, 129.7, 124.3, 80.4, 79.2, 78.6, 47.0, 45.5, 42.9, 39.9, 38.7, 33.1, 29.4, 28.8, 28.6, 28.4, 28.4, 28.3, 28.1, 22.3. Desired MS 795.47 (M+Na). MS Found (MALDI, m/z) 795.17 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.53 (d, 1H, J=8.6 Hz), 5.44 (dt, 1H, J=3.5, 8.6 Hz), 5.18 (d, 1H, J=9.2 Hz), 4.98-4.90 (m, 1H), 4.14 (br, 2H), 3.81 (dd, 1H, J=2.6, 9.2 Hz), 3.66 (dd, 1H, J=3.7, 9.2 Hz), 2.78 (br, 2H), 2.37 (tt, 1H, J=3.7, 11.5 Hz), 1.97-1.61 (m, 5H), 1.51-1.38 (m, 19H), 1.24-1.13 (m, 1H), 1.10 (s, 9H), 0.95-0.87 (m, 6H). 13C NMR (125 MHz, CDCl3) δ 174.1, 166.5, 165.2, 155.1, 154.6, 80.3, 79.6, 73.8, 62.3, 51.6, 46.5, 43.0, 38.9, 28.5, 28.4, 28.3, 28.2, 27.2, 25.0, 15.1, 11.3. Desired MS 582.38 (M+H). MS Found (MALDI, m/z) 583.08 (M+H).




embedded image



1H NMR (300 MHz, CDCl3) δ 6.80 (d, 1H, J=7.8 Hz), 5.44 (br, 1H), 5.35-5.21 (m, 1H), 4.71 (br, 1H), 4.49 (d, 2H, J=5.9 Hz), 4.07 (br, 2H), 3.14-2.96 (m, 2H), 2.80-2.60 (m, 2H), 2.40-2.24 (m, 1H), 2.01-1.56 (m, 6H), 1.54-1.25 (m, 31H). 13C NMR (75 MHz, CDCl3) δ 174.5, 167.2, 164.5, 156.2, 155.5, 154.6, 80.5, 79.6, 79.2, 77.2, 45.2, 42.9, 39.8, 35.8, 33.0, 29.3, 28.5, 28.4, 28.4, 28.2, 22.2. Desired MS 633.37 (M+H). MS Found (ESI, m/z) 633.19 (M+H).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.91-6.82 (m, 1H), 5.58 (dt, 1H, J=4.9, 8.8 Hz), 5.43 (d, 1H, J=8.8 Hz), 5.06 (br, 1H), 4.10 (br, 2H), 3.80-3.71 (m, 1H), 3.65 (dd, 1H, J=4.1, 9.2 Hz), 2.97 (dt, 1H, J=4.5, 16.5 Hz), 2.82 (ddd, 1H, J=2.6, 5.2, 16.5 Hz), 2.73 (br, 2H), 2.33-2.25 (m, 1H), 1.87-1.76 (m, 2H), 1.68-1.57 (m, 2H), 1.42 (br, 18H), 1.39 (s, 9H), 1.08 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 173.8, 169.6, 166.3, 165.5, 155.1, 154.6, 82.2, 80.4, 79.6, 73.8, 62.3, 48.2, 43.0, 42.2, 37.6, 28.4, 28.4, 28.3, 28.2, 27.9, 27.2. Desired MS 662.38 (M+Na). MS Found (MALDI, m/z) 661.93 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.92-6.81 (m, 4H), 6.15 (d, 1H, J=8.4 Hz), 5.59-5.53 (m, 1H), 5.43 (d, 1H, J=8.4 Hz), 5.11-5.02 (m, 1H), 4.04 (br, 2H), 3.80-3.72 (m, 1H), 3.23 (dd, 1H, J=6.0, 14.1 Hz), 3.09 (dd, 1H, J=6.5, 14.1 Hz), 2.67 (dd, 1H, J=4.1, 9.3 Hz), 2.19 (tt, 1H, J=3.7, 11.5 Hz), 1.75-1.47 (m, 4H), 1.43 (s, 9H), 1.42 (s, 9H), 1.28 (s, 9H), 1.10 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 173.8, 166.3, 165.9, 155.1, 154.6, 154.5, 129.8, 129.6, 124.2, 80.5, 79.6, 78.5, 73.9, 62.4, 48.2, 46.4, 42.9, 38.5, 28.8, 28.6, 28.4, 28.3, 28.1, 27.2. Desired MS 710.42 (M+Na). MS Found (MALDI, m/z) 710.03 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.62 (d, 1H, J=8.0 Hz), 5.46 (d, 1H, J=8.5 Hz), 5.35-5.26 (m, 1H), 5.06 (br, 1H), 4.09 (br, 2H), 3.78-3.70 (br, 1H), 3.65 (dd, 1H, J=4.0, 9.2 Hz), 2.71 (br, 2H), 2.38-2.15 (m, 4H), 2.11-2.01 (m, 1H), 1.83-1.74 (m, 2H), 1.68-1.54 (m, 2H), 1.49-1.31 (m, 27H), 1.07 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.5, 172.3, 166.5, 155.4, 154.9, 81.4, 80.7, 79.8, 74.1, 62.8, 48.5, 45.4, 43.2, 31.4, 28.7, 28.7, 28.6, 28.5, 28.3, 27.5. Desired MS 676.40 (M+Na). MS Found (MALDI, m/z) 676.06 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 7.20 (d, 1H, J=7.6 Hz), 5.59 (d, 1H, J=8.5 Hz), 5.32-5.19 (m, 1H), 4.99 (br, 1H), 4.84 (br, 1H), 4.01 (br, 2H), 3.73-3.55 (m, 2H), 3.05-2.87 (m, 2H), 2.62 (br, 2H), 2.33-2.21 (m, 1H), 1.90-1.50 (m, 6H), 1.49-1.23 (m, 31H), 1.01 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.5, 166.9, 166.0, 156.0, 155.1, 154.4, 80.2, 79.3, 78.8, 73.7, 62.3, 48.1, 44.9, 42.6, 39.8, 33.0, 29.1, 28.5, 28.3, 28.2, 28.1, 28.0, 27.1, 22.1. Desired MS 697.44 (M+H). MS Found (MALDI, m/z) 697.13 (M+H).




embedded image



1H NMR (300 MHz, CDCl3) δ 6.99-6.72 (m, 4H), 5.59-5.50 (m, 2H), 5.28-4.96 (m, 2H), 4.11 (br, 2H), 3.23-2.90 (m, 3H), 2.87-2.88 (m, 3H), 2.35-2.21 (m, 1H), 1.86-1.52 (m, 4H), 1.48-1.32 (m, 27H), 1.29 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 174.0, 169.8, 169.7, 166.9, 166.8, 165.7, 154.6, 129.9, 129.8, 124.2, 82.3, 80.4, 79.6, 78.5, 48.4, 43.0, 42.2, 39.3, 37.6, 28.8, 28.4, 28.4, 28.3, 28.2, 28.0. Desired MS 738.42 (M+Na). MS Found (MALDI, m/z) 738.05 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.97 (d, 2H, J=8.3 Hz), 6.86 (d, 2H, J=8.3 Hz), 6.54-6.41 (br, 1H), 5.30-5.13 (m, 3H), 4.73 (t, 1H, J=5.7 Hz), 4.10 (br, 2H), 3.20-2.98 (m, 4H), 2.71 (br, 2H), 2.34-2.24 (m, 1H), 1.92-1.69 (m, 4H), 1.51-1.20 (m, 40H). 13C NMR (125 MHz, CDCl3) δ 174.4, 166.8, 156.2, 154.8, 154.6, 154.5, 130.1, 129.7, 124.3, 80.4, 79.6, 79.1, 78.5, 48.4, 45.2, 42.9, 39.9, 39.2, 33.1, 29.3, 28.8, 28.6, 28.4, 28.4, 28.3, 28.2, 22.2. Desired MS 795.47 (M+Na). MS Found (MALDI, m/z) 795.18 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.99 (d, 2H, J=8.3 Hz), 6.89 (d, 2H, J=8.3 Hz), 6.52 (d, 1H, J=7.6 Hz), 5.32-5.18 (m, 2H), 5.11 (d, 1H, J=8.4 Hz), 4.13 (br, 2H), 3.19 (dd, 1H, J=6.5, 14.0 Hz), 3.13 (dd, 1H, J=6.6, 14.0 Hz), 2.77 (br, 2H), 2.43-2.16 (m, 4H), 2.14-2.04 (m, 1H), 1.90-1.56 (m, 4H), 1.50-1.34 (m, 27H), 1.32 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.3, 172.2, 166.7, 166.3, 154.7, 154.6, 154.6, 130.0, 129.8, 124.3, 81.3, 80.4, 79.6, 78.5, 48.4, 45.3, 43.0, 39.2, 34.6, 31.2, 28.8, 28.5, 28.4, 28.3, 28.2, 28.0. Desired MS 752.43 (M+Na). MS Found (MALDI, m/z) 752.11 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.96 (d, 2H, J=8.4 Hz), 6.87 (d, 2H, J=8.4 Hz), 6.35 (d, 1H, J=8.3 Hz), 5.38 (dt, 1H, J=3.5, 8.4 Hz), 5.25-5.15 (m, 1H), 5.04 (d, 1H, J=8.3 Hz), 4.12 (br, 2H), 3.79 (dd, 1H, J=2.7, 9.2 Hz), 3.63 (dd, 1H, J=3.6, 9.2 Hz), 3.21-3.04 (m, 2H), 2.76 (t, 2H, J=12.2 Hz), 2.32 (tt, 1H, J=3.7, 11.5 Hz), 1.86-1.76 (m, 2H), 1.71-1.54 (m, 2H), 1.44 (s, 9H), 1.38 (s, 9H), 1.29 (s, 9H), 1.09 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.2, 166.6, 165.4, 154.7, 154.6, 154.5, 130.0, 129.8, 124.2, 80.4, 79.6, 78.5, 73.9, 62.1, 48.3, 46.5, 43.0, 39.2, 28.8, 28.5, 28.4, 28.3, 28.2, 27.3. Desired MS 710.42 (M+Na). MS Found (MALDI, m/z) 710.07 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.61 (t, 1H, J=5.4 Hz), 5.48 (d, 1H, J=8.6 Hz), 5.07-4.99 (m, 1H), 4.62 (d, 2H, J=5.4 Hz), 3.76 (dd, 1H, J=3.2, 9.3 Hz), 3.66 (dd, 1H, J=4.0, 9.3 Hz), 2.71 (br, 2H), 2.32 (tt, 1H, J=3.7, 11.5 Hz), 1.84-1.74 (m, 2H), 1.69-1.57 (m, 2H), 1.41 (s, 18H), 1.07 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.6, 166.4, 163.8, 155.2, 154.6, 80.4, 79.6, 73.9, 62.2, 48.2, 42.8, 34.4, 28.4, 28.2, 27.2. Desired MS 548.32 (M+Na). MS Found (MALDI, m/z) 547.84 (M+Na).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.47 (d, 1H, J=8.5 Hz), 5.49 (d, 1H, J=9.5 Hz), 5.33-5.22 (m, 1H), 4.86 (dd, 1H, J=1.7, 9.5 Hz), 4.70-4.60 (m, 1H), 4.22-3.96 (m, 3H), 3.13-2.98 (m, 2H), 2.70 (br, 2H), 2.29 (tt, 1H, J=3.7, 11.5 Hz), 1.98-1.86 (m, 2H), 1.85-1.71 (m, 2H), 1.69-1.55 (m, 2H), 1.54-1.21 (m, 31H), 1.22 (d, 3H, J=6.2 Hz), 0.92 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.2, 166.6, 166.5, 156.1, 155.7, 154.6, 80.3, 79.6, 79.1, 74.4, 68.1, 53.3, 45.1, 42.9, 39.9, 33.2, 29.3, 28.7, 28.5, 28.4, 28.4, 28.3, 28.0, 22.3, 20.1. Desired MS 711.46 (M+H). MS Found (MALDI, m/z) 711.03 (M+H).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.65 (d, 1H, J=7.2 Hz), 5.36 (d, 1H, J=7.8 Hz), 5.30-5.21 (m, 1H), 4.93 (br, 1H), 4.69 (br, 1H), 4.08 (br, 2H), 3.13-2.99 (m, 2H), 2.70 (br, 2H), 2.32 (tt, 1H, J=3.7, 11.5 Hz), 1.99-1.70 (m, 5H), 1.69-1.55 (m, 2H), 1.54-1.29 (m, 32H), 1.19-1.07 (m, 1H), 0.91-0.80 (m, 6H). 13C NMR (125 MHz, CDCl3) δ 174.3, 167.2, 166.3, 156.1, 155.1, 154.6, 80.3, 79.6, 79.1, 49.7, 47.0, 42.9, 39.9, 38.7, 33.1, 29.4, 28.7, 28.4, 28.3, 28.2, 28.1, 25.0, 22.3, 15.1, 11.3. Desired MS 667.43 (M+H). MS Found (MALDI, m/z) 667.04 (M+H).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.91 (d, 1H, J=8.8 Hz), 5.55 (dt, 1H, J=5.0, 8.8 Hz), 4.16-3.92 (m, 3H), 3.80-3.66 (m, 2H), 2.96 (ddd, 1H, J=1.5, 4.7, 16.6 Hz), 2.83 (dd, 1H, J=5.1, 16.6 Hz), 2.71 (br, 2H), 2.28 (tt, 1H, J=3.7, 11.5 Hz), 2.23 (s, 6H), 1.84-1.72 (m, 2H), 1.66-1.54 (m, 2H), 1.45-1.28 (m, 18H), 1.09 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 173.9, 169.6, 165.4, 165.0, 154.5, 82.1, 79.5, 73.4, 61.2, 61.0, 60.8, 42.9, 42.3, 42.3, 42.1, 37.7, 28.3, 27.9, 27.2. Desired MS 568.36 (M+H). MS Found (MALDI, m/z) 568.04 (M+H).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.74 (br, 1H), 5.32 (dt, 1H, J=4.9, 8.2 Hz), 4.20-3.90 (m, 3H), 3.82-3.67 (m, 2H), 2.70 (br, 2H), 2.37-2.15 (m, 10H), 2.13-2.01 (m, 1H), 1.78 (br, 2H), 1.67-1.54 (m, 2H), 1.42-1.35 (m, 18H), 1.09 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 174.2, 172.0, 166.2, 165.1, 154.5, 81.1, 79.5, 73.4, 61.2, 60.9, 45.3, 42.9, 42.2, 42.2, 31.1, 28.4, 28.3, 28.2, 28.0, 27.3. Desired MS 582.38 (M+H). MS Found (MALDI, m/z) 581.97 (M+H).




