Direct compression polymer tablet core

Information

  • Patent Grant
  • 9931358
  • Patent Number
    9,931,358
  • Date Filed
    Tuesday, January 31, 2017
    7 years ago
  • Date Issued
    Tuesday, April 3, 2018
    6 years ago
Abstract
The present invention provides a tablet core which comprises at least about 95% by weight of an aliphatic amine polymer. The invention also provides a method of producing a tablet core comprising at least about 95% by weight of an aliphatic amine polymer resin The method comprises the step of compressing the aliphatic amine polymer to form the tablet core. The tablet core can further include one or more excipients. In this embodiment, the method of producing the tablet core comprises the steps of: (1) hydrating the aliphatic amine polymer to the desired moisture level; (2) blending the aliphatic amine polymer with the excipients in amounts such that the polymer comprises at least about 95% by weight of the resulting blend; and (3) compressing the blend to form the tablet core. The present invention further relates to a coated tablet comprising an aliphatic amine polymer core wherein the coating is a water based coating.
Description
BACKGROUND OF THE INVENTION

A number of polymeric materials having useful therapeutic activity have been described for treatment of various conditions such as hyperlipidemia and hyperphosphatemia. Many of these polymeric materials function as non-absorbed ion exchange resins in the digestive tract. Such non-absorbed polymeric materials bind or otherwise sequester a target molecule and facilitate its removal from the body via the gastrointestinal tract. Examples of such resins include: Colestipol and Cholestyramine useful as orally administered cholesterol lowering agents; a variety of aliphatic amine polymers disclosed U.S. Pat. Nos. 5,496,545 and 5,667,775 useful as phosphate binders particularly for removing phosphate from patients suffering from renal failure; and other aliphatic amine polymers disclosed in U.S. Pat. No. 5,624,963, U.S. Pat. No. 5,679,717, WO98/29107 and WO99/22721 useful as cholesterol lowering agents.


Non-absorbed polymer therapeutics have traditionally presented a number of formulation challenges as the dosages are generally very large (gram quantities), and the resins tend to be extremely hydrophilic. The most desirable formulation for oral delivery of a therapeutic is a direct compression tablet formulation. However, not all therapeutics, particularly given the high dose requirements of polymeric ion exchange therapeutics, lend themselves to a tablet formulation. Even if such materials could be rendered into a tablet, it is generally not possible without the significant addition of other materials which assist in the tableting process. Ultimately the addition of any materials other than the active ingredient is undesirable given the dose requirement of the active ingredient. Ideally the tablet should contain as much active ingredient as possible with little else in the way of additional materials such that the tablet is as small as possible and easy to administer to the patient.


In addition, once the polymeric materials are compressed into a tablet, the tablet requires a coating for ease of administration to the patient. It has been discovered that the core polymeric material tends to be very hygroscopic, and thus will swell immediately upon contact with the inside of the mouth. Most coatings contain water, and thus it was believed that coating such tablets with a water-based coating would be impossible because the hygroscopic tablets would swell during the coating process. Thus providing a tablet core comprising a hygroscopic material such that a suitable coating may be used in conjunction with that core, is another significant challenge to providing the polymeric active ingredient in tablet form.


There is a need to provide suitable dosage forms for polymeric ion exchange materials, particularly for hydrophilic aliphatic amine polymers useful as therapeutic agents, which minimize the overall amount of material administered to the patient, which are easy to administer orally, and which are stable upon production and storage.


SUMMARY OF THE INVENTION

The present invention provides a tablet core which comprises at least about 95% by weight of an aliphatic amine polymer. In a preferred embodiment, the aliphatic amine polymer resin is a cross-linked polyallylamine resin. The aliphatic amine polymer is preferably hydrated. The hydrated polymer can, for example, comprise from about 5% water by weight or greater.


The invention also provides a method of producing a tablet core comprising at least about 95% by weight of an aliphatic amine polymer resin. The method comprises the step of compressing the aliphatic amine polymer to form the tablet core. The tablet core can further include one or more excipients. In this embodiment, the method of producing the tablet core comprises the steps of: (1) hydrating or drying the aliphatic amine polymer to the desired moisture level; (2) blending the aliphatic amine polymer with the excipients in amounts such that the polymer comprises at least about 95% by weight of the resulting blend; and (3) compressing the blend to form the tablet core. The present invention further relates to a coated tablet wherein the coating comprises a water based coating.





BRIEF DESCRIPTION OF THE DRAWINGS

The FIGURE is a table comprising data showing formulations and responses for sevelamer hydrochloride compressed tablet cores.





DETAILED DESCRIPTION OF THE INVENTION

A number of polymeric materials having useful therapeutic activity have been discussed above. In particular, aliphatic amine polymers have been disclosed which are useful in methods of lowering the serum phosphate level of a patient and lowering the serum cholesterol level of a patient. For example an epichorohydrin-cross-linked poly(allylamine hydrochloride) resin (U.S. Pat. Nos. 5,496,545 and 5,667,775), also referred to as sevelamer hydrochloride or sevelamer and marketed as RENAGEL®, has been shown to be effective at removing phosphate from human patients suffering from renal failure. Therapeutically effective dosages of sevelamer hydrochloride are large, typically on the order of 4 to 6 grams per day. Consequently, development of a dosage form of this and similar resins which minimizes the amount of excipient material is desirable.


The present invention provides a tablet core comprising at least about 95% by weight of an aliphatic amine polymer. The aliphatic amine polymer resin can be any of the aliphatic amine resins described in U.S. Pat. Nos. 5,496,545; 5,667,775; 5,624,963; 5,703,188; 5,679,717; 5,693,675, 5,607,669; 5,618,530; 5,487,888; and 5,702,696, each of which is hereby incorporated herein by reference in its entirety. Other suitable aliphatic amine polymers are disclosed in U.S. Ser. Nos. 08/670,764; 08/959,471, and 08/979,096, each of which is hereby incorporated by reference herein in its entirety. In a particularly preferred embodiment, the aliphatic amine polymer is polyallylamine, polyvinylamine, poly(diallylamine) or poly(ethyleneimine) or a salt thereof with a pharmaceutically acceptable acid. The aliphatic amine polymer is optionally substituted at one or more nitrogen atoms with an alkyl group or a substituted alkyl group such as a trialkylammonioalkyl group. The aliphatic amine polymer can optionally be cross-linked, for example via a multifunctional monomer or a bridging group which connects two amino nitrogen atoms from two different polymer strands. In a preferred embodiment, the aliphatic amine polymer resin is hydrated. For sevelamer hydrochloride, in particular, the compressibility is strongly dependent upon the degree of hydration (moisture content) of the resin. Preferably, the resin has a moisture content of about 5% by weight or greater, more preferably, the moisture content is from about 5% to about 9% by weight, and most preferably about 7% by weight. It is to be understood that in embodiments in which the polymer resin is hydrated, the water of hydration is considered to be a component of the resin. Thus, in this embodiment, the tablet core comprises at least about 95%, preferably at least about 96%, and more preferably at least about 98% by weight of the hydrated polymer, including the water of hydration.


