DIRECT DETECTION METHOD FOR PATHOGENIC STRAIN HAVING RESISTANCE TO CARBAPENEM ANTIBIOTICS

Abstract
The present invention relates to a method for detecting a pathogenic strain having resistance to carbapenem antibiotics in a biological sample. According to the present invention, it is possible to directly identify carbapenemases, specifically KPC, OXA, NDM, IMP, VIM and/or GES protein, by mass spectrometry, thereby making it possible to quickly determine not only whether a pathogenic strain has resistance to antibiotics, but also the type of protein involved in the resistance. According to the present invention, the physical and chemical properties of each carbapenemase in vivo, such as the unique N-terminal truncation length, methionine residue oxidation and disulfide bond formation in each type of carbapenemase, are identified and are reflected on reference mass values. Accordingly, it is possible to more closely detect the presence of an antibiotic-resistant strain with high reliability, and thus the present invention may be advantageously used to establish an appropriate strategy for antibiotic administration at an early stage of infection.
Description
TECHNICAL FIELD

The present invention relates to a method of directly detecting an in vivo active form of the carbapenemases KPC, OXA, NDM, IMP, VIM and/or GES by top-down mass spectrometry without pretreatment of a sample.


BACKGROUND ART

As the therapeutic efficacy of commercially available antibiotics has sharply decreased due to the continuous increase in antibiotic-resistant bacteria, studies have been actively conducted on strategies for improving the therapeutic efficacy by appropriate antibiotic administration to patients infected with pathogens and inducing reduction of antibiotic-resistant bacteria. Currently, Minimum Inhibitory Concentration (MIC) testing is being conducted to identify whether antibiotic resistance is present, but it takes 18 hours or more for microbial culture, which is an essential step, and has low accuracy, and hence it is impossible to achieve rapid identification and select an optimal antibiotic in the early stage of infection. Gene diagnosis techniques using real-time PCR, etc. are also limited in their application to rapid and accurate high-throughput diagnosis, because they require complicated and expensive sample pretreatment in the gene extraction and amplification process, advance information on the nucleotide sequence of the target gene is essential, and inaccurate information about antibiotic resistance is included due to detection of enzyme genes that have already lost antibiotic degradation activity.


Mass spectrometry methods, including MALDI-TOF, are low-cost and high-efficiency identification systems compared to sequencing methods based on PCR, and can offer an important means for rapid identification of microorganisms. In addition, using these methods, it is possible to achieve sample treatment after strain culture and stain identification within 10 minutes, and to quickly identify a strain with the same mass value by comparing mass data for unknown strains with mass data in a database established through mass spectrometry data.


However, conventional mass spectrometry methods cannot accurately determine the type of antibiotic resistance protein, and are cumbersome because they involve degrading the target resistance protein into peptide fragments using a protease, and then indirectly inferring the type of resistance protein through the mass values of these fragments. In addition, these methods have many problems in terms of reliability.


Accordingly, the present inventors have made efforts to provide a rapid and accurate diagnostic method for carbapenem-resistant strain infection by selecting proteins directly involved in resistance to beta-lactam antibiotics, specifically carbapenem antibiotics, and measuring the exact mass values of in vivo active forms of these selected proteins to establish accurate reference data for determining whether or not a carbapenem-resistant strain is present.


Throughout the specification, a number of publications and patent documents are referred to and cited. The disclosure of the cited publications and patent documents is incorporated herein by reference in its entirety to more clearly describe the state of the related art and the present invention.


DISCLOSURE
Technical Problem

The present inventors have made intensive research efforts to develop an efficient diagnostic method capable of rapidly determining infection with an antibiotic-resistant strain by detecting an antibiotic-degrading enzyme, which is involved in resistance to lactam-based antibiotics, in a sample in a simple and highly reliable manner. As a result, the present inventors have newly discovered that enzymes that degrade the beta-lactam antibiotic carbapenem, specifically KPC, OXA, NDM, IMP, VIM and GES proteins, are present in active forms due to truncation of some of N-terminal residues in vivo, and have found that, when active forms of these proteins, which account for the majority of carbapenem-degrading enzymes secreted by antibiotic-resistant strains, are directly identified through mass spectrometry, it is possible to establish an appropriate antibiotic administration strategy at an early stage of infection by rapidly and accurately determining not only whether the pathogenic strains are resistant to the antibiotics but also the type of protein involved in the resistance, thereby completing the present invention.