embedded image



1H NMR (500 MHz, CDCl3) δ 6.96-6.75 (m, 4H), 6.36 (br, 1H), 5.65-5.51 (m, 1H), 4.20-3.88 (m, 3H), 3.86-3.66 (m, 2H), 3.21 (dd, 1H, J=5.8, 13.6 Hz), 3.08 (dd, 1H, J=5.7, 13.6 Hz), 2.66 (br, 2H), 2.30-2.16 (m, 7H), 1.75-1.61 (m, 2H), 1.60-1.46 (m, 2H), 1.40 (s, 9H), 1.26 (s, 9H), 1.12 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 173.8, 166.0, 165.1, 154.6, 154.5, 129.8, 129.5, 124.1, 79.5, 78.4, 73.5, 61.2, 61.0, 60.9, 46.5, 42.8, 42.2, 38.7, 38.6, 28.7, 28.3, 27.3. Desired MS 616.40 (M+H). MS Found (MALDI, m/z) 616.05 (M+H).


The following general method may be used to prepare protected monovalent compounds h″ through w″ and through y′″ (Scheme 11). Synthesis of protected monovalent compound o″ is demonstrated in Scheme 12 as a representative example.




embedded image




embedded image


The following general method may be used to prepare protected monovalent compounds x″ through k′″ (Scheme 13). Synthesis of protected monovalent compound i′″ is demonstrated in Scheme 14 as a representative example.




embedded image




embedded image


Characterization data for protected monovalent compounds h″ through y′″ follows:




embedded image



1H NMR (500 MHz, CDCl3) δ 7.38 (s, 1H), 6.78-6.91 (m, 2H), 6.50-6.68 (m, 2H), 5.16-5.36 (m, 1H), 4.99 (s, 1H), 3.33-3.92 (m, 6H), 2.90-3.33 (m, 4H), 2.16-2.40 (m, 1H), 1.46 (s, 9H), 1.41 (s, 9H), 1.18-1.33 (m, 1H), 0.94 (t, J=6.6 Hz, 3H), 0.84-0.91 (m, 2H), 0.80 (d, J=6.3 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 166.4, 154.8, 152.7, 148.1, 130.6, 130.4, 128.6, 120.1, 115.3, 80.8, 79.8, 63.6, 48.6, 42.2, 40.5, 29.7, 28.4, 28.3, 24.3, 15.8, 10.4. MS (ESI) for C30H47N6O6 [M+H]+ calcd 587.73, found 587.33.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.75 (s, 1H), 5.38 (d, J=10.5 Hz, 1H), 4.94-5.03 (m, 1H), 4.82-4.92 (m, 1H), 3.66-3.78 (m, 2H), 3.55-3.66 (b, 1H), 3.43-3.55 (m, 3H), 3.20-3.32 (b, 1H), 3.00-3.22 (b, 1H), 2.32-2.42 (m, 1H), 1.74 (t, J=7.5 Hz, 2H), 1.52-1.66 (m, 1H), 1.46 (s, 9H), 1.41 (s, 9H), 0.90-1.06 (m, 2H), 1.00 (d, J=6.5 Hz, 3H), 0.93 (d, J=6.5 Hz, 6H), 0.82 (t, J=7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 166.8, 155.5, 154.6, 150.0, 120.1, 80.8, 79.7, 63.7, 46.3, 45.6, 44.5, 42.5, 38.1, 28.6, 25.0, 24.7, 23.0, 22.5, 16.0, 10.7. MS (ESI) for C27H49N6O5 [M+H]+ calcd 537.38, found 537.38.




embedded image



1H NMR (500 MHz, CDCl3) δ 8.39 (s, 1H), 7.95 (s, 1H), 7.60 (d, J=8 Hz, 1H), 7.37 (d, J=8 Hz, 1H), 7.21-7.24 (m, 1H), 7.15-7.18 (m, 1H), 6.99 (d, J=2 Hz, 1H), 6.02 (t, J=5 Hz, 1H), 5.07 (d, J=8 Hz, 1H), 4.93 (d, J=8 Hz, 1H), 3.70 (dd, J=4.5, 9 Hz, 1H), 3.48-3.56 (m, 1H), 3.26-3.44 (m, 4H), 3.06-3.14 (b, 1H), 2.82-3.06 (b, 1H), 2.36-2.58 (b, 1H), 1.88-2.05 (b, 1H), 1.76 (t, J=7.5 Hz, 2H), 1.62 (m, 1H), 1.45 (s, 9H), 1.41 (s, 9H), 0.96 (d, J=6.5 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 167.0, 155.5, 154.5, 149.8, 136.3, 127.1, 123.6, 122.8, 120.6, 120.3, 118.5, 111.8, 109.3, 80.6, 79.7, 59.4, 46.0, 45.6, 44.9, 42.4, 30.3, 28.6, 28.5, 25.0, 22.9, 22.5. MS (ESI) for C32H48N7O5 [M+H]+ calcd 610.37, found 610.37.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.70 (s, 1H), 5.65 (t, J=8 Hz, 1H), 5.05-5.15 (m, 1H), 4.82-4.97 (m, 1H), 4.56 (s, 1H), 3.68-3.80 (b, 1H), 3.61-3.68 (m, 1H), 3.38-3.60 (m, 4H), 3.20-3.32 (b, 1H), 2.98-3.19 (m, 3H), 2.15-2.24 (m, 1H), 1.86-2.10 (m, 2H), 1.76 (t, J=7.5 Hz, 2H), 1.54-1.68 (m, 1H), 1.46 (s, 9H), 1.44 (s, 9H), 1.43 (s, 9H), 1.22-1.35 (m, 1H), 1.16-1.22 (m, 1H), 0.94 (d, J=6.5 Hz, 6H) 13C NMR (125 MHz, CDCl3) δ 166.5, 156.3, 155.5, 154.6, 150.0, 120.1, 80.8, 79.7, 79.5, 59.7, 46.0, 45.6, 42.6, 40.0, 32.7, 29.7, 28.7, 28.6, 28.5, 25.1, 22.9, 22.8, 22.5. MS (ESI) for C32H58N7O7 [M+H]+ calcd 652.44, found 652.44.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.75 (s, 1H), 5.80-5.95 (m, 1H), 5.05 (d, J=8 Hz, 1H), 4.80-4.95 (m, 1H), 3.59-3.74 (b, 3H), 3.42-3.58 (m, 3H), 3.27-3.35 (m, 1H), 3.10-3.27 (b, 1H), 2.30-2.40 (m, 1H), 2.05-2.28 (m, 2H), 1.93-2.07 (m, 1H), 1.75 (t, J=7.5 Hz, 2H), 1.52-1.68 (m, 1H), 1.46 (s, 9H), 1.44 (s, 9H), 1.42 (s, 9H), 0.93 (d, J=7 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 171.7, 166.6, 155.5, 154.6, 150.0, 120.4, 81.5, 80.7, 79.7, 58.7, 45.9, 45.6, 44.8, 42.5, 30.4, 28.6, 28.6, 28.3, 25.0, 22.9, 22.5. MS (ESI) for C32H53N6O7 [M+H]+ calcd 609.40, found 609.40.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.85 (s, 1H), 6.99 (d, J=8.5 Hz, 2H), 6.76 (d, J=8 Hz, 2H), 5.80-5.90 (b, 1H), 5.09 (d, J=8.5 Hz, 1H), 4.90 (d, J=6.5 Hz, 1H), 3.46-3.62 (b, 2H), 3.18-3.46 (m, 5H), 3.02-3.18 (m, 2H), 2.86-3.00 (b, 1H), 1.68-1.82 (m, 2H), 1.52-1.68 (m, 1H), 1.45 (s, 9H), 1.44 (s, 9H), 0.94 (d, J=6.5 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 166.4, 156.1, 154.5, 149.8, 130.7, 125.9, 120.7, 116.1, 80.9, 79.9, 60.4, 46.0, 45.5, 44.7, 42.5, 39.3, 28.6, 28.5, 25.0, 22.9, 22.5. MS (ESI) for C30H47N6O6 [M+H]+ calcd 587.36, found 587.35.