The tablet can further comprise one or more excipients, such as hardeners, glidants and lubricants, which are well known in the art. Suitable excipients include colloidal silicon dioxide, stearic acid, magnesium silicate, calcium silicate, sucrose, calcium stearate, glyceryl behenate, magnesium stearate, talc, zinc stearate and sodium stearylfumarate. The excipients can represent from 0 to about 5% of the tablet core by weight.


The tablet core of the invention is prepared by a method comprising the steps of: (1) hydrating or drying the aliphatic amine polymer to the desired moisture level; (2) blending the aliphatic amine polymer with any excipients to be included in amounts such that the polymer comprises at least about 95% by weight of the resulting blend; and (3) compressing the blend using conventional tableting technology.


The invention also relates to a stable, swallowable coated tablet, particularly a tablet comprising a hydrophilic core, such as a tablet comprising an aliphatic amine polymer, as described above. In one embodiment, the coating composition comprises a cellulose derivative and a plasticizing agent. The cellulose derivative is, preferably, hydroxypropylmethylcellulose (HPMC). The cellulose derivative can be present as an aqueous solution. Suitable hydroxypropylmethylcellulose solutions include those containing HPMC low viscosity and/or HPMC high viscosity. Additional suitable cellulose derivatives include cellulose ethers useful in film coating formulations. The plasticizing agent can be, for example, an acetylated monoglyceride such as diacetylated monoglyceride. The coating composition can further include a pigment selected to provide a tablet coating of the desired color. For example, to produce a white coating, a white pigment can be selected, such as titanium dioxide.


In one embodiment, the coated tablet of the invention can be prepared by a method comprising the step of contacting a tablet core of the invention, as described above, with a coating solution comprising a solvent, at least one coating agent dissolved or suspended in the solvent and, optionally, one or more plasticizing agents. Preferably, the solvent is an aqueous solvent, such as water or an aqueous buffer, or a mixed aqueous/organic solvent. Preferred coating agents include cellulose derivatives, such as hydroxypropylmethylcellulose. Typically, the tablet core is contacted with the coating solution until the weight of the tablet core has increased by an amount ranging from about 4% to about 6%, indicating the deposition of a suitable coating on the tablet core to form a coated tablet.


In one preferred embodiment, the solids composition of the coating solution is:
















Material
% W/W









HPMC low viscosity Type 2910, cUSP
38.5%



HPMCE high viscosity Type 2910, cUSP
38.5%



diacetylated monoglyceride
23.0%










Tablets may be coated in a rotary pan coater as is known in the art or any other conventional coating apparatus such as a column coater or a continuous coater.


Astonishingly, it has been found that an aqueous coating dispersion is suitable as a coating solution for tablets comprising a hygroscopic, or water-swellable substance, such as an aliphatic amine polymer tablet. For example, the coating composition provides a strong, elastic and moisture-permeable coating without causing significant concomitant swelling of the tablet core during the coating process. In a preferred embodiment, the coating composition provides a tablet coating which withstands the swelling and contraction of sevelamer hydrochloride tablets during exposure to varying humidity levels and other known stability tests. Further, the coating composition can be used to coat other aliphatic amine polymer tablets without excessive uptake by the tablet core of water from the coating solution during the coating process.


The present invention also relates to the use of an aliphatic amine polymer as a disintegrant in a tablet. In general, in this embodiment the aliphatic amine polymer is not the active ingredient in the tablet, but is added to the tablet to enhance the rate of disintegration of the tablet following administration. This allows a more rapid release of the active agent or agents. The tablet will generally include the aliphatic amine polymer, one or more active ingredients, such as therapeutic agents (medicaments), and, optionally, one or more additional excipients.


The aliphatic amine polymer can be one of the aliphatic amine polymers disclosed above, such as polyethyleneimine, polyvinylamine, polyallylamine, polydiallylamine or any of the aliphatic amine polymers disclosed in U.S. Pat. Nos. 5,496,545 and 5,667,775 and U.S. Ser. Nos. 08/777,408 and 08/964,498, the teachings of each of which are incorporated herein by reference. In one embodiment, the aliphatic amine polymer is a cross-linked polyallylamine or a salt thereof with a pharmaceutically acceptable acid. Preferably, the aliphatic amine polymer is an epichlorohydrin-cross-linked polyallylamine or salt thereof with a pharmaceutically acceptable acid, such as sevelamer or sevelamer hydrochloride.


The tablet which includes an aliphatic amine as a disintegrant will, generally, include a sufficient amount of the aliphatic amine polymer to effectively enhance the rate of tablet disintegration under conditions of use. For example, if the tablet is an oral doseage form and it is desired that the tablet disintegrate in the stomach of the patient, the tablet should include a sufficient amount of the polymer to enhance the disintegration rate of the tablet under the conditions encountered in the stomach. The appropriate amount of the polymer to be included in the tablet can be determined by one skilled in the art using known methods. Typically, the polymer, the active ingredient or ingredients and any additional fillers or excipients are combined by mixing, and the resulting mixture is compressed to form a tablet using conventional methods. The tablet core formed in this way can then be coated, for example, as described above, or by other methods and other coating compositions which are known in the art and suitable for the intended use of the tablet.


In one embodiment, the tablet which includes an aliphatic amine polymer as a disintegrant is intended for administration in vivo, for example, to a patient, such as a human. Preferably, the tablet is intended to be administered orally. In this embodiment, the active ingredient or ingredients will be a therapeutic or diagnostic agent. The tablet can also be intended for use in vitro, for example, to deliver an active ingredient to an aqueous environment, such as a swimming pool.


The invention will now be described in detail by reference to the following examples.