Therefore, an object of the present invention is to provide a method of detecting in a biological sample a pathogenic strain having resistance to carbapenem antibiotics, specifically a pathogenic strain expressing KPC, OXA, NDM, IMP, VIM and/or GES.


Other objects and advantages of the present invention will be more apparent by the following detailed description of the invention, the claims and the accompanying drawings.


Technical Solution

According to one aspect of the present invention, there is provided a method for detecting in a biological sample a pathogenic strain having resistance to carbapenem antibiotics, comprising:


(a) isolating a protein expressed by a pathogenic strain in a biological sample isolated from a subject; and


(b) performing top-down mass spectrometry on the isolated protein,


wherein it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when a protein having the same mass as Klebsiella pneumoniae carbapenemase (KPC) or OXA carbapenemase from which 21 or 22 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry or a protein having the same mass as at least one carbapenemase selected from the group consisting of New Delhi Metallo-beta-lactamase NDM), imipenemase (IMP), Verona integron-borne metallo-β-lactamase (VIM) and Guiana extended spectrum β-lactamase (GES), from which 18, 19, 20, 21 or 26 amino acid residues at the N-terminus have been removed, is detected as a result of the mass spectrometry.


The present inventors have made intensive research efforts to develop an efficient diagnostic method capable of rapidly determining infection with an antibiotic-resistant strain by detecting an antibiotic-degrading enzyme, which is involved in resistance to lactam-based antibiotics, in a sample in a simple and highly reliable manner. As a result, the present inventors have newly discovered that enzymes that degrade the beta-lactam antibiotic carbapenem, specifically KPC, OXA, NDM, IMP, VIM and GES proteins, are present in active forms due to truncation of some of N-terminal residues in vivo, and have found that, when active forms of these proteins, which account for the majority of carbapenem-degrading enzymes secreted by antibiotic-resistant strains, are directly identified through mass spectrometry, it is possible to establish an appropriate antibiotic administration strategy at an early stage of infection by rapidly and accurately determining not only whether the pathogenic strains are resistant to the antibiotics but also the type of protein involved in the resistance.


As used herein, the term “pathogenic strain” refers to any bacteria that act as the cause of an infection or disease, including, for example, but not limited to, Staphylococcus aureus, Streptococcus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Pseudomonas otitidis, Micrococcus luteus, Citrobacter koseri, Proteus mirabilis, and Mycobacterium ulcerans.


As used herein, the expression “having resistance to antibiotics” means that a specific pathogenic microorganism can grow even in an environment in which antibiotics against the microorganism are present at high concentration or in an effective amount. Whether the pathogenic microorganism has antibiotic resistance may be determined by detecting the presence of an enzyme protein, which is secreted by the pathogenic microorganism and removes or reduces the activities of the antibiotics by degrading the antibiotics. For example, beta-lactam antibiotics that inhibit bacterial cell wall synthesis, such as penicillin, cephalosporin, monobactam, and carbapenem, are inactivated by β-lactamase so that they cannot inhibit pathogens expressing β-lactamase. Accordingly, the term “resistance” is used interchangeably with the terms “low therapeutic responsiveness” and “low prophylactic responsiveness”.


As used herein, the term “treatment” refers to (a) inhibiting the progress of a disease, disorder or symptom; (b) alleviating a disease, disorder or symptom; or (c) eliminating a disease, disorder or symptom. Thus, the term “therapeutic responsiveness” refers to the degree to which beta-lactam antibiotics, including carbapenem, when administered in a therapeutically effective amount to a patient infected with a pathogenic strain, act as described above in vivo.


As used herein, the term “prevention” refers to inhibiting the occurrence of a disease or disorder in a subject that has never been diagnosed as having the disease or disorder, but is likely to have the disease or disorder. Thus, “prophylactic responsiveness” refers to the degree to which beta-lactam antibiotics, including carbapenem, when administered in a prophylactically effective amount to a normal person whose infection has not yet been confirmed, act to inhibit infection in vivo.