embedded image



1H NMR (500 MHz, CDCl3) δ 8.77 (s, 1H), 7.86 (s, 1H), 7.56 (d, J=7.8 Hz, 1H), 7.32 (d, J=8.1 Hz, 1H), 7.09-7.30 (m, 2H), 6.94 (s, 1H), 5.95-6.05 (b, 1H), 5.42 (d, J=8.4 Hz, 1H), 4.77 (t, J=7.2 Hz, 1H), 3.61-3.78 (m, 2H), 3.08-3.59 (m, 5H), 2.72-3.09 (m, 3H), 2.20-2.60 (b, 1H), 1.84-2.04 (b, 1H), 1.42 (s, 9H), 1.38 (s, 9H), 0.99-1.25 (m, 2H), 0.84-0.99 (m, 3H), 0.75-0.83 (m, 3H). 13C NMR (125 MHz, CDCl3) δ 166.6, 155.4, 154.1, 147.4, 136.0, 126.8, 123.4, 122.4, 120.7, 119.8, 118.1, 111.5, 108.7, 80.3, 79.4, 59.1, 51.5, 45.6, 42.0, 39.3, 30.0, 28.3, 28.2, 25.2, 15.1, 11.4. MS (ESI) for C32H47N7O5 [M+H]+ calcd 610.37, found 610.35.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.57 (s, 1H), 5.55-5.60 (m, 1H), 5.32 (d, J=8.7 Hz, 1H), 4.67-4.70 (m, 1H), 4.48-4.60 (b, 1H), 3.26-3.78 (m, 7H), 2.83-3.25 (m, 4H), 1.78-2.20 (m, 4H), 1.38 (s, 18H), 1.36 (s, 9H), 1.12-1.28 (m, 2H), 0.92-1.12 (m, 2H), 0.84 (t, J=7.2 Hz, 3H), 0.74 (d, J=6.6 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 166.2, 156.0, 155.4, 154.3, 147.9, 120.0, 80.5, 79.4, 79.2, 59.3, 51.5, 45.6, 42.3, 39.7, 39.3, 32.4, 29.4, 28.3, 28.3, 28.2, 25.3, 22.5, 15.1, 11.5. MS (ESI) for C32H58N7O7 [M+H]+ calcd 652.44, found 652.45.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.63 (s, 1H), 5.78-5.90 (b, 1H), 5.37 (d, J=8.4 Hz, 1H), 4.59-4.73 (b, 1H), 3.54-3.78 (b, 3H), 3.32-3.53 (m, 3H), 3.00-3.32 (m, 2H), 2.23-2.40 (m, 1H), 2.04-2.22 (m, 3H), 1.75-2.04 (m, 2H), 1.40 (s, 9H), 1.38 (s, 9H), 1.37 (s, 9H), 0.93-1.13 (m, 1H), 0.85 (t, J=7.2 Hz, 3H), 0.75 (d, J=6.6 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 171.4, 166.1, 155.3, 154.2, 147.5, 120.4, 81.1, 80.3, 79.2, 58.3, 51.4, 45.5, 43.3, 42.2, 39.2, 30.0, 28.2, 28.1, 27.9, 25.2, 15.0, 11.4. MS (ESI) for C30H53N5O7 [M+H]+ calcd 609.40, found 609.39.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.75 (s, 1H), 6.92 (d, J=7.8 Hz, 2H), 6.72 (d, J=8.1 Hz, 2H), 5.75-5.87 (b, 1H), 5.37 (d, J=8.7 Hz, 1H), 4.71 (t, J=7.5 Hz, 1H), 3.42-3.59 (b, 2H), 2.98-3.42 (m, 7H), 2.78-2.98 (b, 1H), 1.78-2.00 (b, 2H), 1.40 (s, 9H), 1.39 (s, 9H), 0.97-1.16 (m, 2H), 0.87 (t, J=7.2 Hz, 3H), 0.77 (d, J=6.6 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 166.1, 156.0, 155.6, 154.3, 147.9, 130.3, 125.9, 120.9, 115.9, 80.6, 79.6, 60.1, 51.5, 45.7, 42.2, 39.2, 30.9, 28.3, 28.2, 25.2, 15.2, 11.4. MS (ESI) for C30H47N6O6 [M+H]+ calcd 587.36, found 587.32.




embedded image



1H NMR (500 MHz, CDCl3) δ 10.58 (s, 1H), 8.18 (s, 1H), 7.57 (d, J=8 Hz, 1H), 7.37 (d, J=8.5 Hz, 1H), 7.11-7.18 (m, 2H), 7.07 (t, J=7 Hz, 2H), 6.14 (dd, J=3.5, 10 Hz, 1H), 3.71-3.87 (m, 3H), 3.48-3.63 (m, 2H), 3.13-3.36 (m, 7H), 3.05-3.13 (m, 1H), 2.58-2.68 (m, 1H), 2.04-2.20 (b, 1H), 1.46 (s, 9H), 1.41 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 166.9, 155.9, 154.5, 147.4, 136.1, 127.1, 123.5, 122.8, 121.94, 120.3, 118.3, 111.8, 109.0, 80.7, 80.2, 65.2, 59.6, 48.6, 46.0, 42.4, 30.2, 28.6, 28.5. MS (ESI) for C29H42N7O6 [M+H]+ calcd 584.32, found 584.32.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.86 (s, 1H), 5.45-5.81 (m, 2H), 4.92 (s, 1H), 4.60 (s, 1H), 4.12 (s, 1H), 3.91 (s, 1H), 3.41-3.80 (m, 6H), 2.93-3.41 (m, 5H), 2.37-2.86 (b, 2H), 2.18 (s, 1H), 2.05 (s, 1H), 1.46 (s, 9H), 1.44 (s, 9H), 1.43 (s, 9H), 1.08-1.37 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 166.5, 156.3, 155.9, 154.6, 147.7, 121.5, 80.8, 80.2, 79.5, 65.3, 59.8, 48.7, 46.1, 42.6, 40.0, 32.7, 29.6, 28.7, 28.6, 28.5, 22.8. MS (ESI) for C29H52N7O8 [M+H]+ calcd 626.39, found 626.38.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.88 (s, 1H), 5.90 (q, J=4.5 Hz, 1H), 5.48-5.69 (m, 1H), 4.92 (s, 1H), 4.01-4.18 (m, 1H), 3.85-3.96 (m, 1H), 3.59-3.78 (b, 3H), 3.41-3.59 (m, 3H), 3.21-3.41 (m, 2H), 2.56-3.16 (b, 1H), 2.30-2.43 (m, 1H), 2.16-2.29 (m, 2H), 1.96-2.10 (m, 1H), 1.46 (s, 9H), 1.44 (s, 18H). 13C NMR (125 MHz, CDCl3) δ 171.7, 166.5, 155.9, 154.6, 147.6, 121.7, 155.9, 154.6, 147.6, 81.6, 80.8, 80.2, 65.3, 58.8, 45.9, 42.6, 30.4, 28.6, 28.3. MS (ESI) for C27H47N6O8 [M+H]+ calcd 583.35, found 583.31.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.96 (s, 1H), 5.23-5.78 (m, 2H), 4.78-5.05 (b, 1H), 4.0-4.26 (m, 1H), 3.80-4.00 (m, 1H), 3.60-3.78 (b, 3H), 3.40-3.60 (m, 3H), 3.19-3.40 (m, 1H), 3.13-3.19 (b, 1H), 2.44-2.86 (b, 2H), 1.46 (s, 9H), 1.44 (s, 9H), 0.89-1.35 (m, 5H), 0.83 (q, J=6 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 166.8, 155.9, 154.6, 147.7, 121.5, 80.8, 80.2, 65.3, 63.6, 48.6, 46.4, 42.5, 38.2, 28.6, 28.5, 24.8, 15.9, 10.7. MS (ESI) for C24H43N6O6 [M+H]+ calcd 511.33, found 511.32.




embedded image



1H NMR (500 MHz, CDCl3) δ 7.35 (s, 1H), 6.78-6.92 (m, 2H), 6.56-6.72 (m, 2H), 5.72-5.85 (b, 1H), 5.24-5.44 (m, 1H), 4.90-5.08 (m, 1H), 3.31-3.78 (b, 7H), 3.09-3.26 (m, 2H), 2.84-3.09 (m, 2H), 2.21-2.40 (m, 1H), 2.02-2.20 (m, 2H), 1.45 (s, 9H), 1.41 (s, 9H), 1.39 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 171.6, 166.1, 155.1, 154.4, 148.1, 130.5, 128.3, 120.3, 115.3, 81.4, 80.7, 79.7, 58.3, 48.6, 48.5, 45.3, 42.1, 41.0, 40.7, 30.1, 28.3, 28.0, 27.9. MS (ESI) for C33H51N6O8 [M+H]+ calcd 659.38, found 659.34.




embedded image



1H NMR (500 MHz, CDCl3) δ 8.57 (s, 1H), 7.40-7.62 (m, 2H), 7.27-7.36 (m, 1H), 7.03-7.21 (m, 2H), 6.80-6.94 (m, 2H), 6.77 (s, 1H), 6.3 (d, J=8.4 Hz, 2H), 5.77-5.97 (b, 1H), 5.24-5.46 (m, 1H), 4.96-5.12 (m, 1H), 2.81-3.68 (m, 12H), 1.42 (s, 9H), 1.41 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 166.2, 155.2, 154.9, 148.0, 137.9, 136.0, 130.5, 128.6, 126.8, 123.5, 122.4, 120.3, 119.9, 118.0, 111.5, 108.8, 80.8, 79.8, 59.4, 48.6, 45.4, 42.1, 40.6, 29.5, 28.3. MS (ESI) for C35H46N7O6 [M+H]+ calcd 660.35, found 660.34.




embedded image



1H NMR (CDCl3) δ 7.57 (s, 1H), 6.31 (s, 1H), 5.01 (s, 1H), 4.14 (m, 1H), 3.56 (t, 2H, J=4.5, J=5.7), 3.44 (s, 4H), 3.40 (t, 2H, J=5.7, J=4.8), 3.23 (q, 2H, J=6.6, J=6.3, J=6.9), 2.95 (s, 1H), 2.91 (dd, 1H, J=3.9, J=11.1, J=3.6), 2.80 (dd, 1H, J=7.1, J=6.9, J=8.1), 2.32 (t, 2H, J=7.5, J=7.8), 1.62 (m, 2H), 1.47 (s, 11H), 1.29-1.21 (m, 15H); HRMS (ESI, m/z): (M+H)+ calcd for C27H49N6O5 537.3759, found 537.3538.




