Information
-
Patent Grant
-
6536227
-
Patent Number
6,536,227
-
Date Filed
Tuesday, January 29, 200223 years ago
-
Date Issued
Tuesday, March 25, 200322 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Anderson Kill & Olick, PC
-
CPC
-
US Classifications
Field of Search
US
- 062 521
- 062 522
- 062 516
- 062 517
- 062 440
- 062 441
- 165 171
- 165 168
- 165 169
- 165 156
- 029 890038
- 029 890043
-
International Classifications
-
Abstract
A direct cooling type refrigerator includes an outer case, an inner case, a metal plate, an evaporator, an insulator, a first bonding means, and a second bonding means. The inner case is positioned inside the outer case, and the metal plate is positioned on the inner case. The first bonding means is used to attach the metal plate on the inner case. The second bonding means is used to join the evaporator with the metal plate. The insulator is interposed between the cabinet and the inner liner.
Description
FIELD OF THE INVENTION
The present invention relates to a refrigerator; and, more particularly, to a direct cooling type refrigerator.
BACKGROUND OF THE INVENTION
Generally, a refrigerator is an apparatus for storing various foodstuffs in either a frozen or a refrigerated condition to extend the freshness of the foodstuffs for a long time. Such a refrigerator essentially includes a compressor, a condenser, and an evaporator. The compressor circulates a refrigerant by compressing the refrigerant. The condenser serves to condense the refrigerant into a liquid phase, and the evaporator serves to generate a chilled air by evaporating the liquid phase refrigerant.
The refrigerator further includes a freezing chamber and/or a refrigerating chamber. The freezing chamber is alternatively referred to as a freezing compartment and serves to store frozen foods such as meats or an ice cream. The refrigerating chamber is alternatively referred to as a refrigerating compartment and serves to store foods at a lower temperature than a room temperature.
There have been developed various types of refrigerators to satisfy various needs, and a direct cooling type refrigerator is one of them. The direct cooling type refrigerator is alternatively referred to as a natural circulation type in which the chilled air naturally circulates in the freezing or the refrigerating chamber because of a temperature difference therebetween. The evaporator of the direct cooling type refrigerator usually directly contacts an inner case forming the freezing chamber and/or the refrigerating chamber.
With reference to
FIGS. 1 and 2
, a conventional direct cooling type refrigerator
1
and problems thereof will be explained.
FIG. 1
shows a top plan view of the conventional direct cooling type refrigerator
1
while
FIG. 2
shows a cross-sectional view taken along a line II—II of FIG.
1
.
In
FIG. 1
, the direct cooling type refrigerator
1
includes a cabinet
2
, a door
50
assembled with the cabinet
2
, an inner liner
4
inside the cabinet
2
, and a freezing chamber and/or a refrigerating chamber
60
defined by the inner liner
4
. The inner liner
4
is alternatively referred to as an inner case. An evaporator (not shown), a condenser (not shown), and a compressor (not shown) are also contained in the direct cooling type refrigerator
1
. The door
50
and the cabinet
2
are assembled usually with, e.g., hinges (not. shown), such that the door
50
can open or close the freezing chamber and/or the refrigerating chamber
60
. If both the refrigerating chamber and the freezing chamber
60
are contained in the direct cooling type refrigerator
1
, the refrigerating chamber is usually disposed under the freezing chamber
60
.
As shown in
FIG. 2
, the conventional direct cooling type refrigerator
1
further includes a refrigerant pipe
10
and an insulator
20
. The refrigerant pipe
10
is disposed on the inner liner
4
and serves as the evaporator. The insulator
20
is interposed between the inner liner
4
and the cabinet
2
to insulate the freezing or the refrigerating chamber
60
. The insulator
20
is usually polyurethane, and the inner liner
4
is usually polystyrene. The inner liner
4
conventionally has a multiplicity of recesses
4
a
where the refrigerant pipe
10
is embedded to contact the inner liner
4
. The refrigerant pipe
10
is interposed between the inner liner
4
and the insulator
20
. The refrigerant is evaporated inside the refrigerant pipe
10
, thereby reducing the temperature of the freezing chamber
60
.