As used herein, the term “biological sample” refers to any samples, including, for example, but not limited to, blood, tissues, organs, cells or cell cultures, which are obtained from mammals, including humans, and contain or are likely to contain a pathogenic strain to be inhibited with beta-lactam antibiotics, including carbapenem.


As used herein, the term “subject” refers to a subject that provides a sample for examining the presence of a pathogenic strain to be inhibited with beta-lactam antibiotics such as carbapenem or whether the strain has resistance to the antibiotics, and ultimately refers to a subject to be analyzed for whether or not infection with the pathogenic strain having resistance to the antibiotics has occurred. Examples of the subject include, without limitation, humans, mice, rats, guinea pigs, dogs, cats, horses, cattle, pigs, monkeys, chimpanzees, baboons or rhesus monkeys, specifically humans. Since the composition of the present invention provides information for predicting not only therapeutic responsiveness but also prophylactic responsiveness to beta-lactam antibiotics such as carbapenem, the subject in the present invention may be a patient infected with the strain or may also be a healthy subject whose infection has not yet been confirmed.


As used herein, the term “top-down mass spectrometry” refers to an analysis that directly measures the mass value of a full-length protein without performing the process of fragmenting the protein into peptide fragments, and specifically, refers to an analysis in which fragmentation of the target protein is not performed before the protein sample is injected into a mass spectrometer. Another feature of the present invention is that the procedure is simplified by performing direct mass spectrometry for a full-length protein without randomly degrading the protein using protease such as trypsin, and it is possible to determine the presence of a target protein with remarkably high reliability within a much shorter time than a conventional method of indirectly identifying proteins by collecting mass information on fragments and collecting vast amounts of information on fragmentation trends of various proteins.


In the present specification, the expression “mass of the protein is the same” means that the mass value measured through the mass spectrometry method of the present invention is substantially the same as a reference mass value, for example, a value corresponding to the mass value of a carbapenemase whose amino acid sequence and molecular weight are known and from which 18, 19, 20, 21, 22 or 26 amino acid residues at the N-terminus have been removed. “Substantially the same” means that, for example, the measured Da value or m/z×z value is within the range of the reference mass value±10, more specifically within the range of the reference mass value±7, even more specifically within the range of the reference mass value±5, most specifically within the range of the reference mass value±3. The mass value of the carbapenem degrading enzyme, which is a criterion for determining whether the mass value is substantially the same as a reference mass value, includes a mass value of a state in which 1 to 3 methionine residues exist in an oxidized state of (i.e., increased by 16, 32 or 48 from a known mass value) or in which a disulfide bond is formed between two Cys residues (i.e., decreased by 2 from a known mass value).


According to a specific embodiment of the present invention, the method of the present invention further comprises a step of performing ion exchange chromatography on the protein isolated in step (a).


As used herein, the term “ion exchange chromatography” refers to a separation and purification method of separating a charged target substance from a heterogeneous mixture using a phenomenon in which ions or charged compounds bind to an ion exchange resin by electrostatic force. Ion exchange chromatography has ion exchange resins to which various functional groups bind, in which the anion exchange resin has a positively charged functional group and thus combines with a negatively charged target substance in the mixture by electrostatic attraction, and the cation exchange resin binds specifically to a positively charged target substance


According to a specific embodiment of the present invention, the ion exchange chromatography is any one selected from the group consisting of anion exchange chromatography, cation exchange chromatography, and a sequential combination thereof.


The anion exchange resin used in the present invention may have, for example, a diethylaminoethyl (DEAE) or quaternary ammonium functional group, but is not limited thereto, and any conventional cationic functional group that provides a positive charge to the support may be used without limitation. Strongly basic anion exchange groups include, for example, Q Sepharose Fast Flow, Q Sepharose High Performance, Resource Q, Source 15Q, Source 30Q, Mono Q, Mini Q, Capto Q, Capto Q ImpRes, Q HyperCel, Q Cermic HyperD F, Nuvia Q, UNOsphere Q, Macro-Prep High Q, Macro-Prep 25 Q, Fractogel EMD TMAE(S), Fractogel EMD TMAE Hicap (M), Fractogel EMD TMAE (M), Eshmono Q, Toyopearl QAE-550C, Toyopearl SuperQ-650C, Toyopearl GigaCap Q-650M, Toyopearl Q-600C AR, Toyopearl SuperQ-650M, Toyopearl SuperQ-6505, TSKgel SuperQ-5PW (30), TSKgel SuperQ-5PW (20) and TSKgel SuperQ-SPW, but are not limited thereto, and any anion exchange resins known in the art may be used.