embedded image



1H NMR (CDCl3) δ 7.69 (s, 1H), 7.06 (t, 1H, J=5.4, J=5.7), 5.28 (t, 1H, J=5.1, J=5.7), 4.37 (t, 1H, J=6, J=6.3), 4.39-4.08 (m, 2H), 3.53 (t, 2H, J=4.5, J=5.7), 3.40 (s, 4H), 3.35 (t, 2H, J=5.7, J=4.8), 3.18 (q, 2H, J=6.6, J=7.2, J=6.3), 2.77 (t, 2H, J=7.5, J=7.8), 2.50 (t, 1H, J=6.9, J=7.5), 2.27 (t, 2H, J=7.5, J=7.8), 2.06 (s, 3H), 1.93 (p, 2H, J=7.5, J=7.5, J=7.2, J=7.2), 1.56 (m, 2H), 1.42 (s, 11H), 1.24 (br, 4H), 1.78 (br, 8H); 13C NMR (CDCl3) δ 172.2, 167.12, 154.8, 147.6, 122.0, 80.5, 77.0, 65.1, 63.0, 45.7, 41.6, 40.0, 33.8, 33.6, 29.6, 29.5, 29.4, 29.3, 29.3, 28.7, 28.6, 26.9, 25.4, 24.7, 15.6; HRMS (ESI, m/z): (M+H)+ calcd for C29H53N6O5S 597.3793, found 597.3770.




embedded image



1H NMR (CDCl3) δ 7.60 (s, 1H), 6.79 (t, 1H, J=5.4, J=5.4), 5.11 (t, 1H, J=7.8, J=6.9), 4.75 (s, 1H), 3.59 (t, 2H, J=4.5, J=5.7), 3.45 (s, 4H), 3.40 (t, 2H, J=6.0, J=4.5), 3.20 (q, 2H, J=6.6, J=7.2, J=6.3), 3.07 (m, 2H), 2.18 (t, 2H, J=7.2, J=7.2), 2.40 (br, 2H), 2.34 (t, 2H, J=7.5, J=7.8), 2.21-2.15 (br, 2H), 2.03 (p, 2H, J=7.2, J=6.9, J=6.9, J=7.2), 1.60 (m, 2H), 1.55-1.46 (m, 1H), 1.42 (s, 9H), 1.28-1.25 (m, 4H), 1.22 (br, 12H); 13C NMR (CDCl3) δ 176.16, 172.55, 168.39, 156.46, 154.86, 147.40, 121.53, 80.64, 79.51, 64.45, 45.71, 41.63, 40.22, 40.04, 33.56, 33.51, 33.79, 29.57, 29.51, 29.32, 28.64, 28.60, 26.95, 25.51, 25.04, 24.52, 23.06; HRMS (ESI, m/z): (M+H)+ calcd for C37H66N7O8 736.4967, found 736.4785.




embedded image



1H NMR (CDCl3) δ 7.54 (s, 1H), 6.74 (s, 1H), 5.09 (q, 1H, J=6.0, J=3.6, J=5.7), 4.66 (s, 1H), 3.60 (t, 2H, J=4.8, J=5.4), 3.45 (s, 4H), 3.41 (t, 2H, J=5.4, J=5.1), 3.21 (q, 2H, J=6.6, J=6.9, J=6.6), 3.06 (m, 2H), 2.37 (s, 3H), 2.33 (t, 2H, J=9.9, J=7.8), 2.29-2.05 (m, 2H), 1.62 (m, 2H), 1.51 (m, 2H), 1.48 (s, 9H), 1.44 (s, 9H), 1.30 (br, 6H), 1.23 (br, 10H); HRMS (ESI, m/z): (M+H)+ calcd for C34H62N7O6 664.4756, found 664.24.




embedded image



1H NMR (CDCl3) δ 7.70 (s, 1H), 7.27 (s, 1H), 5.15 (t, 1H, J=8.7, J=6.6), 4.88 (s, 1H), 3.85 (t, 2H, J=6, J=6.3), 3.53 (t, 2H, J=4.5, J=5.7), 3.39 (s, 4H), 3.34 (t, 2H, J=5.4, J=4.8), 3.14 (m, 2H), 2.998 (q, 2H, J=6.3, J=6.6, J=6.9), 2.90 (t, 2H, J=6.0, J=6.3), 2.28 (t, 2H, J=7.2, J=8.1), 2.16-2.02 (m, 2H), 1.53 (m, 2H), 1.42 (m, 11H), 1.37 (s, 9H), 1.23 (br, 4H), 1.18 (br, 12H); HRMS (ESI, m/z): (M+H)+ calcd for C35H64N7O7 694.4862, found 694.4270.




embedded image



1H NMR (CDCl3) δ 7.48 (s, 1H), 6.69 (s, 1H), 5.06 (q, 1H, J=6.0, J=3.3, J=6.0), 4.62 (s, 1H), 3.58 (t, 2H, J=4.5, J=5.4), 3.43 (s, 4H), 3.39 (t, 2H, J=5.4, J=4.8), 3.19 (q, 2H, J=6.3, J=7.2, J=6.3), 3.05 (m 2H), 2.71 (dd, 1H, J=5.7, J=8.7, J=6.0), 2.51 (dd, 1H, J=8.1, J=6.6, J=7.8), 2.32 (t, 2H, J=7.2, J=8.1), 2.370-2.10 (m, 2H), 1.73 (m, 2H), 1.50 (m, 2H), 1.46 (s, 9H), 1.42 (s, 2H), 1.37 (m, 2H), 1.33-1.26 (br, 6H), 1.26-1.12 (br, 10H), 2.90 (t, 3H, J=7.2, J=6.6), 0.87 (d, 3H, J=6.6); HRMS (ESI, m/z): (M+H)+ calcd for C38H70N7O6 720.5382, found 720.5566.




embedded image



1H NMR (CDCl3) δ 11.43 (s, 1H), 8.40 (t, 1H, J=5.5, J=5.7), 7.58 (s, 1H), 6.83 (t, 1H, J=5.4, J=6.0), 5.29 (q, 1H, J=6.3, J=3.3, J=5.7), 3.46 (m, 2H), 3.43 (s, 4H), 3.39 (m, 2H), 3.25-4.14 (m, 2H), 2.71 (dd, 1H, J=6.3, J=8.4, J=5.7), 2.51 (dd, 1H, J=8.1, J=6.3, J=7.8), 2.31 (t, 2H, J=7.5, J=7.8), 2.33-2.10 (m, 2H), 1.73 (m, 1H), 1.60 (m, 2H), 1.49 (s, 22H), 1.46 (s, 9H), 1.27 (br, 4H), 1.22 (br, 10H), 0.89 (t, 3H, J=7.5, J=5.1), 0.87 (d, 3H, J=6.6); 13C NMR (CDCl3) δ 171.80, 167.98, 162.46, 156.12, 154.46, 153.00, 147.27, 121.14, 83.51, 80.16, 63.14, 45.30, 41.19, 39.66, 39.43, 34.78, 33.26, 32.57, 30.10, 29.29, 29.25, 29.21, 29.12, 29.00, 28.25, 28.13, 27.92, 26.82, 25.32, 25.15, 18.28, 11.29; HRMS (ESI, m/z): (M+H)+ calcd for C43H78N9O8 848.5968, found 848.7464.




embedded image



1H NMR (500 MHz, DMSO-d6): δ=8.46 (t, J=5.5 Hz, 1H), 7.94 (s, 1H), 5.30 (m, 1H), 4.69 (t, J=, 1H), 3.64 (dd, 2H), 3.41-3.34 (m, 10H), 3.10-3.00 (m, 2H), 2.76 (t, J=, 2H), 2.29-2.26 (m, 6H), 2.03 (s, 3H), 1.40 (m, 11H), 1.22 (m, J=, 12H); 13C NMR (126 MHz, DMSO-d6): δ=171.48, 167.85, 154.46, 145.06, 122.06, 79.78, 62.23, 60.97, 55.60, 41.39, 40.68, 39.38, 32.98, 32.25, 29.91, 29.64, 29.59 29.57, 29.47, 29.36, 29.32, 28.70, 15.06. TOF MS calcd for C29H52N6O5S 596.83; found: 597.55.




embedded image



1H NMR (500 MHz, DMSO-d6): δ=8.49 (t, J=5.5 Hz, 1H), 7.85 (s, 1H), 5.13 (d, J=6 Hz, 1H), 5.012 (d, J=6 Hz, 1H), 4.23 (m, 1H), 3.40-3.26 (m, 10H), 3.11-2.98 (m, 2H), 2.29 (t, J=7.5 Hz, 2H), 2.22 (s, 3H), 1.47 (m, 14H), 1.24 (m, 12H), 1.06 (d, J=6 Hz, 3H); 13C NMR (126 MHz, DMSO-d6): δ=171.46, 167.22, 154.45, 141.89, 122.34, 79.76, 69.77, 67.09, 45.31, 41.38, 39.26, 32.97, 29.61, 29.58, 29.56, 29.47, 29.34, 29.31, 28.69, 26.96, 25.42, 20.94, 11.26. TOF MS calcd for C27H48N6O5 536.71; found: 537.49.




embedded image



1H NMR (500 MHz, DMSO-d6): δ=8.26 (t, J=5.5 Hz, 1H), 7.76 (s, 1H), 6.79 (t, J=6 Hz, 1H), 4.98 (s, 2H), 3.41-3.25 (m, 10H), 3.08 (q, J=7.5 Hz, 2H), 2.90 (q, J=6.5 Hz, 2H), 2.60 (t, J=7.5, 2H), 2.29 (t, J=7.5, 2H), 1.40-1.36 (m, 30H), 1.24 (m, 16H); 13C NMR (126 MHz, DMSO-d6): δ=171.46, 165.94, 156.22, 154.45, 147.19, 123.88, 79.76, 77.94, 55.60, 52.19, 45.31, 41.38, 39.39, 32.97, 29.92, 29.65, 29.62, 29.58, 29.47, 29.40, 29.37, 28.94, 28.69, 27.03, 26.58, 25.64, 25.42. TOF MS calcd for C34H61N7O6 663.89; found: 664.49.




embedded image



1H NMR (500 MHz, DMSO-d6): δ=8.40 (t, J=5.5 Hz, 1H), 7.86 (s, 1H), 6.79 (t, J=6 Hz, 1H), 5.28-5.22 (m, 2H), 3.92 (t, J=6 Hz, 2H), 3.41-3.25 (m, 10H), 3.06 (q, J=7.5 Hz, 2H), 2.97 (q, J=7.5 Hz, 2H), 2.60 (t, J=6 Hz, 2H), 2.29 (t, J=6 Hz, 2H), 1.59 (m, 2H), 1.40 (m, 28H), 1.24 (m, 16H); 13C NMR (126 MHz, DMSO-d6): δ=171.47, 166.86, 156.22, 154.45, 147.04, 121.73, 79.76, 77.95, 65.45, 62.06, 45.31, 41.39, 39.36, 32.97, 29.92, 29.63, 29.60, 29.58, 29.47, 29.42, 29.34, 28.94, 28.69, 26.92, 26.67, 25.77, 25.43. TOF MS calcd for C35H63N7O7 693.92; found: 694.51.