The conventional direct cooling type refrigerator
1
presents quite a few problems, e.g. a large temperature variation along the inner liner
4
. Because the refrigerant pipe
10
directly contacts the inner liner
4
only at the plurality of recesses
4
a
and the inner liner
4
is conventionally made of a heat-resistive material, temperature rapidly differs between a pipe-contacting portion and a non-pipe-contacting portion of the inner liner
4
. The above-mentioned temperature variation causes a low cooling efficiency of the conventional direct cooling type refrigerator
1
.
Another problem arises in that the inner liner
4
is produced by applying a technology of thermoforming a thermoplastic sheet. Such a technology presents quite a few drawbacks, e.g. difficulties in the dimensional control of the sheets. That is to say, the size, shape, depth, or position of the recesses
4
a
is difficult to be uniform throughout the overall inner liner
4
. If portions of the recesses
4
a
are irregularly formed, an assembly of the refrigerant pipe
10
and the inner liner
4
is difficult and therefore a point contact may exist therebetween. The above-mentioned point contact causes an irregular temperature variation along a longitudinal direction of the recesses
4
a.
Further, when the point contact exists between the refrigerant pipe
10
and inner liner
4
, a portion of the insulator
20
may penetrate into gaps formed therebetween because of the point contact. The penetrated portion of the insulator
20
prevents heat transfer between the refrigerant pipe
10
and the inner liner
4
, thereby deteriorating the cooling efficiency of the conventional direct cooling type refrigerator
1
.
On the other hand, because the refrigerant pipe
10
is very lengthy and the inner liner
4
is heat-resistive, a latent temperature variation exists along the refrigerant pipe
10
.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a refrigerator having a relatively lower temperature variation so as to present a high cooling efficiency. According to a preferred embodiment of the present invention, there is provided a direct cooling type refrigerator including: an outer case; an inner case inside the outer case; a metal plate disposed on the inner case; an evaporator disposed on the metal plate; an insulator filling gaps between the inner case and the outer case; a first bonding means for attaching the metal plate on the inner case; and a second bonding means for joining the evaporator with the metal plate.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects and features of the present invention will become apparent from the following description of preferred embodiments given in conjunction with the accompanying drawings, in which:
FIG. 1
presents a schematic top plan view of a refrigerator according to the prior art;
FIG. 2
is a partial cross-sectional view taken along a line II—II of
FIG. 1
;
FIG. 3
represents a schematic top plan view of a refrigerator in accordance with a preferred embodiment of the present invention;
FIG. 4
depicts a partial cross-section taken along a first line IV—IV of
FIG. 3
;
FIG. 5
describes a partial cross-section taken along a second line V—V of
FIG. 3
; and
FIGS. 6 and 7
illustrate perspective views of a POS (pipe on sheet) structure of the refrigerator in accordance with the preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to
FIGS. 3
to
7
, a refrigerator
100
in accordance with a preferred embodiment of the present invention will be described in detail. Like numerals represent like parts in the drawings.
In
FIG. 3
, the refrigerator
100
in accordance with the preferred embodiment of the present invention includes a cabinet
102
, a door
150
assembled with the cabinet
102
, an inner liner
104
inside the cabinet
102
, and a freezing chamber and/or a refrigerating chamber
160
defined by the inner liner
104
. The inner liner
104
is alternatively referred to as an inner case, and the freezing and the refrigerating chamber
160
are alternatively referred to as a freezing and a refrigerating compartment, respectively. An evaporator (not shown), a condenser (not shown), and a compressor (not shown) are also contained in the refrigerator
100
. The door
150
and the cabinet
102
may be assembled via, e.g., hinges (not shown), such that the door
150
can selectively open and close the freezing and/or the refrigerating chamber
160
.