The cation exchange resin used in the present invention may have, for example, a sulfone group or a carboxy group, but is not limited thereto, and any conventional cationic functional group that provides a negative charge to the support may be used without limitation. For example, the cation exchange resin may be selected from the group consisting of Fractogel, CM (carboxymethyl), SE (sulfoethyl), SP (sulfopropyl), P (phosphate), S (sulfonate), PROPAC WCX-10™ (Dionex), Capto S, S-Sepharose FF, Fractogel EMD SO3M, Toyopearl Megacap II SP 550C, Poros 50 HS, Poros XS, and SP-sepharose matrix, but is not limited thereto. Specifically, SP (sulfopropyl) resin may be used. As column buffer, equilibration buffer, wash buffer and elution buffer known in the art, such as sodium phosphate buffer, citrate buffer, and acetic acid buffer, may be used.


Such ion exchange chromatography may be appropriately performed depending on the charges of the proteins to be separated/purified and the order of the proteins to be separated. For example, in order to sequentially separate a positively charged protein and a negatively charged protein, cation exchange chromatography may be performed, followed by anion exchange chromatography.


According to a specific embodiment of the present invention, step (a) of the present invention is performed by adding a surfactant to the biological sample.


As described above, in the present invention, direct mass spectrometry of a full-length protein is possible by top-down mass spectrometry without a fragmentation process using a protease. The present inventors have found that, when a surfactant is added to the biological sample to be analyzed, the intact full-length protein present in the cell membrane or cytoplasm may be encapsulated, so that the target protein may be quickly and accurately identified without randomly degrading the protein by an enzyme.


In the present invention, ionic, nonionic and zwitterionic surfactants may all be used without limitation as long as they are general surfactants capable of forming micelles sufficient to encapsulate full-length proteins. Specifically, the surfactant used in the present invention is an ionic surfactant or a nonionic surfactant.


Examples of ionic surfactants that may be used in the present invention include, but are not limited to, sodium deoxycholate (DOC), Medialan A, Quaternium-60, cetylpyridinium chloride, cetylpyridinium bromide, cetyltrimetylammonium chloride, cetyltrimetylammonium bromide, and Gardinol.


Examples of nonionic surfactants that may be used in the present invention include, but are not limited to, n-octyl-β-D-glucopyranoside (OG), n-octyl-β-D-thioglucopyranoside (OTG), octyl glucose neopentyl glycol (OGNG), n-dodecyl-β-D-maltopyranoside (DDM), and n-dodecyl-β-D-thiomaltopyranoside (DDTM).


More specifically, step (a) may be performed by additionally adding a lysis buffer to the biological sample. That is, the surfactant of the present invention may be used together with a lysis buffer in the step of lysing the cells in order to isolate the protein expressed by the pathogenic strain. Specifically, the lysis buffer may be a volatile buffer.


Examples of volatile buffers that may be used in the present invention include, but are not limited to, ammonium bicarbonate, acetic acid, formic acid, ammonia, ammonium carbonate, and pyridine/triethanolamine. In addition, it is possible to use any buffer that evaporates easily into the atmosphere due to its low boiling point while maintaining hydrogen ion concentration in the sample within a certain range.


According to a specific embodiment of the present invention, the method of the present invention further comprises a sonication step between step (a) and step (b).


According to a specific embodiment of the present invention, step (b) is performed using a mass spectrometry method selected from the group consisting of matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, surface enhanced laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry, electrospray ionization time-of-flight (ESI-TOF) mass spectrometry, liquid chromatography-mass spectrometry (LC-MS), and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). More specifically, it is performed using MALDI-TOF mass spectrometry.