embedded image



1H NMR (500 MHz, DMSO-d6): δ=8.55 (t, J=5.5 Hz, 1H), 7.88 (s, 1H), 6.77 (t, J=6 Hz, 1H), 4.95 (d, J=11 Hz, 1H), 3.41-3.25 (m, 8H), 3.15-2.95 (m, 2H), 2.89 (q, J=7.5 Hz, 2H), 2.59 (t, J=6 Hz, 2H), 2.29 (t, J=6 Hz, 2H), 2.20 (m, 1H), 1.58 (m, 2H), 1.39 (m, 24H), 1.26 (m, 15H), 0.90 (d, J=6.5 Hz, 3H), 0.75 (t, J=7 Hz, 3H); 13C NMR (126 MHz, DMSO-d6): δ=171.45, 168.07, 156.21, 154.44, 147.57, 120.94, 95.00, 79.75, 77.92, 67.75, 45.31, 41.38, 39.18, 37.17, 32.97, 29.85, 29.62, 29.56, 29.46, 29.32, 29.28, 28.93, 28.68, 26.94, 26.60, 25.73, 25.42, 24.96, 15.65, 10.53. TOF MS calcd for C38H69N7O8 720.00; found: 720.58.




embedded image



1H NMR (500 MHz, DMSO-d6): δ=11.50 (s, 1H), 8.54 (t, J=5.5 Hz, 1H), 8.30 (t, J=5.5 Hz, 1H), 7.90 (s, 1H), 4.96 (d, J=11 Hz, 1H), 3.40-3.25 (m, 10H), 3.16 (m, 1H), 3.10 (m, 1H), 2.64 (t, J=6 Hz, 2H), 2.29 (t, J=6 Hz, 2H), 2.19 (m, 1H), 1.60 (m, 2H), 1.51 (m, 15H), 1.39 (m, 22H), 1.20 (m, 12H), 0.95 (d, J=6.5 Hz, 3H), 0.75 (t, J=7 Hz, 3H); 13C NMR (126 MHz, DMSO-d6): δ=171.44, 168.04, 163.81, 155.89, 154.44, 152.76, 147.36, 121.05, 83.50, 79.75, 78.72, 67.75, 55.59, 45.31, 41.38, 39.17, 37.20, 32.97, 29.61, 29.55, 29.46, 29.32, 29.26, 28.83, 28.68, 28.65, 28.27, 26.92, 25.41, 25.35, 24.96, 15.65, 10.52. TOF MS calcd for C43H77N9O8 848.13; found: 848.57.




embedded image



1H NMR (500 MHz, DMSO-d6): δ=8.42 (t, J=5.5 Hz, 1H), 7.88 (s, 1H), 6.78 (t, J=6 Hz, 1H), 5.19 (t, J=8 Hz, 1H), 3.40-3.25 (m, 8H), 3.11-2.99 (m, 2H), 2.90 (q, J=6.5 Hz, 2H), 2.59 (t, J=6 Hz, 2H), 2.29-2.04 (m, 6H), 1.58 (m, 2H), 1.39 (m, 37H), 1.21 (m, 14H); 13C NMR (126 MHz, DMSO-d6): δ=171.52, 171.45, 167.82, 156.20, 154.44, 147.55, 121.35, 80.69, 79.75, 77.92, 62.48, 45.31, 41.38, 39.31, 32.97, 31.51, 29.88, 29.67, 29.60, 29.58, 29.46, 29.33, 29.27, 28.93, 28.68, 28.36, 28.00, 26.91, 26.62, 25.73, 25.42. TOF MS calcd for C41H73N7O8 792.06; found: 792.64.




embedded image



13C NMR (75 MHz, CDCl3) δ: 166.6, 156.4, 156.1, 154.6, 146.3, 121.0, 80.8, 80.0, 79.5, 59.7, 46.0, 42.6, 40.0, 36.6, 32.7, 29.7, 28.7, 28.6, 22.9. MS (MALDI) calculated [M+H]: 596.37, found: 596.03.




embedded image



13C NMR (75 MHz, CDCl3) δ: 166.2, 163.6, 156.5, 155.6, 154.5, 153.4, 120.2, 83.5, 80.6, 79.6, 58.9, 51.8, 45.9, 43.6, 42.6, 39.6, 30.0, 28.5, 25.2, 25.4, 15.4, 11.7. MS (MALDI) calculated [M+H]: 780.49, found: 780.30.




embedded image



13C NMR (75 MHz, CDCl3) δ: 171.2, 166.1, 155.9, 155.2, 154.1, 149.3, 120.0, 80.9, 80.1, 79.1, 87.5, 58.2, 46.9, 45.4, 42.1, 40.0, 34.9, 30.0, 29.3, 28.228.1, 27.8, 22.8.


MS (MALDI) calculated [M+H]: 724.45, found: 724.19.




embedded image



13C NMR (75 MHz, CDCl3) δ: 171.4, 165.8, 155.9, 154.5, 148.5, 121.3, 80.7, 79.6, 56.2, 51.8, 46.0, 42.9, 39.3, 38.7, 28.6, 25.5, 25.5, 15.6, 11.6. MS (MALDI) calculated [M+H]: 538.33, found: 538.06.




embedded image



13C NMR (75 MHz, CDCl3) δ: 169.9, 166.2, 156.2, 155.6, 154.4, 149.3, 144.5, 128.7, 127.0, 120.8, 80.5, 79.7, 79.1, 70.6, 68.0, 59.4, 45.7, 45.2, 42.4, 40.4, 39.8, 32.6, 29.4, 28.5, 25.7, 22.8. MS (MALDI) calculated [M+Na]: 917.49, found: 917.27.




embedded image



13C NMR (75 MHz, CDCl3) δ: 171.5, 165.8, 156.0, 154.5, 148.7, 121.3, 80.6, 79.5, 56.2, 52.9, 45.9, 42.8, 38.7, 33.0, 28.5, 19.3, 18.7. MS (MALDI) calculated [M+H]: 524.31, 524.06.




embedded image



13C NMR (75 MHz, CDCl3) δ: 171.2, 170.2, 168.0, 165.9, 155.7, 154.5, 144.7, 132.6, 131.2, 129.0, 128.9, 127.1, 121.8, 80.5, 79.8, 70.7, 68.4, 56.0, 42.7, 38.9, 38.4, 30.6, 29.1, 28.6.


MS (MALDI) calculated [M+Na]: 803.39, found: 803.19.




embedded image



13C NMR (75 MHz, CDCl3) δ: 168.6, 165.4, 155.3, 154.4, 149.2, 120.1, 82.2, 80.5, 79.7, 55.5, 46.4, 45.9, 42.7, 38.7, 34.7, 30.5, 28.5, 28.4, 15.5. MS (MALDI) calculated [M+H]: 613.33, 613.40.




embedded image



13C NMR (75 MHz, CDCl3) δ: 166.8, 156.4, 155.7, 154.5, 121.5, 80.9, 799, 79.3, 67.6, 63.1, 47.5, 45.9, 42.6, 40.5, 35.3, 29.8, 28.7, 28.6, 23.1, 18.9. MS (MALDI) calculated [M+H]: 640.40, found, 640.52.




embedded image



13C NMR (75 MHz, CDCl3) δ: 168.9, 165.6, 154.6, 120.8, 82.5, 80.8, 55.7, 46.1, 44.0, 42.6, 38.9, 36.5, 28.7, 28.3. MS (MALDI) calculated [M+H]: 539.31, found 539.41.




embedded image



13C NMR (75 MHz, CDCl3) δ: 165.8, 156.0, 154.6, 148.2, 121.6, 80.8, 79.7, 63.0, 60.7, 52.8, 45.9, 42.5, 33.1, 28.5, 19.2, 18.5. MS (MALDI) calculated [M+H]: 497.30, found: 497.44.




embedded image



13C NMR (75 MHz, CDCl3) δ: 170.0, 168.8, 165.2, 155.6, 154.4, 149.9, 144.5, 128.8, 128.2, 127.1, 121.0, 120.7, 82.1, 800.4, 79.8, 70.7, 55.4, 45.8, 45.2, 42.7, 40.2, 38.7, 28.5, 28.2.


MS (MALDI) calculated [M+H]: 838.44, found: 838.58.




embedded image



13C NMR (75 MHz, CDCl3) δ: 168.6, 165.3, 155.5, 154.3, 148.4, 120.1, 82.0, 80.4, 79.4, 55.6, 51.6, 45.8, 42.7, 39.2, 38.7, 28.4, 28.0, 25.3, 15.4, 11.6. MS (MALDI) calculated [M+H]: 595.37, found: 595.51.




embedded image



13C NMR (75 MHz, CDCl3) δ: 168.5, 165.1, 155.2, 154.1, 120.4, 81.8, 80.1, 79.4, 73.1, 63.4, 55.5, 48.0, 45.6, 44.5, 42.5, 38.5, 28.8, 28.2, 27.9, 27.4. MS (MALDI) calculated [M+H]: 625.38, found: 625.45.


The following method may be used to prepare protected monovalent compound z′″ (Scheme 15).




embedded image


Characterization data for protected monovalent compound z′″follows:




embedded image



1H NMR (CDCl3, 300 MHz): δ 8.24-8.14 (m, 2H), 7.97-7.87 (s, 4H), 5.89-5.81 (m, 1H), 5.36-5.30 (m, 1H), 3.80-3.14 (m, 8H), 2.15-1.90 (m, 6H), 1.50-1.42 (s, 9H), 1.29-1.22 (m, 3H), 1.14-1.07 (m, 3H), 1.03-0.98 (m, 3H), 0.96-0.90 (m, 3H). Mass Spec (ESI) Calculated for [M+1]: 609.34, found: 609.35.


The following general method may be used to prepare protected monovalent compounds a″″ through b″″ (Scheme 16).




embedded image


embedded image


Characterization data for protected monovalent compounds a″″ through b″″ follows:




embedded image


Calculated Mass: 568.25 found (ESI): 567.2421 (M−H).




embedded image


Calculated mass: 625.27; found (ESI): 624.2646 (M−H).


The following method may be used to prepare protected monovalent compounds c″″ through e″″ (Scheme 17).




embedded image


Characterization data for protected monovalent compounds c″″ through e″″ follows:




embedded image


Desired MS 604.30 (M+H). MS Found (MALDI, m/z) 604.34 (M+H).




embedded image


Desired MS 699.35 (M+H). MS Found (MALDI, m/z) 699.20 (M+H).




embedded image


Desired MS 787.46 (M+H). MS Found (ESI, m/z) 787.46 (M+H).


Example 2
Synthesis of Bivalent Compounds Having a Triazine Core

The protected monovalent compounds may be reacted with a 1,3,5-triazine moiety having a labeling tag attached. An exemplary but non-limiting general procedure for synthesizing the 1,3,5-triazine bivalent compounds follows: The protected monovalent compound was deprotected with TFA in CH2Cl2. The deprotected monovalent compound was dissolved in THF and reacted at room temperature with a dichlorotriazine derivative in the presence of K2CO3. In the example that follows, the dichlorotriazine derivative is labeled with a fluorescein tag (i.e., DTAF). The solvent was removed at reduced pressure, and the product was sufficiently pure to use without further purification. The crude product was redissolved in DMSO, and a second equivalent of a deprotected monovalent compound was reacted at room temperature in the presence of K2CO3. Following workup and purification, bivalent peptide mimics having a 1,3,5-triazine core and a labeling tag were obtained. Morpholine may also be used in the first or second coupling steps. A representative synthesis of the 1,3,5-triazine bivalent compounds is presented in Scheme 18.




embedded image


Example 3
Listing of Bivalent Triazine Compounds Prepared

Tables 1-7 provide listings of bivalent compounds prepared and experimental characterization of those compounds when available.









