To prepare the 25 mg tablet size (directly compressed tablet), a batch size of 7 kg is prepared using amounts corresponding to the following per unit: 25 mg per unit of the compound 1-[3-hydroxy-adamant-1-ylamino)-acetyl]-pyrrolidine-2(S)-carbonitrile is mixed with 35.1 mg of microcrystalline cellulose, 17.5 mg anhydrous lactose and 1.6 mg sodium starch glycolate. The ingredients are pre-blended together in a commercial bin blender, then sieved through a 500 μm or 850 μm screen. The mix is blended again in the bin blender, then the necessary amount of the magnesium stearate to yield the 0.8 mg magnesium stearate per 25 mg tablet size, is added. Blending in each step is conducted at about 150-450 rotations, to ensure homogeneity of the mixture. Following blending again in the bin blender, the mix can be tabletted in a conventional tableting machine. The individual tablet weight for the 25 mg tablet is 80 mg. Tablets having 50 mg active ingredient weigh 160 mg, and 100 mg active ingredient tablets weigh 320 mg, respectively. The blend is a powder which has excellent compressibility into the desired tablet size.
The same process as described above in example 1, can be applied to produce the below described preferred 50 mg tablet (directly compressed).
1. Average tablet weight. Twenty tablets are weighed on an analytical balance and the average tablet weight calculated.
2. Tablet breaking strength (kilo bond-kp). 5 tablets are individually tested using a Schleuniger crushing strength tester, and the average breaking strength calculated.
3. Friability (% loss). 10 tablets, accurately weighed, are subjected to 10 minutes friability testing using a Roche Friabilator. The tablets are dedusted, reweighed, and the weight loss due to the friability is calculated as a percentage of the initial weight.
4. Dispersion Disintegration time DT (The test for dispersible tablets defined in the British Pharmacopoeia, 1988, Volume II, page 895—BP 1988). 6 tablets are tested in accordance to the above-defined BP test (without discs) for dispersible tablets. This utilizes water at a temperature of 19°-21° C.
5. Dispersion Quality. In accordance with the BP uniformity of dispersion test for dispersible tablets (BP 1988 Volume II page 895), two tablets are placed in 100 ml of water at 19°-21° C. and allowed to disperse.
1. Loss on Drying (LOD). The residual moisture content of the granule (LOD) can be determined on a 3-4 g sample using a Computrac moisture analyser set at 90° C. operated in accordance with the manufacturer's procedure.
2. Weight Median Diameter (WMD). A 10 g sample of granule is sifted for 2 minutes at suitable pulse and sift amplitudes in an Allen Bradley sonic sifter in accordance with manufacturer's instructions. Sieves of 300 μm, 250 μm, 200 μm, 150 μm, 100 μm, 53 μm and 40 μm are used. The WMD is calculated from the cumulative percentage undersize size distribution using a computer program.
A preliminary compactibility assessment is carried out on a Carver press using different formulations as well as binary mixtures of LAF 237 with different excipients e.g. microcrystalline cellulose (Avicel PH102).
Data demonstrate that our claimed compositions on being compressed with increasing levels of pressure (compression force) show a substantially useful increase in tablet strength. In particular e.g. mixture of LAF237 and Avicel show a substantially useful increase in tablet strength. These results indicated that from compactibility point of view microcrystalline cellulose e.g. Avicel would a preferred excipient to be combined with LAF237. With increasing pressure (compression force) our claimed formulations and selected ranges show a substantially useful increase in tablet strength.
A compactibility study (D. Becker, personal communication) is carried out on an instrumented Korsch single station press with force and displacement sensors on both upper and lower punches.
A clear indication is afforded from these data that LAF237 tablets are very likely to have poor tablet hardness/crushing strength unless diluted out using sufficient filler with excellent compactibility. Our claimed formulations and selected ranges are particularly adapted to provide the required compactibility. Microcrystalline cellulose e.g. Avicel is a good choice for a filler in this respect.
Evaluation is carried out using a Manesty Betapress at 6 different settings: strain rate settings of 66-90 rpm (63,000-86,000 TPH) and force of 7.5-15 kN. The trials uses Flat-faced Beveled-edge (FFBE) tooling of 9 mm diameter for 250 mg tablets and 10 mm diameter for 310 mg tablets (other diameters are used depending on the weight of the tested tablet). Total tablet weights were selected so that both the 9 and 10 mm FFBE tablets would have 100 mg of LAF237 and identical tablet thickness. Friability, Compression profile, Strain rate profile and Weight variation are the measured outcomes. Study design and the friability results obtained from the study are used to determine the variables (particle size distribution in the formulation, tablet weight, tablet thickness and weight, water content in the tablet etc) impacting the outcome of hardness.
The material in the desired particle size range can be produced from any form of vildagliptin e.g. amorphous vildagliptin, by mechanical stress. This stress can be mediated by impact, shear or compression. In most commercially available grinding equipment a combination of these principles occurs. For vildagliptin preferably a mechanical impact or jet mill is used. The most preferable mechanical impact mill can be equipped with different kind of beaters, screens, liners or with pin plates. For our process preferably an impact mill with plate beater and a slit screen 5*2.5 cm is used. The impact speed should be variable between 20 and 100 m/s (as peripheral speed) to adapt to any batch to batch variation. In our case a peripheral speed of the beater of about 40-50 m/s is used.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/00400 | 1/17/2005 | WO | 00 | 5/8/2007 |
Number | Date | Country | |
---|---|---|---|
60604274 | Aug 2004 | US | |
60537706 | Jan 2004 | US |