MALDI-TOF mass spectrometry is a method in which a sample supported by a matrix is desorbed and ionized by irradiation with a laser, and then the molecular weights of the generated ions are analyzed by measuring the time (Time-of-Flight) taken for the ions to reach a detector. According to this method, it is possible to quickly and accurately measure the mass of a large biomolecule such as a protein, because fragmentation of the target material does not occur. When the ionized molecule is accelerated by an electric field and the flight time is measured, a mass-to-charge ratio (m/z) is generated, and the molecular weight of the target material may be determined through this m/z value. For example, when m/z=30,000 (z=+1) or 15,000 (z=+2), the molecular weight becomes m/z×z=30,000.


According to a specific embodiment of the present invention, the carbapenemase is a KPC protein, and it is determined that, when a protein having the same mass as the KPC protein from which 21 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample.


According to a specific embodiment of the present invention, the carbapenemase is an OXA protein, and it is determined that, when a protein having the same mass as the OXA protein from which 22 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample.


According to a specific embodiment of the present invention, the carbapenemase is an NDM protein, and it is determined that, when a protein having the same mass as the NDM protein from which 19 or 20 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample.


According to a specific embodiment of the present invention, the carbapenemase is an IMP protein, and it is determined that, when a protein having the same mass as the IMP protein from which 18 to 20 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample.


According to a specific embodiment of the present invention, the carbapenemase is a VIM protein, and it is determined that, when a protein having the same mass as the VIM protein from which 25 or 26 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample.


According to a specific embodiment of the present invention, the carbapenemase is a GES protein, and it is determined that, when a protein having the same mass as the GES protein from which 18 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample.


According to the present invention, the present inventors have found that, in order for a carbapenemase to have an activity of degrading carbapenem in vivo, the carbapenemase should be present in a state in which some of the amino acid residues at the N-terminus have been removed (active form), and the length of the N-terminal residue to be removed to maintain activity differs depending on the type of enzyme. Thus, in order to accurately determine that a strain that has infected the subject actually has resistance to carbapenem, determination should be made based on whether or not the same mass value as the KPC protein from which 21 amino acid residues at the N-terminus have been removed and/or the OXA protein from which 22 amino acid residues at the N-terminus have been removed is detected, and as described below, whether or not the same mass value as the following protein is detected: the NDM protein from which 19 or 20 amino acid residues at the N-terminus have been removed, the IMP protein from which 18 to 21 amino acid residues at the N-terminus have been removed, the VIM protein from which 25 or 26 amino acid residues at the N-terminus have been removed, and/or the GES protein from which 18 amino acid residues at the N-terminus have been removed. The present invention provides significantly improved accuracy and diagnostic reliability compared to a conventional art in which the full-length amino acid mass values of these known carbapenemases are mechanically detected.


According to a specific embodiment of the present invention, it is determined that, when one or more mass values (m/z×z) selected from the group consisting of 28720, 28746, 28737, 28780, 28678, 28728, 28704, 28806, 28736, 28738, 28688, 28562, 28877, 28676, 28686, 28733, 28690, 28557, 28718, 28963, 28716, 28588, 29105, 28795, 28825, 28769, 29631, 28760, 28656, 28776, 28975, 29086, 28748, 30433, 28730 and values within the ranges of these values±5 are detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample. More specifically, in this case, the pathogenic strain present in the sample is a KPC protein-producing strain.


According to the present invention, the mass values listed above are the mass values of KPC subtype proteins from which 21 amino acid residues at the N-terminus have been removed. As described above, the present inventors have found that all subtype proteins of KPC, a carbapenemase, maintain carbapenem-degrading activity only when 21 amino acid residues at the N-terminus have been removed in vivo. Thus, it is determined that, when any one or more mass values corresponding thereto are detected as a result of mass spectrometry, the subject has been infected with a strain expressing one or more of the KPC subtype proteins, that is, a pathogenic strain having resistance to carbapenem antibiotics.


According to a specific embodiment of the present invention, the mass values (m/z×z) additionally include a mass value that increased by 16 or 32 from each mass value.


More specifically, the mass values (m/z×z) additionally include a mass value that decreased by 2 from each mass value.