TABLE 1







Bivalent Compounds from Monovalent Compounds a-o












Monovalent

HPLC Purity (%)




Compound
Tag
UV 254 nm
Sedex















ap
1
100
100



aa
1
100
100



bp
1
93
100



ba
1
86
100



bb
1
91
100



cp
1
100
100



ca
1
86
92



cb
1
85
92



cc
1
100
100



dp
1
85
92



da
1
86
100



db
1
92
100



dc
1
90
100



dd
1
92
100



ep
1
86
90



ea
1
92
94



eb
1
100
100



ec
1
94
100



ed
1
100
100



ee
1
100
100



fp
1
100
100



fa
1
100
100



fb
1
90
100



fc
1
100
100



fd
1
91
100



fe
1
89
100



ff
1
100
94



gp
1
88
98



ga
1
86
92



gb
1
100
100



gc
1
96
98



gd
1
87
00



ge
1
94
100



gf
1
96
100



gg
1
86
100



hp
1
98
100



ha
1
89
93



hb
1
93
100



hc
1
93
100



hd
1
93
100



he
1
93
100



hf
1
87
94



hg
1
96
98



hh
1
91
100



ip
1
92
87



ia
1
93
91



ib
1
100
100



ic
1
91
100



id
1
90
100



ie
1
100
100



if
1
100
100



ig
1
98
97



ih
1
92
100



ii
1
89
96



jp
1
100
100



ja
1
100
100



jb
1
100
100



jc
1
100
100



jd
1
100
100



je
1
100
100



jf
1
100
100



jg
1
96
100



jh
1
96
100



ji
1
100
100



jj
1
100
100



kp
1
94
99



ka
1
90
95



kb
1
100
100



kc
1
94
100



kd
1
100
100



ke
1
100
100



kf
1
86
93



kg
1
93
90



kh
1
100
100



ki
1
100
100



kj
1
100
100



kk
1
86
100



lp
1
87
100



la
1
88
94



lb
1
100
100



lc
1
97
100



ld
1
100
100



le
1
100
100



lf
1
87
100



lg
1
100
100



lh
1
100
100



li
1
100
100



lj
1
100
100



lk
1
100
100



ll
1
95
100



mp
1
92
97



ma
1
92
100



mb
1
86
92



mc
1
97
100



md
1
100
100



me
1
89
100



mf
1
100
100



mg
1
88
96



mh
1
88
87



mi
1
100
100



mj
1
100
100



mk
1
100
100



ml
1
100
100



mm
1
100
100



np
1
100
100



na
1
100
96



nb
1
100
100



nc
1
100
100



nd
1
100
100



ne
1
100
100



nf
1
100
98



ng
1
86
100



nh
1
92
100



ni
1
100
100



nj
1
100
100



nk
1
100
100



nl
1
100
100



nm
1
100
100



nn
1
100
100



op
1
100
100



oa
1
100
93



ob
1
87
93



oc
1
100
100



od
1
87
86



oe
1
90
92



of
1
100
100



og
1
90
94



oh
1
89
93



oi
1
89
95



oj
1
100
98



ok
1
88
93



ol
1
90
90



om
1
100
100



on
1
100
100



oo
1
100
91



ap
2
100
98



aa
2
93
100



bp
2
100
100



ba
2
90
100



bb
2
97
100



cp
2
100
100



ca
2
91
91



cb
2
86
91



cc
2
100
87



dp
2
100
100



da
2
100
100



db
2
87
100



dc
2
97
100



dd
2
100
100



ep
2
100
100



ea
2
100
100



eb
2
89
100



ec
2
86
92



ed
2
87
100



ee
2
100
100



fp
2
100
100



fa
2
90
85



fb
2
98
100



fc
2
87
91



fd
2
89
94



fe
2
89
93



ff
2
100
99



gp
2
100
100



ga
2
87
90



gb
2
91
92



gc
2
89
94



gd
2
89
100



ge
2
85
89



gf
2
100
100



gg
2
89
97



hp
2
89
87



ha
2
89
91



hb
2
90
87



hc
2
88
91



hd
2
92
89



he
2
89
90



hf
2
100
100



hg
2
100
100



hh
2
87
89



ip
2
100
100



ia
2
95
100



ib
2
98
100



ic
2
97
96



id
2
91
90



ie
2
92
100



if
2
96
92



ig
2
100
92



ih
2
93
91



ii
2
91
95



jp
2
100
97



ja
2
100
88



jb
2
95
100



jc
2
93
100



jd
2
87
91



je
2
87
88



jf
2
100
94



jg
2
100
100



jh
2
95
100



ji
2
90
91



jj
2
96
100



kp
2
100
100



ka
2
95
100



kb
2
100
100



kc
2
96
95



kd
2
92
90



ke
2
97
94



kf
2
90
92



kg
2
100
92



kh
2
94
93



ki
2
87
90



kj
2
91
92



kk
2
98
97



lp
2
96
100



la
2
99
100



lb
2
90
88



lc
2
88
86



ld
2
86
85



le
2
86
89



lf
2
86
98



lg
2
86
86



lh
2
87
87



li
2
89
86



lj
2
88
85



lk
2
87
88



ll
2
91
96



mp
2
100
100



ma
2
86
86



mb
2
100
100



mc
2
86
100



md
2
87
94



me
2
96
100



mf
2
86
85



mg
2
90
90



mh
2
89
88



mi
2
100
100



mj
2
89
95



mk
2
94
100



ml
2
92
92



mm
2
91
89



np
2
100
100



na
2
89
100



nb
2
85
100



nc
2
93
90



nd
2
92
100



ne
2
90
95



nf
2
100
92



ng
2
85
90



nh
2
97
88



ni
2
87
94



nj
2
87
92



nk
2
85
87



nl
2
87
86



nm
2
86
100



nn
2
96
96



op
2
100
98



oa
2
92
87



ob
2
86
100



oc
2
90
85



od
2
100
100



oe
2
85
100



of
2
87
100



og
2
85
92



oh
2
88
93



oi
2
95
100



oj
2
100
100



ok
2
94
100



ol
2
94
100



om
2
87
97



on
2
91
85



oo
2
90
92



ap
3
76
100



aa
3
95
100



bp
3
70
92



ba
3
88
96



bb
3
80
93



cp
3
75
94



ca
3
80
96



cb
3
83
95



cc
3
93
93



dp
3
94
100



da
3
80
95



db
3
81
96



dc
3
95
92



dd
3
92
100



ep
3
96
100



ea
3
89
97



eb
3
88
94



ec
3
99
100



ed
3
95
98



ee
3
96
100



fp
3
96
99



fa
3
89
93



fb
3
85
95



fc
3
76
91



fd
3
92
92



fe
3
93
97



ff
3
95
94



gp
3
76
94



ga
3
83
91



gb
3
85
98



gc
3
80
93



gd
3
85
90



ge
3
94
97



gf
3
75
94



gg
3
85
96



hp
3
95
100



ha
3
85
100



hb
3
84
91



hc
3
81
98



hd
3
85
100



he
3
86
94



hf
3
85
96



hg
3
80
100



hh
3
80
90



ip
3
93
100



ia
3
85
94



ib
3
95
100



ic
3
93
100



id
3
92
95



ie
3
92
87



if
3
87
100



ig
3
93
95



ih
3
95
100



ii
3
90
88



jp
3
96
100



ja
3
91
94



jb
3
91
95



jc
3
91
94



jd
3
92
100



je
3
91
86



jf
3
92
94



jg
3
89
97



jh
3
88
91



ji
3
95
100



jj
3
95
100



kp
3
95
100



ka
3
88
94



kb
3
88
91



kc
3
94
100



kd
3
93
100



ke
3
92
90



kf
3
91
100



kg
3
92
95



kh
3
90
89



ki
3
90
87



kj
3
95
100



kk
3
90
87



lp
3
85
100



la
3
85
100



lb
3
87
92



lc
3
87
95



ld
3
85
97



le
3
93
94



lf
3
78
92



lg
3
87
97



lh
3
86
90



li
3
92
90



lj
3
87
90



lk
3
93
94



ll
3
85
93



mp
3
98
100



ma
3
93
96



mb
3
81
100



mc
3
74
100



md
3
94
97



me
3
93
94



mf
3
96
98



mg
3
93
100



mh
3
82
97



mi
3
90
91



mj
3
95
100



mk
3
91
97



ml
3
89
94



mm
3
98
99



np
3
91
100



na
3
78
95



nb
3
82
95



nc
3
77
90



nd
3
90
93



ne
3
94
96



nf
3
96
100



ng
3
78
94



nh
3
78
94



ni
3
95
100



nj
3
91
94



nk
3
89
91



nl
3
81
94



nm
3
94
95



nn
3
95
100



op
3
78
95



oa
3
89
96



ob
3
85
92



oc
3
90
94



od
3
86
97



oe
3
85
91



of
3
85
100



og
3
85
94



oh
3
92
97



oi
3
95
100



oj
3
91
91



ok
3
93
98



ol
3
85
94



om
3
85
100



on
3
95
100



oo
3
86
92



ap
4





aa
4





bp
4





ba
4





bb
4





cp
4





ca
4





cb
4





cc
4





dp
4





da
4





db
4





dc
4





dd
4





ep
4





ea
4





eb
4





ec
4





ed
4





ee
4





fp
4





fa
4





fb
4





fc
4





fd
4





fe
4





ff
4





gp
4





ga
4





gb
4





gc
4





gd
4





ge
4





gf
4





gg
4





hp
4





ha
4





hb
4





hc
4





hd
4





he
4





hf
4





hg
4





hh
4





ip
4





ia
4





ib
4





ic
4





id
4





ie
4





if
4





ig
4





ih
4





ii
4





jp
4





ja
4





jb
4





jc
4





jd
4





je
4





jf
4





jg
4





jh
4





ji
4





jj
4





kp
4





ka
4





kb
4





kc
4





kd
4





ke
4





kf
4





kg
4





kh
4





ki
4





kj
4





kk
4





lp
4





la
4





lb
4





lc
4





ld
4





le
4





lf
4





lg
4





lh
4





li
4





lj
4





lk
4





ll
4





mp
4





ma
4





mb
4





mc
4





md
4





me
4





mf
4





mg
4





mh
4





mi
4





mj
4





mk
4





ml
4





mm
4





np
4





na
4





nb
4





nc
4





nd
4





ne
4





nf
4





ng
4





nh
4





ni
4





nj
4





nk
4





nl
4





nm
4





nn
4





op
4





oa
4





ob
4





oc
4





od
4





oe
4





of
4





og
4





oh
4





oi
4





oj
4





ok
4





ol
4





om
4





on
4





oo
4
















TABLE 2







Representative Mass Spec Results for Bivalent Compounds of Monovalent


Compounds a-o









Monovalent

Mass (M + H)+










Compound
Tag
theoretical
found













ba
1
1012
1012


cp
1
1070
1070


dd
1
902
902


ed
1
916
916


gf
1
1015
1015


gg
1
1044
1044


ia
1
1054
1054


ib
1
998
998


ig
1
1041
1041


jp
1
860
860


jf
1
1055
1055


jh
1
1098
1098


jj
1
1124
1124


kg
1
1027
1027


kj
1
1068
1068


le
1
1015
1015


mp
1
986
986


ml
1
1043
1043


np
1
1114
1114


ne
1
1021
1021


nf
1
1050
1050


ng
1
1078
1078


nh
1
1093
1093


nj
1
1119
1119


nk
1
1063
1063


nm
1
1050
1050


og
1
1055
1055


oj
1
1096
1096


aa
2
936
936


cc
2
938
938


da
2
853
853


ea
2
867
867


ff
2
854
854


ic
2
923
923


ii
2
908
908


jb
2
908
908


jc
2
965
965


jf
2
923
923


kp
2
672
672


kb
2
852
852


kc
2
909
909


mk
2
867
867


ml
2
911
911


mm
2
854
854


np
2
723
723


nc
2
960
960


nd
2
876
876


nn
2
982
982


oj
2
964
964


ok
2
908
908


oo
2
936
936


cc
3
909
909


dp
3
589
598


dd
3
741
741


ee
3
769
769


hc
3
911
911


ip
3
658
658


if
3
852
852


oi
3
894
894


la
3
924
924


ll
3
940
940


mg
3
854
854


ml
3
882
882


kp
3
644
644


ok
3
880
880


kk
3
852
852


ne
3
861
861


on
3
931
931


ja
3
936
936


ji
3
922
922


jj
3
964
964
















TABLE 3







Bivalent Compounds from Monovalent Compounds f′ to m′















HPLC purity


Monovalent

mass
mass
(%)