In case that the refrigerator
100
includes both the refrigerating chamber and the freezing chamber
160
, the inner liner
104
may take either a single body shape or a dual body shape. In case of adopting the dual body shape, different inner liners may be formed to individually define the refrigerating chamber and the freezing chamber
160
. On the contrary, in case of adopting the single body shape, the inner liner
104
may simultaneously define the refrigerating chamber as well as the freezing chamber
160
.
FIG. 4
shows a partial cross-section taken along a first line IV—IV of FIG.
3
. As shown, a pipe on sheet (POS) structure
106
is attached on the inner liner
104
defining the freezing and/or the refrigerating chamber
160
. An insulator
120
is interposed between the inner liner
104
and the cabinet
102
. The insulator
120
may be polyurethane, and the inner liner
104
may be polystyrene. The POS structure
106
has a metal plate
108
and a refrigerant pipe
110
, which serves as a circulating passage of a refrigerant. The refrigerant pipe
110
further serves as an evaporator and has a plurality of parallel portions
110
a
and rounding portions
110
b
. Two adjacent parallel portions
110
a
are connected with each other by one rounding portion
110
b.
With reference to
FIG. 5
, the refrigerator
100
in accordance with the preferred embodiment of the present invention will be described in more detail.
FIG. 5
is a partial cross-sectional view taken along a second line V—V of FIG.
3
and corresponds to a portion “A” of FIG.
4
.
The POS structure
106
is selectively attached on an outer surface of the inner liner
104
, e.g. an upper liner surface
104
a
, a back liner surface
104
b
, or side liner surfaces (not shown) thereof. That is to say, one to four metal plates
108
can be selectively adopted for the POS structure
106
. In case of using four metal plates
108
, each of the outer surfaces of the inner liner
104
, e.g. the upper liner surface
104
a
, the back liner surface
104
b
, and the side liner surfaces, has one metal plate
108
to be attached thereon.
A double tape
112
may be used to bond the inner liner
104
and the POS structure
106
. In that case, the double tape
112
is interposed between the inner liner
104
and the metal plate
108
of the POS structure
106
. The double tape
112
has two opposite adhesive surfaces, which bond opposing surfaces of the inner liner
104
and the metal plate
108
, respectively. The double tape
112
is preferably made of a heat-proof and cold-proof material, such as an acryl-based material.
When the double tape
112
is used for the bonding, a plurality of air gaps
130
may be formed between the opposing surfaces of the inner liner
104
and the metal plate
108
. Each air gap
130
serves to prevent a heat transfer between the inner liner
104
and the metal plate
108
. From an actual test, it is shown that the air gaps
130
rarely affect the cooling efficiency of the refrigerator
100
if the total area of the air gaps
130
is smaller than about 20% of the area of the bonded metal plate
108
. In other words, the total area of the double tape
112
is preferably larger than about 80% of that of the bonded metal plate
108
.
In bonding the double tape
112
, air is usually sandwiched between the double tape
112
and the inner liner
104
or between the double tape
112
and the metal plate
108
, thereby forming an air space therebetween. The air space serves to deteriorate a heat transfer between the inner liner
104
and the POS structure
106
. From another actual test, it is shown that if the area of the air space is less than about 10% of the area of the double tape
112
, the effect of the air space can be disregarded.
The opposing surfaces of the inner liner
104
and the metal plate
108
may have different flatness. In that case, if the double tape
112
is very thin, portions of the double tape
112
may come off the inner liner
104
or the metal plate
108
, such that the bonding strength of the inner liner
104
and the metal plate
108
is deteriorated. Therefore, a thicker double tape
112
is preferred to a thinner one in view of improving the bonding strength. On the contrary, because the thickness of the double tape
112
determines the heat transfer rate between the inner liner
104
and the POS structure
106
, the thinner double tape
112
is preferred to the thicker one in view of improving the heat transfer rate. Accordingly, an optimum thickness of the double tape
112
is preferred to a maximum thickness or a minimum thickness.