EXAMPLES
Example 1
Preparation and Characterization of 400 mg and 800 mg Sevelamer Hydrochloride Direct Compression Tablet Cores

Preparation of Tablet Cores


400 mg sevelamer hydrochloride tablet cores were prepared from a blend consisting of 5000.0 g sevelamer hydrochloride, 50.0 g colloidal silicon dioxide, NF (Aerosil 200) and 50.0 g stearic acid. The sevelamer hydrochloride was hydrated to moisture content of 6% by weight. The blend was prepared by passing the sevelamer hydrochloride and colloidal silicon dioxide through a #20 mesh screen, transferring the mixture to a 16 quart PK blender and blending for five minutes. The stearic acid was then passed through an oscillator equipped with a #30 mesh screen, transferred into the 16 quart PK blender and blended for five minutes with the sevelamer hydrochloride/colloidal silicon dioxide mixture. The resulting blend was discharged into a drum and weighed. The final blend was then compressed on a 16 station Manesty B3B at 4 tons pressure using 0.280″×0.620″ punches to give tablet cores with an average weight of 434 mg. The resulting tablets consisted of 425 mg 6% hydrated sevelamer hydrochloride (equivalent to 400 mg anhydrous sevelamer hydrochloride), 4.25 mg colloidal silicon dioxide and 4.25 mg stearic acid.


800 mg sevelamer hydrochloride tablet cores were prepared from 19.0 kg sevelamer hydrochloride, 0.19 kg colloidal silicon dioxide, and 0.19 kg stearic acid. The sevelamer hydrochloride had a moisture content of 6% by weight. The blend was prepared by passing the sevelamer hydrochloride and colloidal silicon dioxide through a #20 mesh screen, transferring the mixture to a PK blender and blending for five minutes. The stearic acid was then passed through an oscillator equipped with a #30 mesh screen, transferred into the PK blender and blended for five minutes with the sevelamer hydrochloride/colloidal silicon dioxide mixture. The resulting blend was then discharged into a drum and weighed. The final blend was then compressed in on a 16 station Manesty B3B at 4 tons pressure using 0.3125″×0.750″ punches to give tablets with an average weight of 866 mg. The resulting tablets consisted of 850 mg 6% hydrated sevelamer hydrochloride (equivalent to 800 mg anhydrous sevelamer hydrochloride), 8.0 mg colloidal silicon dioxide and 8.0 mg stearic acid.


Characterization of Tablet Cores


The tablets prepared as described above were white to off-white, oval shaped, compressed tablets. The variation of the tablets prepared from each blend with respect to weight, thickness, friability, hardness, disintegration time and density was assessed. Standard methods in the art were employed for each of the measurements. The results, (not shown), indicate that the hardness, friability, thickness, and disintegration behavior of the sevelamer hydrochloride tablets all met industry-standard criteria.


Example 2
Coating of Sevelamer Hydrochloride Tablet Cores

Compressed core tablets prepared as described in Example 1 were coated in a coating pan with an aqueous coating solution having a solids composition comprising:
















Material
% W/W









HPMC low viscosity Type 2910, cUSP
38.5%



HPMCE high viscosity Type 2910, cUSP
38.5%



diacetylated monoglyceride
23.0%










The coating solution was applied to the compressed cores until a weight gain of approximately 4 to 6% was achieved. Stability studies—controlled room temperature, accelerated conditions, freeze/thaw and photosensitivity—for the coated sevelamer hydrochloride tablets were conducted in accordance with those procedures known in the art and described in the following references: International Committee on Harmonization (ICH) guidance “Q1A-Stability Testing of New Drug Substances and Products” (June 1997); ICH “Q1B-Guidelines for the Photostability Testing of New Drug Substances and Products” (November 1996); and ICH guidance “Q1C-Stability Testing for New Dosage Forms” (November 1996. The results (not shown) indicate that the coated tablets all met industry standard criteria.


Example 3
Factors Affecting the Processing and Performance Characteristics of Compressed Tablets (Prior to Coating)

In order to maintain consistently acceptable compressed tablet on a per batch basis, a number of correlative tests were performed in order to determine which factors most strongly impact the quality and integrity of the tablets. Studies such as weight variation, tablet hardness, friability, thickness, disintegration time, among others are known to those skilled in the art and are described in the United States Pharmacopeia (U.S.P.). “Hardness” means the measure of the force (measured herein in Newtons) needed to fracture a tablet when such tablet is placed lengthwise on a Hardness Tester. “Friability” is the measure of the mechanical strength of the tablet needed to withstand the rolling action of a coating pan and packaging. It is measured using a friabiliator. “Thickness” is the measure of the height of the tablet using a micrometer. “Disintegration Time” is the time necessary for the tablet to break apart in an appropriate solution at 37° C. and is measured in minutes.


Attainment of appropriate hardness (150-170 N hardness range) and friability (no more than 0.8%) is important to the success of the formulation. Having tablets with high hardness and low friability is particularly important when the tablets are to be coated as is the case with sevelamer hydrochloride tablets.


The FIGURE provides a table listing several different sevelamer hydrochoride tablet core formulations that vary by a number of factors including (actual) moisture content, and compression force used, excipient content among other variations. The data in


The FIGURE indicates that the most important factor affecting the processing and performance characteristics of compressed tablets is the moisture content. All formulations provided good flow with little weight variation throughout the entire range of compositions. In addition, disintegration times were less than 5 minutes across the range of compositions. Thus, it appears that moisture content and compression force provide the most appropriate factors on which to establish operating ranges for hardness and friability.