Compound
Tag
(desired)
(found)
UV (254 nm)














pp
2
465.23
465.03
100


g′p
2
703.37
703.28
100


g′g′
2
941.52
941.48
100


h′p
2
759.44
759.36
100


h′g′
2
997.58
997.55
100


h′h′
2
1053.64
1053.65
100


k′p
2
958.56
958.67
100


k′g′
2
1196.70
1196.79
100


k′h′
2
1252.76
1252.82
100


k′k′
2
1451.88
1452.05
100


i′p
2
775.40
775.31
100


i′g′
2
1013.54
1013.52
100


i′h′
2
1069.60
1069.49
100


i′k′
2
1268.72
1268.83
97


i′i′
2
1085.56
1085.51
100


l′p
2
886.54
886.55
100


l′g′
2
1124.68
1124.70
100


l′h′
2
1180.74
1180.96
100


l′k′
2
1379.86
1379.95
100


l′i′
2
1196.70
1196.78
100


l′l′
2
1307.84
1308.06
100


m′p
2
942.60
942.74
100


m′g′
2
1180.74
1180.83
100


m′h′
2
1236.81
1236.86
100


m′k′
2
1435.93
1436.04
100


m′i′
2
1252.76
1252.87
100


m′l′
2
1363.90
1364.08
100


m′m′
2
1419.97
1420.04
100


j′p
2
859.49
859.37
100


j′g′
2
1097.63
1097.69
100


j′h′
2
1153.70
1153.79
100


j′k′
2
1352.82
1352.93
100


j′i′
2
1169.65
1169.72
100


j′l′
2
1280.80
1280.79
100


j′m′
2
1336.86
1336.87
100


j′j′
2
1253.75
1253.73
100


f′p
2
676.33
676.31
100


f′g′
2
914.47
914.32
98


f′h′
2
970.53
970.54
100


f′k′
2
1169.65
1169.82
100


f′i′
2
986.49
986.41
100


f′l′
2
1097.63
1097.72
100


f′m′
2
1153.70
1153.71
100


f′j′
2
1070.59
1070.69
100


f′f′
2
887.42
887.36
100
















TABLE 4







Bivalent Compounds from Monovalent Compounds h″ to w″











Monovalent

HPLC Purity (%)