Still referring to
FIG. 5
, a protection tape
114
bonds the metal plate
108
to cover the refrigerant pipe
110
of the POS structure
106
. The protection tape
114
serves to isolate the refrigerant pipe
110
from the insulator
120
, so as to prevent the insulator
120
from penetrating into a possible gap interposed between the refrigerant pipe
110
and the metal plate
108
. The protection tape
114
is preferably made of polyethylene.
For forming the insulator
120
, an insulating foam is injected into gaps interposed between the inner liner
104
and the cabinet
102
(FIG.
4
). Because the protection tapes
114
cover the refrigerant pipe
110
, the refrigerant pipe
110
is protected from the insulating foam during the injection of the insulating foam. The insulating foam is subsequently cooled so as to form the insulator
120
. The insulator
120
is preferably polyurethane.
With reference to
FIGS. 6 and 7
, the POS structure
106
will be described in more detail.
FIG. 6
shows a perspective view of the POS structure
106
, and
FIG. 7
shows the protection tape
114
attached on the POS structure
106
of FIG.
6
.
A multiplicity of pairs of a first bending portion
108
a
and a second bending portion
108
b
may be used to join the refrigerant pipe
110
with the metal plate
108
. A slitting and a bending process may be applied to the metal plate
108
, such that the first and the second bending portion
108
a
and
108
b
are integrally formed with the metal plate
108
. The protection tapes
114
bond the metal plate
108
and the refrigerant pipe
110
, such that the refrigerant pipe
110
is isolated from an exterior circumstance.
While the invention has been shown and described with respect to the preferred embodiment, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Claims
- 1. A direct cooling type refrigerator comprising:an outer case; an inner case inside the outer case; a metal plate disposed on the inner case; an evaporator disposed on the metal plate; an insulator filling gaps between the inner case and the outer case; a first bonding means for attaching the metal plate on the inner case; and a second bonding means for joining the evaporator with the metal plate.
- 2. The direct cooling type refrigerator of claim 1, wherein the first bonding means is a double tape.
- 3. The direct cooling type refrigerator of claim 2, wherein the inner case is made of polystyrene.
- 4. The direct cooling type refrigerator of claim 1, wherein the second bonding means is a pair of bending portions integrally formed with the metal plate.
- 5. The direct cooling type refrigerator of claim 4, wherein the inner case is made of polystyrene.
- 6. The direct cooling type refrigerator of claim 1, wherein the inner case is made of polystyrene.
- 7. The direct cooling type refrigerator of claim 1, further comprising a protection tape covering the evaporator to isolate the evaporator from the insulator.
- 8. The direct cooling type refrigerator of claim 1, wherein the inner case forms a freezing chamber.
- 9. The direct cooling type refrigerator of claim 1, wherein the inner case forms a refrigerating chamber.
- 10. A refrigerator comprising:a cabinet; an inner liner inside the cabinet, the inner liner forming a chamber; at least one metal plate disposed on an outer surface of the inner liner; a bonding means for bonding the inner liner and the metal plate; a refrigerant pipe joined on the metal plate; and an insulator interposed between the cabinet and the inner liner.
- 11. The refrigerator of claim 10, wherein the bonding means is a double tape interposed between the inner liner and the metal plate.
- 12. The refrigerator of claim 11, wherein the double tape is made of an acryl-based material.
- 13. The refrigerator of claim 10, further comprising a protection tape covering the refrigerant pipe to isolate the refrigerant pipe from the insulator.
- 14. The refrigerator of claim 13, wherein the protection tape is made of polyethylene.
- 15. The refrigerator of claim 10, wherein the inner liner is made of polystyrene.
- 16. The refrigerator of claim 10, further comprising a door selectively opens and closes the chamber.
- 17. The refrigerator of claim 10, wherein the refrigerant pipe serves as an evaporator.
US Referenced Citations (7)