EQUIVALENTS

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A method of removing phosphate from a patient in need thereof, comprising administering to said patient a tablet, comprising: i) a hydrophilic, compressed core consisting essentially of: a) at least 95 wt. % sevelamer hydrochloride; andb) one or more excipients, comprising stearic acid or colloidal silicon dioxide; andii) a water-based coating, comprising hydroxypropylmethylcellulose or diacetylated monoglyceride.
  • 2. The method of claim 1, wherein the sevelamer hydrochloride is hydrated.
  • 3. The method of claim 1, wherein the sevelamer hydrochloride comprises a moisture content of about 5 wt. % or greater.
  • 4. The method of claim 1, wherein the sevelamer hydrochloride has a moisture content of about 5 wt. % to about 9 wt. %.
  • 5. The method of claim 4, wherein the water-based coating comprises hydroxypropylmethylcellulose and diacetylated monoglyceride.
  • 6. The method of claim 5, wherein the total amount of excipients is from 0 wt. % to about 5 wt. % of the hydrophilic, compressed core.
  • 7. The method of claim 6, wherein the tablet is a compressed tablet.
  • 8. The method of claim 7, wherein the hydrophilic, compressed core has a hardness of at least 150 N.
  • 9. The method of claim 7, wherein the hydrophilic, compressed core has a hardness of 150-170 N.
  • 10. The method of claim 9, wherein the hydrophilic, compressed core has a friability of no more than 0.8%.
  • 11. The method of claim 10, wherein the hydrophilic, compressed core comprises 400 mg or 800 mg of the sevelamer hydrochloride on an anhydrous basis.
  • 12. The method of claim 11, wherein the largest dimension of the hydrophilic, compressed core is at least 0.3125 inches.
  • 13. The method of claim 11, wherein the largest dimension of the hydrophilic, compressed core is at least 0.620 inches.
  • 14. The method of claim 11, wherein the largest dimension of the hydrophilic, compressed core is 0.750 inches.
  • 15. The method of claim 11, wherein the hydrophilic, compressed core is formed from a 0.3125 in.×0.750 in. punch.
  • 16. The method of claim 11, wherein the hydrophilic, compressed core comprises 400 mg of the sevelamer hydrochloride on an anhydrous basis.
  • 17. The method of claim 11, wherein the hydrophilic, compressed core comprises 800 mg of the sevelamer hydrochloride on an anhydrous basis.
  • 18. The method of claim 11, wherein the patient suffers from hyperphosphatemia.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/481,071, filed Sep. 9, 2014, which is a continuation of U.S. application Ser. No. 13/467,448, filed May 9, 2012, which is a continuation of U.S. application Ser. No. 12/461,143, filed Aug. 3, 2009, now U.S. Pat. No. 8,187,631 issued on May 29, 2012, which is a continuation of U.S. application Ser. No. 11/196,799, filed Aug. 3, 2005, which is a further continuation of U.S. application Ser. No. 10/785,322, filed Feb. 24, 2004, which is a continuation of U.S. application Ser. No. 09/691,429, filed Oct. 18, 2000, now U.S. Pat. No. 6,733,780 issued on May 11, 2004, which claims the benefit of U.S. Provisional Application No. 60/160,258, filed Oct. 19, 1999, and U.S. Provisional Application No. 60/174,227, filed Jan. 3, 2000. The foregoing related applications, in their entirety, are incorporated herein by reference.