Compounds
Tag
UV 254 nm
Sedex
















h″p
1
98
99



h″h″
1
97
97



i″p
1
99
99



i″h″
1
90
95



i″i″
1
100
97



j″p
1
95
100



j″h″
1
94
100



j″i″
1
92
100



j″j″
1
87
97



k″p
1
97
100



k″h″
1
91
97



k″i″
1
90
96



k″j″
1
86
98



k″k″
1
95
100



l″p
1
95
100



l″h″
1
90
98



l″i″
1
94
99



l″j″
1
87
100



l″k″
1
94
100



l″l″
1
100
100



m″p
1
99
100



m″h″
1
99
99



m″i″
1
91
96



m″j″
1
85
97



m″k″
1
91
97



m″l″
1
90
96



m″m″
1
100
98



n″p
1
95
99



n″h″
1
92
100



n″i″
1
92
99



n″j″
1
86
91



n″k″
1
88
100



n″l″
1
88
100



n″m″
1
92
97



n″n″
1
87
100



o″p
1
97
100



o″h″
1
90
97



o″i″
1
94
96



o″j″
1
90
96



o″k″
1
94
100



o″l″
1
92
98



o″m″
1
93
96



o″n″
1
93
97



o″o″
1
92
100



p″p
1
92
98



p″h″
1
90
96



p″i″
1
92
96



p″j″
1
87
97



p″k″
1
87
100



p″l″
1
100
100



p″m″
1
94
98



p″n″
1
90
98



p″o″
1
86
98



p″p″
1
100
100



q″p
1
100
100



q″h″
1
96
96



q″i″
1
91
94



q″j″
1
90
97



q″k″
1
86
97



q″l″
1
88
97



q″m″
1
99
99



q″n″
1
90
95



q″o″
1
85
97



q″p″
1
90
97



q″q″
1
100
98



r″p
1
100
100



r″h″
1
86
98



r″i″
1
100
100



r″j″
1
96
96



r″k″
1
95
95



r″l″
1
90
99



r″m″
1
90
100



r″n″
1
100
100



r″o″
1
98
100



r″p″
1
85
100



r″q″
1
87
100



r″r″
1
86
100



s″p
1
98
100



s″h″
1
97
98



s″i″
1
85
95



s″j″
1
85
97



s″k″
1
85
93



s″l″
1
86
97



s″m″
1
92
98



s″n″
1
92
10



s″o″
1
95
100



s″p″
1
99
97



s″q″
1
92
99



s″r″
1
88
99



s″s″
1
98
100



t″p
1
88
94



t″h″
1
85
95



t″i″
1
90
97



t″j″
1
98
100



t″k″
1
90
98



t″l″
1
87
95



t″m″
1
95
96



t″n″
1
93
100



t″o″
1
98
100



t″p″
1
97
100



t″q″
1
99
95



t″r″
1
85
89



t″s″
1
86
91



t″t″
1
85
86



u″p
1
100
100



u″h″
1
87
90



u″i″
1
85
96



u″j″
1
85
97



u″k″
1
85
95



u″l″
1
93
97



u″m″
1
91
97



u″n″
1
97
95



u″o″
1
98
100



u″p″
1
85
88



u″q″
1
100
100



u″r″
1
99
96



u″s″
1
95
100



u″t″
1
91
99



u″u″
1
99
100



v″p
1
93
98



v″h″
1
86
95



v″i″
1
88
95



v″j″
1
88
96



v″k″
1
100
100



v″l″
1
99
99



v″m″
1
87
96



v″n″
1
87
96



v″o″
1
99
99



v″p″
1
97
97



v″q″
1
90
90



v″r″
1
85
93



v″s″
1
85
85



v″t″
1
85
94



v″u″
1
85
94



v″v″
1
96
96



w″p
1
91
95



w″h″
1
90
98



w″i″
1
95
95



w″j″
1
90
90



w″k″
1
90
90



w″l″
1
85
85



w″m″
1
85
85



w″n″
1
88
88



w″o″
1
85
85



w″p″
1
90
90



w″q″
1
97
97



w″r″
1
90
90



w″s″
1
88
88



w″t″
1
87
87



w″u″
1
85
85



w″v″
1
90
90



w″w″
1
90
90



h″p
3
99
100



h″h″
3
94
90



i″p
3
100
100



i″h″
3
92
90



i″i″
3
100
98



j″p
3
100
100



j″h″
3
96
100



j″i″
3
93
98



j″j″
3
95
90



k″p
3
99
97



k″h″
3
100
100



k″i″
3
100
100



k″j″
3
94
100



k″k″
3
95
95



l″p
3
100
100



l″h″
3
96
100



l″i″
3
99
100



l″j″
3
100
100



l″k″
3
100
100



l″l″
3
91
100



m″p
3
98
100



m″h″
3
97
92



m″i″
3
91
90



m″j″
3
100
100



m″k″
3
100
100



m″l″
3
100
97



m″m″
3
100
100



n″p
3
100
100



n″h″
3
98
100



n″i″
3
88
97



n″j″
3
100
100



n″k″
3
97
97



n″l″
3
100
100



n″m″
3
94
100



n″n″
3
100
100



o″p
3
91
95



o″h″
3
90
100



o″i″
3
97
100



o″j″
3
100
100



o″k″
3
100
100



o″l″
3
96
100



o″m″
3
97
91



o″n″
3
92
100



o″o″
3
93
93



p″p
3
100
100



p″h″
3
97
97



p″i″
3
98
100



P″j″
3
100
100



p″k″
3
100
100



p″l″
3
97
100



p″m″
3
98
100



p″n″
3
100
100



p″o″
3
100
100



p″p″
3
94
90



q″p
3
100
100



q″h″
3
94
100



q″i″
3
97
99



q″j″
3
100
100



q″k″
3
100
100



q″l″
3
95
100



q″m″
3
96
100



q″n″
3
100
100



q″o″
3
98
100



q″p″
3
100
100



q″q″
3
97
92



s″p
3
93
100



s″h″
3
92
91



s″i″
3
100
100



s″j″
3
100
100



s″k″
3
100
100



s″l″
3
100
100



s″m″
3
81
100



s″n″
3
91
98



s″o″
3
100
100



s″p″
3
100
100



s″q″
3
92
93



s″s″
3
86
96



t″p
3
98
99



t″h″
3
93
98



t″i″
3
100
100



t″j″
3
95
100



t″k″
3
100
100



t″l″
3
100
100



t″m″
3
100
100



t″n″
3
92
100



t″o″
3
100
100



t″p″
3
100
100



t″q″
3
100
100



t″s″
3
86
91



t″t″
3
97
100



u″p
3
98
95



u″h″
3
100
100



u″i″
3
100
100



u″j″
3
84
100



u″k″
3
100
100



u″l″
3
100
100



u″m″
3
95
98



u″n″
3
89
91



u″o″
3
100
100



u″p″
3
100
100



u″q″
3
92
97



u″s″
3
100
100



u″t″
3
100
100



u″u″
3
100
100



v″p
3
100
100



v″h″
3
82
100



v″i″
3
100
100



v″j″
3
100
100



v″k″
3
96
96



v″l″
3
100
97



v″m″
3
100
100



v″n″
3
100
100



v″o″
3
99
100



v″p″
3
100
100



v″q″
3
96
100



v″s″
3
100
99



v″t″
3
94
100



v″u″
3
100
100



v″v″
3
100
100



w″p
3
98
100



w″h″
3
82
90



w″i″
3
96
100



w″j″
3
100
100



w″k″
3
90
95



w″l″
3
97
100



w″m″
3
100
100



w″n″
3
92
92



w″o″
3
100
100



w″p″
3
91
91



w″q″
3
100
100



w″s″
3
89
90



w″t″
3
93
100



w″u″
3
97
100



w″v″
3
100
100



w″w″
3
100
100

















TABLE 5







Representative Mass Spec Results for Bivalent Compounds of Monovalent


Compounds h″ to w″









Monovalent

Mass










Compounds
Tag
theoretical
found














h″h″
1
1233.53
(M + K)
1233.52


i″i″
1
1096.62
(M + 2)
1096.62


k″p
1
861.42
(M + 1)
861.45


l″k″
1
1127.58
(M + 2)
1127.56


m″h″
1
1233.52
(M + K)
1233.56


n″n″
1
1279
(M + K)
1279.60


o″i″
1
1148
(M + K)
1148.62


o″o″
1
1126.64
(M + 2)
1126.64


p″o″
1
1164.53
(M + K)
1164.54


r″p
1
893.36
(M + 2)
893.37


r″j″
1
1237.52
(N + Na)
1237.61


s″p″
1
1100.51
(M + 1)
1100.57


s″s″
1
1095.49
(M + Na)
1095.56


t″o″
1
1100.52
(M + 1)
1100.61


t″t″
1
1075.41
(M + 1)
1075.47


u″n″
1
1164.52
(M + Na)
1164.56


u″u″
1
1043.49
(M + 1)
1043.62


v″l″
1
1178.50
(M + 2)
1178.59


w″i″
1
1256.54
(M + K)
1256.54


w″r″
1
1287.50
(M + Na)
1287.55


h″h″
3
1035.60
(M + H)
1035.63


i″i″
3
935.64
(M + H)
935.64


l″j″
3
1024.60
(M + H)
1024.64


m″m″
3
1035.60
(M + H)
1035.64


n″k″
3
1023.65
(M + H)
1023.68


o″o″
3
965.67
(M + H)
965.71


p″i″
3
951.60
(M + H)
951.64


p″n″
3
1024.60
(M + H)
1024.64


q″h″
3
1035.60
(M + H)
1035.57


q″l″
3
1001.58
(M + H)
1001.62


q″q″
3
1035.60
(M + H)
1035.60


s″j″
3
997.60
(M + H)
997.57


s″o″
3
939.61
(M + H)
939.65


s″s″
3
913.56
(M + H)
913.58


t″p
3
1035. 60
(M + H)
1035.57


t″l″
3
941.51
(M + H)
941.55


u″n″
3
982.59
(M + H)
982.61


u″u″
3
883.54
(M + H)
883.56


v″i″
3
1001.58
(M + H)
1001.61


v″p″
3
1017.54
(M + H)
1017.56


w″m″
3
1108.60
(M + H)
1108.63
















TABLE 6







Bivalent Compounds from Monovalent Compounds x″ to k″′










Monovalent

Mass Spec (M + H)+
HPLC Purity (%)












Compounds
Tag
calculated
found
UV 254 nm
SEDEX















x″x″
3
1135.74
1135.50
88
100


x″y″
3
1195.74
1195.54
97
100


x″z″
3
1234.81
1234.59
98
100


x″a″
3
1162.79
1162.51
93
100


x″b″′
3
1192.8
1192.78
98
100


x″c″′
3
1218.85
1218.61
100
100


x″d″′
3
1246.86
1246.74
100
100


y″y″
3
1255.75
1255.72
100
100


y″z″
3
1294.81
1294.78
91
95


y″a″′
3
1222.79
1222.62
100
100


y″b″′
3
1252.80
1252.66
95
100


y″c″′
3
1278.85
1278.70
93
100


y″d″′
3
1306.86
1306.68
99
100


z″z″
3
1333.88
1333.81
90
99


z″a″′
3
1261.85
1261.88
89
90


z″b″′
3
1291.87
1291.96
99
100


z″c″′
3
1317.92
1317.97
94
100


z″d″′
3
1345.92
1345.91
99
98


a″′a″′
3
1189.83
1189.64
100
100


a″′b″′
3
1219.84
1219.71
98
95


a″′c″′
3
1245.92
1245.73
98
99


a″′d″′
3
1273.90
1273.83
87
96


b″′b″′
3
1249.85
1249.71
98
99


b″′c″′
3
1275.91
1275.68
94
99


b″′d″′
3
1303.91
1303.74
98
100


c″′c″′
3
1301.96
1301.80
98
100


c″′d″′
3
1329.96
1329.85
100
100


d″′d″′
3
1357.97
1357.69
100
100


x″p
3
786.49
786.26
91
100


y″p
3
846.49
846.26
100
100


z″p
3
885.56
885.47
98
100


a″′p
3
813.54
813.34
95
100


b″′p
3
843.55
843.31
91
99


c″′p
3
869.6
869.40
82
94


d″′p
3
897.61
897.41
95
100


k″′p
3
885.11
885.52
100
100


j″′p
3
897.16
897.58
100
100


h″′p
3
843.07
843.54
100
100


g″′p
3
813.04
813.37
100
100


f″′p
3
785.98
786.49
100
100


i″′p
3
869.15
869.40
100
100


e″′p
3
846.09
846.33
100
100


i″′i″′
3
1301.8
1302.04
100
100


i″′g″′
3
1245.69
1245.87
100
100


i″′k″′
3
1317.75
1317.93
100
100


i″′h″′
3
1275.72
1275.82
100
100


i″′f″′
3
1218.62
1218.89
100
100


i″′j″′
3
1329.81
1329.98
100
100


i″′e″′
3
1278.74
1278.85
100
100


g″′g″′
3
1189.58
1189.73
100
100


g″′k″′
3
1261.65
1261.98
100
100


g″′h″′
3
1219.61
1219.75
100
100


g″′f″′
3
1162.52
1162.69
100
100


g″′j″′
3
1273.70
1273.76
100
100


g″′e″′
3
1222.63
1222.82
100
100


k″′k″′
3
1333.71
1333.86
100
100


k″′h″′
3
1291.67
1291.86
100
100


k″′f″′
3
1234.58
1234.73
100
100


k″′j″′
3
1345.77
1345.84
100
100


k″′e″′
3
1294.70
1294.78
100
100


h″′h″′
3
1249.64
1249.78
100
100


h″′f″′
3
1192.54
1192.80
100
100


h″′j″′
3
1303.73
1303.86
100
100


h″′e″′
3
1252.66
1252.79
100
100


f″′f″′
3
1135.45
1135.60
100
100


f″′j″′
3
1246.64
1246.85
100
100


f″′e″′
3
1195.57
1195.64
100
100


j″′j″′
3
1357.82
1357.93
98
100


j″′e″′
3
1306.75
1306.68
100
100


e″′e″′
3
1255.68
1255.68
100
100


h″′y″
3
1252.66
1252.53
100
100


k″′y″
3
1294.70
1294.58
100
100


g″′y″
3
1222.63
1222.59
100
100


j″′y″
3
1306.75
1306.63
100
100


e″′y″
3
1255.68
1255.62
100
100


i″′c″′
3
1301.8
1301.76
100
100


e″′c″′
3
1278.74
1278.73
100
100


f″′c″′
3
1218.62
1218.68
100
100


h″′c″′
3
1275.72
1275.78
100
100


e″′x″
3
1195.57
1195.61
97
100


e″′b″′
3
1252.66
1252.61
100
100


i″′b″′
3
1275.72
1275.64
100
100


j″′x″
3
1246.64
1246.61
95
99


g″′c″′
3
1245.69
1246.04
100
100


k″′c″′
3
1317.75
1318.13
99
100


i″′z″
3
1317.75
1318.07
100
100


k″′z″
3
1333.71
1333.88
100
100


h″′z″
3
1291.67
1291.94
100
100


f″′z″
3
1234.58
1234.77
99
100


j″′z″
3
1345.77
1346.13
100
100


e″′z″
3
1294.70
1294.92
100
100


f″′a″′
3
1162.52
1162.87
98
100


f″′b″′
3
1192.54
1192.93
100
100


i″′x″
3
1218.62
1218.96
100
100


g″′x″
3
1162.52
1162.88
100
100


k″′x″
3
1234.58
1234.94
100
100


f″′x″
3
1135.45
1135.90
100
100


gi″′d″′
3
1273.70
1274.06
100
100


f″′d″′
3
1246.64
1247.00
100
100


i″′y″
3
1278.74

100
100


i″′d″′
3
1329.81





i″′a″′
3
1245.69

98
100


g″′z″
3
1261.65





g″′a″′
3
1189.58





k″′d″′
3
1345.77





k″′a″′
3
1261.65

99
100


g″′b″′
3
1219.61

95
100


k″′b″′
3
1291.67

97
100


h″′a″′
3
1219.61

100
100


h″′b″′
3
1249.64

98
100


h″′x″
3
1192.54





h″′d″′
3
1303.73

99
100


f″′y″
3
1195.57





j″′c″′
3
1329.81





j″′a″′
3
1273.7





j″′b″′
3
1303.73

94
99


j″′d″′
3
1357.82

100
100


e″′a″′
3
1222.63





e″′d″′
3
1306.75
















TABLE 7







Bivalent Compounds from Monovalent Compounds c″″ to e″″















HPLC purity


Monovalent

Mass
Mass
UV 254 nm


Compounds
Tag
(desired)
(found)
(%)














c″″c″″
1
1629.67
1629.65
100


c″″d″″
1
1724.72
1724.49
100


d″″d″″
1
1819.77
1819.62
100


c″″e″″
1
1812.83
1812.94
98


d″″e″″
1
1907.88
1907.91
100


e″″e″″
1
1995.99
1996.06
100


c″″c″″
3
1469.71
1469.68
100


d″″d″″
3
1659.81
1659.91
100


e″″e″″
3
1836.03
1836.27
100









From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this disclosure, and without departing from the spirit and scope thereof, can make various changes and modifications to adapt the disclosure to various usages and conditions. The embodiments described hereinabove are meant to be illustrative only and should not be taken as limiting of the scope of the disclosure, which is defined in the following claims.

Claims
  • 1-38. (canceled)
  • 39. A dipeptide mimic compound to mimic proteins in a protein-protein interactions having the structure
  • 40. The dipeptide mimic compound of claim 39, wherein R0 is a H and R1, R2, R1′, and R2′ groups each independently are a CH3—.
  • 41. A dipeptide mimic compound having the structure:
  • 42. The dipeptide mimic compound of claim 41, wherein the core molecule X1 comprises a 1,3,5-triazine moiety,the spacer K1 and the spacer K2 independently comprise a piperazine;the mimic backbone Y1 comprises
  • 43. A protein mimic compound having the structure:
  • 44. The protein mimic compound of claim 43, the core molecule X1 comprises a 1,3,5-triazine moiety and the mimic backbone Y1 and the mimic backbone Y2 independently comprise:
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application 60/952,149, filed Jul. 26, 2007, which is incorporated by reference as if written herein in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This work was funded, in part, through support from the National Institutes of Health, Grant Nos. MH070040 and GM076261.

Provisional Applications (1)
Number Date Country
60952149 Jul 2007 US
Continuations (1)
Number Date Country
Parent 12181168 Jul 2008 US
Child 13418917 US