US Referenced Citations (211)
Number Name Date Kind
2426125 Steiner Aug 1947 A
2456428 Parker Dec 1948 A
2463824 Steiner et al. Mar 1949 A
3104205 Hainer et al. Sep 1963 A
3308020 Tennant et al. Mar 1967 A
3332841 Ainsworth et al. Jul 1967 A
3383236 Brindamour May 1968 A
3431138 Zingerman et al. Mar 1969 A
3539380 Johnson et al. Nov 1970 A
3624209 Granatek et al. Nov 1971 A
3980770 Ingelman et al. Sep 1976 A
4016209 Wagner et al. Apr 1977 A
4071478 Shen et al. Jan 1978 A
4115537 Driscoll et al. Sep 1978 A
4143130 Imondi et al. Mar 1979 A
4172120 Todd et al. Oct 1979 A
4181718 Mason et al. Jan 1980 A
4183918 Asher et al. Jan 1980 A
4205064 Wagner et al. May 1980 A
4211763 Marshall et al. Jul 1980 A
4247393 Wallace Jan 1981 A
4264573 Powell et al. Apr 1981 A
4302440 John et al. Nov 1981 A
4341563 Kurihara et al. Jul 1982 A
4344993 Schmidt et al. Aug 1982 A
4439419 Vecchio Mar 1984 A
4504640 Harada et al. Mar 1985 A
4507466 Tomalia et al. Mar 1985 A
4518433 McGinley et al. May 1985 A
4528184 Kurono et al. Jul 1985 A
4539198 Powell et al. Sep 1985 A
4543370 Porter et al. Sep 1985 A
4605701 Harada et al. Aug 1986 A
4631305 Guyer et al. Dec 1986 A
4762524 Chambers et al. Aug 1988 A
4849227 Cho Jul 1989 A
4853437 Lukach et al. Aug 1989 A
4871779 Killat et al. Oct 1989 A
4895621 Hassler Jan 1990 A
4956182 Bequette et al. Sep 1990 A
4983398 Gaylord et al. Jan 1991 A
4983399 Maish Jan 1991 A
5053423 Liu Oct 1991 A
5055197 Albright et al. Oct 1991 A
5073380 Babu et al. Dec 1991 A
5108767 Mulchandani et al. Apr 1992 A
5194464 Itoh et al. Mar 1993 A
5262167 Vegesna et al. Nov 1993 A
5302531 Bauer Apr 1994 A
5373052 Fukuda et al. Dec 1994 A
5374422 St. Pierre et al. Dec 1994 A
5376396 Clark Dec 1994 A
5401515 Woodard et al. Mar 1995 A
5414068 Bliem et al. May 1995 A
5428112 Ahlers et al. Jun 1995 A
5430110 Ahlers et al. Jul 1995 A
5447726 Nomura Sep 1995 A
5455047 Bequette et al. Oct 1995 A
5462730 McTaggart et al. Oct 1995 A
5487888 Mandeville et al. Jan 1996 A
5496545 Holmes-Farley et al. Mar 1996 A
5520932 McCurdy et al. May 1996 A
5530092 Meijer et al. Jun 1996 A
5561214 Yeske et al. Oct 1996 A
5607669 Mandeville, III et al. Mar 1997 A
5610268 Meijer et al. Mar 1997 A
5618530 Mandeville, III et al. Apr 1997 A
5624963 Mandeville, III et al. Apr 1997 A
5654003 Fuisz et al. Aug 1997 A
5667775 Holmes-Farley et al. Sep 1997 A
5679717 Mandeville, III et al. Oct 1997 A
5686106 Kelm et al. Nov 1997 A
5693675 Mandeville, III et al. Dec 1997 A
5702696 Mandeville, III et al. Dec 1997 A
5703188 Mandeville, III et al. Dec 1997 A
5709880 Del Corral et al. Jan 1998 A
5718920 Notenbomber Feb 1998 A
5747067 Auguello et al. May 1998 A
5750148 Maruyama et al. May 1998 A
5807582 Cha Sep 1998 A
5814336 Kelm et al. Sep 1998 A
5840339 Kunin Nov 1998 A
5840766 Mandeville, III et al. Nov 1998 A
5900475 Mandeville, III et al. May 1999 A
5919832 Mandeville, III et al. Jul 1999 A
5959069 Gluck et al. Sep 1999 A
5969090 Mandeville, III et al. Oct 1999 A
5985938 Holmes-Farley et al. Nov 1999 A
6022533 Goto et al. Feb 2000 A
6034129 Mandeville, III et al. Mar 2000 A
6037444 Rannard et al. Mar 2000 A
6083495 Holmes-Farley et al. Jul 2000 A
6083497 Huval et al. Jul 2000 A
6090411 Pillay et al. Jul 2000 A
6149938 Bonadeao et al. Nov 2000 A
6177478 Holmes-Farley et al. Jan 2001 B1
6180754 Stutts et al. Jan 2001 B1
6187897 Kawashima et al. Feb 2001 B1
6190650 Matthews et al. Feb 2001 B1
6203785 Holmes-Farley et al. Mar 2001 B1
6248318 Huval et al. Jun 2001 B1
6264937 Mandeville, III et al. Jul 2001 B1
6274713 Sieving et al. Aug 2001 B1
6281252 Holmes-Farley et al. Aug 2001 B1
6284275 Chen Sep 2001 B1
6335402 Mihan et al. Jan 2002 B1
6362266 Buchholz et al. Mar 2002 B1
6383518 Matsuda et al. May 2002 B1
6423754 Holmes-Farley et al. Jul 2002 B1
6509013 Holmes-Farley et al. Jan 2003 B1
6534600 Dvornic et al. Mar 2003 B2
6566407 Holmes-Farley et al. May 2003 B2
6600011 McDonnell et al. Jul 2003 B2
6605270 Mandeville et al. Aug 2003 B1
6696087 Matsuda et al. Feb 2004 B2
6726905 Mandeville, III et al. Apr 2004 B1
6733780 Tyler et al. May 2004 B1
6844372 Goto et al. Jan 2005 B2
6858203 Holmes-Farley et al. Feb 2005 B2
6908609 Simon et al. Jun 2005 B2
7014846 Holmes-Farley et al. Mar 2006 B2
7019085 Albright Mar 2006 B2
7081509 Wagner et al. Jul 2006 B2
7087223 Goto et al. Aug 2006 B2
7101960 Mandeville, III et al. Sep 2006 B2
7220406 Burke May 2007 B2
7335795 Chang et al. Feb 2008 B2
7342083 Chang et al. Mar 2008 B2
7385012 Chang et al. Jun 2008 B2
7449605 Chang et al. Nov 2008 B2
7459151 Holmes-Farley et al. Dec 2008 B2
7459502 Connor et al. Dec 2008 B2
7589238 Connor et al. Sep 2009 B2
7638524 Huval et al. Dec 2009 B2
7985418 Bhagat et al. Jul 2011 B2
8808738 Bhagat et al. Aug 2014 B2
9095509 Bhagat et al. Aug 2015 B2
20020122786 Matsuda et al. Feb 2002 A1
20020054903 Tyler et al. May 2002 A1
20020114774 Fitzpatrick et al. Aug 2002 A1
20020159968 Petersen et al. Oct 2002 A1
20020160050 Elema et al. Oct 2002 A1
20020168333 Burke Nov 2002 A1
20020182168 Holmes-Farley et al. Dec 2002 A1
20020187120 Holmes-Farley et al. Dec 2002 A1
20020187121 Burke Dec 2002 A1
20030003113 Lewandowski Jan 2003 A1
20030039627 Holmes-Farley et al. Feb 2003 A1
20030049226 Burke et al. Mar 2003 A1
20030086898 Holmes-Farley et al. May 2003 A1
20030133902 Holmes-Farley et al. Jul 2003 A1
20030161875 Murpani et al. Aug 2003 A1
20030175349 Garg et al. Sep 2003 A1
20030180250 Chauhan et al. Sep 2003 A1
20030199090 Monahan et al. Oct 2003 A1
20030215585 Bunick Nov 2003 A1
20040019020 Jozefiak et al. Jan 2004 A1
20040022844 Hasenzahl et al. Feb 2004 A1
20040120922 Burke Jun 2004 A1
20040166156 Tyler et al. Aug 2004 A1
20040170695 Elama et al. Sep 2004 A1
20040185111 Rubino et al. Sep 2004 A1
20040191209 Oba Sep 2004 A1
20040191212 Holmes-Farley et al. Sep 2004 A1
20050084476 Goto et al. Apr 2005 A1
20050096438 Chang et al. May 2005 A1
20050123614 Kim et al. Jun 2005 A1
20050131138 Connor et al. Jun 2005 A1
20050131161 Mandeville, III et al. Jun 2005 A1
20050147580 Connor et al. Jul 2005 A1
20050165190 Chang et al. Jul 2005 A1
20050208095 Hunter et al. Sep 2005 A1
20050209423 Chang et al. Sep 2005 A1
20050220752 Charmot et al. Oct 2005 A1
20050220889 Charmot et al. Oct 2005 A1
20050220890 Charmot et al. Oct 2005 A1
20050239901 Chang et al. Oct 2005 A1
20050260236 Tyler et al. Nov 2005 A1
20050282010 Xu Dec 2005 A1
20060024336 Charmot et al. Feb 2006 A1
20060024368 Fassihi et al. Feb 2006 A1
20060029663 Uchida et al. Feb 2006 A1
20060034914 Tyler et al. Feb 2006 A1
20060043984 Miller et al. Mar 2006 A1
20060047086 Albright et al. Mar 2006 A1
20060054914 Hsian Yi Mar 2006 A1
20060088592 Choi et al. Apr 2006 A1
20060116391 Horbury et al. Jun 2006 A1
20060134225 Moerck et al. Jun 2006 A1
20060171916 Holmes-Farley et al. Aug 2006 A1
20060177415 Burke Aug 2006 A1
20060239959 Holmes-Farley et al. Oct 2006 A1
20060251614 Bhagat et al. Nov 2006 A1
20060258812 Gopalkrishna et al. Nov 2006 A1
20060292192 Hasenzahl et al. Dec 2006 A1
20070035313 Wuersch et al. Feb 2007 A1
20070059277 Bhagat et al. Mar 2007 A1
20070071715 Deluca et al. Mar 2007 A1
20070094779 Dauphin May 2007 A1
20070098678 Bhagat et al. May 2007 A1
20070110707 Ravi May 2007 A1
20070155950 Mandeville, III et al. Jul 2007 A1
20070190135 Matsuda et al. Aug 2007 A1
20070224283 Chang et al. Sep 2007 A1
20080014288 Huval et al. Jan 2008 A1
20080107737 Chang et al. May 2008 A1
20080226735 Moerck et al. Sep 2008 A1
20080292697 Tyler et al. Nov 2008 A1
20080299199 Bar-Shalom et al. Dec 2008 A1
20150104510 Bhagat et al. Apr 2015 A1
20160113961 Bhagat et al. Apr 2016 A1
Foreign Referenced Citations (66)
Number Date Country
689797 Apr 1998 AU
656 535 Jul 1986 CH
4010271 Oct 1991 DE
0162388 Nov 1985 EP
0375350 Jun 1990 EP
0379161 Jul 1990 EP
0449151 Oct 1991 EP
0534304 Mar 1993 EP
0605757 Jul 1994 EP
0737759 Oct 1996 EP
0997148 May 2000 EP
1153940 Nov 2001 EP
1210935 Jun 2002 EP
1304104 Apr 2003 EP
0211991 Mar 2007 EP
2217010 Sep 1974 FR
2232563 Jan 1975 FR
0929391 Jun 1963 GB
1238597 Jul 1971 GB
1470538 Apr 1977 GB
2036048 Nov 1978 GB
2391730 Dec 1978 GB
1573487 Aug 1980 GB
2090605 Jul 1982 GB
2276170 Sep 1994 GB
2169356 Jul 2000 GB
50-34095 Feb 1975 JP
58079022 May 1983 JP
60152424 Aug 1985 JP
62-132830 Jun 1987 JP
4-503962 Mar 1990 JP
5-244915 Sep 1993 JP
6-321786 Nov 1994 JP
10-330269 Dec 1998 JP
10316576 Dec 1998 JP
2000178182 Jun 2000 JP
2006-008637 Jan 2006 JP
7401543 Aug 1974 NL
7603653 Oct 1976 NL
1808015 Apr 1993 RU
WO 1990002148 Mar 1990 WO
WO 1992010522 Jun 1992 WO
WO 1993000915 Jan 1993 WO
WO 1993005793 Jan 1993 WO
WO 1994019379 Jan 1994 WO
WO 1994004596 Mar 1994 WO
WO 1994027620 Dec 1994 WO
WO 1994027621 Dec 1994 WO
WO 1995005184 Feb 1995 WO
WO 1996021454 Jul 1996 WO
WO 1996025440 Aug 1996 WO
WO 1997049771 Dec 1997 WO
WO 1998042355 Oct 1998 WO
WO 1998044933 Oct 1998 WO
WO 1999022721 May 1999 WO
WO 2000022008 Apr 2000 WO
WO 2002085378 Oct 2002 WO
WO 2004099288 Nov 2004 WO
WO 2005021000 Mar 2005 WO
WO 2005041902 May 2005 WO
WO 2005065291 Jul 2005 WO
WO 2005072752 Aug 2005 WO
WO 2006022759 Mar 2006 WO
WO 2006050314 May 2006 WO
WO 2006050315 May 2006 WO
WO 2007035313 Mar 2007 WO
Non-Patent Literature Citations (76)
Entry
Bhadra, D. et al., “Glycodendrimeric Nanoparticulate Carriers of Primaquine Phosphate for Liver Targeting” International Journal of Pharmaceutics, 295 (Mar. 2005) 221-233.
Burt, Helen, et al., “Ion-Exchange Resins as Potential Phosphate-Binding Agents for Renal Failure Patients: Effect of the Physiochemical Properties of Resins on Phosphate and Bile Salt Binding,” Journal of Pharmaceutical Sciences, vol. 76, No. 5 (May 1987) pp. 379-383.
C and C, Product Catalog, Manesty B3B Rotary Tablet Presses (Product# manesty-b3b-16) downloaded online, Mar. 5, 2014.
Caramella, Carla et al. “Experimental Evidence of Disintegration Mechanisms” Acta Pharm. Technol., 35:1 (1989) 30-33.
Chertow, Glenn M. et al. “The Effects of Sevelamer and Calcium Acetate on Proxies of Atherosclerotic and Arteriosclerotic Vascular Disease in Hemodialysis Patients” Am. J. Nephrol., 23:5 (2003) 307-314.
De Brabander-Van Den Berg, Ellen M. M. et al., “Poly(propylenimin)-Dendrimere: Synthese in gröβerem Maβstab durch heterogen katalysierte Hydrierungen” Angew. Chem. (1993) 1370-1372. [in German only].
Delmez, James A., et al., “Hyperphosphatemia: Its Consequences and Treatment in Patients with Chronic Renal Disease,” American Journal of Kidney Diseases, vol. XIX, No. 4 (1992) pp. 303-317.
Duncan, Ruth et al., “Dendrimer biocompatibility and toxicity” Advanced Drug Delivery Reviews, 57 (2005) 2215-2237.
Emmett, Michael, et al., “Calcium Acetate Control of Serum Phosphorus in Hemodialysis Patients,” American Journal of Kidney Diseases, vol. XVII, No. 5 (1991) pp. 544-550.
Examination Report dated Jan. 20, 2011 for corresponding Australian Application No. 2006292672.
Examination Report dated Sep. 29, 2010 for Brazilian Application No. PI 0015061-4.
Examination Report dated Nov. 8, 2010 for Japanese Application No. 2001-531357.
Ferrari, F. et al. “Investigation on Bonding and Distintegration Properties of Pharmaceutical Materials” International Journal of Pharmaceutics, 136 (1996) 71-79.
Gao, C., “Hyperbranched polymers made from A2, 82 and BB′2 type monomers, 2. Preparation of hyperbranched copoly(sulfone-amine)s by polyaddition of N-ethylethylenediamine and piperazine to divinylsulfone” Polymer (2001), 42(8), 3437-3443.
Gao, C., “Preparation of Water Soluble hyperbranched poly(sulfone-amine)s by polyaddition of N-ethylethylenediamine to divinyl sulfone” Polymer (2001), 42(18), 7603-7610.
Gao, Chao, “Hyperbranched copolymers made from A2, B2 and BB′2 type monomers (iv). Copolymerization of divinyl sulfone with 4,4′-trimethylenedipiperidine and N-ethylethylenediamine” Science in China, Series B: Chemistry (2001), 44(2), 207-215.
Gao, Chao, “Hyperbranched copolymers made from A2, B2 and BB′2 type monomers, 3a: comparison of copoly(sulfone-amine)s containing piperazine and 4,4′-trimethylenedipiperidine units” Macromolecular Chemistry and Physics (2001), 202(15), 3035-3042.
Gao, Chao, “Hyperbranched polymers made from A2- and BB2′-type monomers; 3. Polyaddition of N-methyl 1,3-propanediamine to divinyl sulfone” Macromolecular Chemistry and Physics (2001), 202(12), 2623-2629.
Gao, Chao, “Polyaddition of B2 and BB′2 Type Monomers to A2 Type Monomer. 1. Synthesis of Highly Branched Copoly(sulfon-amine)s” Macromolecules (2001), 34(2), 156-161.
Gao, Chao, “Synthesis of hyperbranched polymers from commercially available A2 and BB′2 type monomers” Chemical Communications (Cambridge), 1 (2001) 107-108.
Ghosh, J.P., et al., “Preparation and Properties of a New Chelating Resin Containing 2-Nitroso-1-naphthol,” Talanta, vol. 28 (1981) pp. 957-959.
Hammouda, Y. et al. “The Use of Sodium Chloride as a Directly Compressible Filler in Therapeutic Tablets” Pharm. Ind., 37:5 (1975) 361-363.
Hobson, Lois J., et al. “Poly(amidoamine) Hyperbranched Systems:Synthesis, Structure and Characterization” Polymer, 40 (1999) 1279-1297.
Huval, Chad C. et al., “Syntheses of hydrophobically modified cationic hydrogels by copolymerization of alkyl substituted diallylamine monomers and their use as bile acid sequestrants” European Polymer Journal, 40 (2004) 693-701.
International Search Report dated Apr. 12, 2007 for corresponding PCT/US2006/035370.
International Search Report dated Apr. 27, 2006 for PCT/US2005/039366.
Jansen, Johan F.G.A. et al. “The Dendritic Box: Shape-Selective Liberation of Encapsulated Guests” J. Am. Chem. Soc., 117 (1995) 4417-4418.
Janssen, H.M. et al, “The Synthesis and Characterization of Dendritic Molecules” Eindhoven University of Technology [No date available].
Jayamurugan, Govindasamy, et al., “Synthesis of Large Generation poly(propul ether imine) (PETIM) Dendrimers” Tetrahedron, 62 (2006) 9582-9588.
Katopodis, K. P. et al. “Effectiveness of Aluminum Hydroxide Timing Administration in Relation to Meals in Controlling Hyperphosphatemia in Dialysis Patients” The International Journal of Artificial Organs, 28:8 (2005) 803-807.
Klapper, Marcus et al., “Poly(methylene amine): A Polymer with the Maximum Possible Number of Amino Groups on a Polymer Backbone” Angew. Chem. Int. Ed., 42 (2003) 4687-4690 (XP002456407).
Koç, Fikret, et al. “Highly Regioselective Synthesis pf Amino-Functionalized Dendritic PolyGlycerols by a One Pot Hydroformylation/Reductive Amination Sequence” J. Org. Chem., 70 (2005) 2021-2025.
Kremer, Michael, et al., “Pore-Size Distributions of Cationic Polyacrylamide Hydrogels Varying in Initial Monomer Concentration and CrossInker/Monomer Ratio” Macromolecules, 27 (1994) 2965-2973.
Kuga, Shigenori, “Pore Size Ditribution Analysis of Gel Substances by Size Exclusion Chromatography” J. Chromatography, 206 (1981) 449-461.
Lin, Shan-Yang et al. “Influence of Excipients, Drugs, and Osmotic Agent in the Inner Core on the Time-Controlled Disintegration of Compression-Coated Ethylcellulose Tablets” Journal of Pharmaceutical Sciences, 91:9 (Sep. 2002) 2040-2046.
Mai, Martin L., et al., “Calcium acetate, an effective phosphorus binder in patients with renal failure,” Kidney International, vol. 36 (1989) pp. 690-695.
Maroni, Bradley J. et al. “Renal Bioreplacement Therapy is Associated with a Reduction in Mortality in Patients with Acute Renal Failure: Results of a Randomized, Multi-Center, Phase II Trial” ERA-EDTA: Abstract #551794 (2006).
Mattsson, S. et al. “Formulation of High Tensile Strength Rapidly Disintegrating Tablets Evaluation of the Effect of Some Binder Properties” S.T.P. Pharma Sciences, 11:3 (2001) 211-220.
McGary, T.J., et al., “Polycation as an Alternative Osmotic Agent and Phosphate Binder in Peritoneal Dialysis,” Uremia Investigation, vol. 8, No. 2 (1984-85) pp. 79-84.
McGraw-Hill Dictionary of Scientific and Technical Terms, Third Ed., The Nikkan Kogyo Shimbu, LTD., 1997, p. 54.
Mitchell, Karen et al. “The Influence of Additives on the Cloud Point, Disintegration and Dissolution of Hydroxypropylmethylcellulose Gels and Matrix Tablets” International Journal of Pharmaceutics, 66 (1990) 233-242.
Mourey, T. H., et al., “Unique Behavior of Dendritic Molecules: Intrinsic Viscosity of Polyether Dendrimers” Macromolecules, 25 (1992) 2401-2406.
Munson, Paul L., “Studies on the Role of the Parathyroids in Calcium and Phosphorus Metabolism,” Annals New York Academy of Sciences (Jun. 1993) pp. 776-795.
Newkome, George R. et al., “Improved Synthesis of an Ethereal Tetraamine Core for Dendrimer Construction” J. Org. Chem., 67 (2002) 3957-3960.
Pavlov, G. M. et al. “Molecular Characteristics of Poly(propylene imine) Dendrimers as Studied with Translational Diffusion and Viscometry” Colloid. Polym. Sci., 280 (2002) 416-423.
Pérignon, Nelly et al., “Formation and Stabilization in Water of Metal Nanoparticles by a Hyperbranched Polymer Chemically Analgous to PAMAM Dendrimers” Chem Mater., 16 (2004) 4856-4858.
Petrariu, I., et al., “Hofmann degradation in quaternary basic ammonium polymers: I. Degradation of the linear and crosslined basic benzylic polyelectrolytes in alkaline media,” Majer. Plast. (Bucharest), vol. 9, No. 9 (1972) pp. 467-472.
Physicians' Desk Reference “Renagel”, 2012.
Physicians' Desk Reference, Consult 1992 Supplements for Revisions—“Amphojel® Suspension Tablets”, p. 2429.
Physicians' Desk Reference, Consult 1992 Supplements for Revisions—“Phoslo® Calcium Acetate Tablets”.
Proceedings of the American Chemical Society Division of Polymeric Materials: Science and Engineering, Boston, Massachusetts, vol. 62 (1990) pp. 259-263.
“Renvela: sevelamer carbonate” Prescribing Information, Genzyme Corporation, Nov. 2007.
Rosenbaum, D.P, et al., “Effect of RenaGel, a non-absorbable, cross-linked, polymeric phosphate binder, on urinary phosphorus excretion in rats” Nephrology Dialysis Transplantation, vol. 12 (1997) 961-964.
Salusky, I.B., et al., “Aluminum Accumulation During Treatment with Aluminum Hydroxide and Dialysis in Children and Young Adults with Chronic Renal Disease,” The New England Journal of Medicine, vol. 324, No. 8 (1991) pp. 527-531.
Sarker, Dipak K. et al. “Restoration of Protein Foam Stability Through Electrostatic Propylene Glycol Alginate-Mediated Protein—Protein Interactions,” Colloids and Surfaces B: Biointerfaces, 15 (1999) 203-213.
Schatzlein, Andreas G. et al., “Preferential liver gene expression with polypropylenimine dendrimers” Journal of Controlled Release, 101 (2005) 247-258.
Schulz, W. “Brief Evaluation: Sevelamer Hydrochloride” Drug, Therapy Criticism, Hans Marseille Publishers GmbH, Munich, Issue 3 (2001) 621-626.
Selmeczi, B. et al. “Investigations of the Influence of Some Novel Auxiliary Agents on the Physical Properties of Tablets” Pharmaceutical Technological Institute of the Medical University of Szeged (Hungary), [No date available].
Shao, Lu et al., “Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers” Journal of Membrane Science, 238 (2004) 153-163.
Shkinev, V.M., et al., “Anion exchange extraction and enrichment from aqueous solutions by quaternary ammonium reagents,” Solvent Extraction and Ion Exchange, vol. 7, No. 3 (1989) pp. 499-510.
Slatopolsky, Eduardo, et al., “Calcium Carbonate as a Phosphate Binder in Patients with Chronic Renal Failure Undergoing Dialysis,” The New England Journal of Medicine, vol. 315, No. 3 (1986) pp. 157-161.
Soltero, Richard et al. “The Effects of PH. Ionic Concentration and Ionic Species of Dissolution Media on the Release Rates of Quinidine Gluconate Sustained Release Dosage Forms” Drug Development and Industrial Pharmacy, 17:1 (1991) 113-140.
Stasko, Nathan A. et al., “Dendrimers as a Scaffold for Nitric Oxide Release” J. Am. Chem. Soc., 128 (2006) 8265-8271.
Sugimoto, H., et al.; Journal of Food Processing and Preservations, 1981, 5:83-93.
Tirkkonen, Sirpa et al. “Enhancement of Drug Release from Ethylcellulose Microcapsules Using Solid Sodium Chloride in the Wall” International Journal of Pharmaceutics, 88 (1992) 39-51.
Tirkkonen, Sirpa et al. “Release of Indomethacin from Tabletted Ethylcellulose Microcapsules” International Journal of Pharmaceutics, 92 (1993) 55-62.
Ullmanns Encyklopadie der technischen Chemie—Band 19: Polyolefine (1980) pp. 167-178.
Warshawsky, A., “Ion Exchange and Sorption Processes in Hydrometallurgy”, Critical Reports on Applied Chemistry, vol. 19: Chapter 4: Chelating Ion Exchangers, M. Streat & D. Naden (Eds.), John Wiley & Sons (1987) pp. 166-225.
Winston, Anthony and Kirchner, Darrell, “Hydroxamic Acid Polymers. Effect of Structure of the Selective Chelation of Iron in Water,” Macromolecules, vol. 11, No. 3 (1978) pp. 597-603.
Winston, Anthony and McLaughline, Glenn R., “Hydroxamic Acid Polymers. II. Design of a Polymeric Chelating Agent for Iron,” Journal of Polymer Science, vol. 14 (1976) pp. 2155-2165.
Written Opinion dated Apr. 27, 2006 for PCT/US2005/039366.
Xiao, Youchang et al., “Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-Linked Polyimide Films” Ind. Eng. Chem. Res., 44 (2005) 3059-3067.
Xiuru Li, et al., “Synthesis and Characterization of Hyperbranched Poly(ester amide)s from Commercially Available Dicarboxylic Acids and Multihydroxyl Primary Amines” Macromolecules, 39 (2006) 7889-7899.
Yan, Deyue, “Hyperbranched Polymers Made from A2 and BB′2 Type Monomers. 1. Polyaddition of 1-(2-Aminoethyl)piperazine to Divinyl Sulfone” Macromolecules (2000), 33(21), 7693-7699.
Zabutaya, F.I., et al .. “Proton NMR spectroscopic study of the reaction of epichlorahydrin with allyamine,” Uzb. Chim. Zh., vol. 3 (1984) pp. 23-27. (English Abstract, see XP 002025287).
Zhuzhu, “New Drug to Decrease the Phosphorous in Blood—Sevelamer Hydrochloride”, Chinese Pharmaceutical Journal, 1999, 34:7, 496-497 [English translation provided].
Related Publications (1)
Number Date Country
20170202872 A1 Jul 2017 US
Provisional Applications (2)
Number Date Country
60174227 Jan 2000 US
60160258 Oct 1999 US
Continuations (6)
Number Date Country
Parent 14481071 Sep 2014 US
Child 15420896 US
Parent 13467448 May 2012 US
Child 14481071 US
Parent 12461143 Aug 2009 US
Child 13467448 US
Parent 11196799 Aug 2005 US
Child 12461143 US
Parent 10785322 Feb 2004 US
Child 11196799 US
Parent 09691429 Oct 2000 US
Child 10785322 US