As shown in the Examples below, the present inventors have found that one of three methionine residues (Met49, Met116 and Met151) in the KPC protein may exist in an oxidized state. Thus, it may be determined that, even when molecular weights that increased by one oxygen atom (+16) from the above-listed mass values are measured, a strain expressing the KPC protein is present in the sample. In addition, the present inventors also found that the KPC protein can exist in a state in which there is a disulfide bond between Cys68 and Cys237. Thus, it may be determined that, even when molecular weights that decreased by the detachment of two hydrogen atoms (−2) from the above-listed mass values due to the disulfide bond are measured, a strain expressing the KPC protein is present in the sample, whereby it is possible to more closely detect the presence of an antibiotic-resistant strain.


According to a specific embodiment of the present invention, it is determined that, when one or more mass values (m/z×z) selected from the group consisting of 28147, 28098, 28117, 27679, 28172, 28158, 28282, 28032, 28048, 28252, 27673, 28190, 28260, 27718, 28126, 27900, 27653, 28002, 28175, 28149, 27877, 28161, 27955, 28151, 28131, 28215, 28191, 27978 and values within the ranges of these values±5 are detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample. More specifically, in this case, the pathogenic strain present in the sample is an OXA protein-producing strain.


According to the present invention, the mass values listed above are the mass values of OXA subtype proteins from which 22 amino acid residues at the N-terminus have been removed. The present inventors have found that OXA subtype proteins maintain carbapenem-degrading activity only when 22 amino acid residues at the N-terminus have been removed in vivo. Thus, it is determined that, when any one or more mass values corresponding thereto are detected as a result of mass spectrometry, the subject has been infected with a strain expressing one or more of the OXA subtype proteins, that is, a pathogenic strain having resistance to carbapenem antibiotics.


According to a specific embodiment of the present invention, the mass values (m/z×z) additionally include a mass value that increased by 16, 32 or 48 from each mass value.


As shown in the Examples below, the present inventors have found that one to three of six methionine residues (Met115, Met138, Met195, Met237, Met239 and Met241) in the OXA protein may exist in an oxidized state. Thus, it may be determined that, even when molecular weights that increased by one oxygen atom (+16), two oxygen atoms (+32) or three oxygen atoms (+48) from the above-listed mass values are measured, a strain expressing the OXA protein is present in the sample, whereby it is possible to more closely diagnose infection with an antibiotic-resistant strain.


According to a specific embodiment of the present invention, it is determined that, when one or more mass values (m/z×z) selected from the group consisting of 26439, 26413, 26438, 26421, 26435, 26467, 26420, 26363, 26587, 26407, 26479, 26381, 26449, 26434, 27043, 26448, 26416, 26465, 26453, 26455, 26466, 26510, 26484, 26509, 26492, 26506, 26538, 26491, 26434, 26658, 26478, 26550, 26452, 26520, 26505, 27114, 26519, 26487, 26536, 26524, 26526, 26537 and values within the ranges of these values±5 are detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample. More specifically, in this case, the pathogenic strain present in the sample is an NDM protein-producing strain.


According to the present invention, the mass values listed above are the mass values of NDM subtype proteins from which 19 amino acid residues at the N-terminus have been removed. It may be determined that, when any one or more mass values of these mass values are detected as a result of mass spectrometry, the subject has been infected with a strain expressing one or more of the NDM subtype proteins, that is, a pathogenic strain having resistance to carbapenem antibiotics.


As used herein, the term “mass value (m/z×z)” refers to the average molecular weight of a protein to be detected or a Dalton value representing the average molecular weight. However, when the same protein is detected using other reference mass value (e.g., monoisotopic mass value) which can be inferred through this mass value (m/z×z), this detection is considered to be the same as detection performed in the present invention. For example, when whether or not there is infection with the NDM-expressing strain is determined based on the monoisotopic mass (26493.16) of NDM-1, this determination is the same as determining whether or not whether or not there is infection with the NDM-expressing strain, using 26510 m/z×z, which is an average molecular weight that can be easily inferred by those skilled in the art from the monoisotopic mass value, as a reference value.


According to a specific embodiment of the present invention, the mass values (m/z×z) further include a mass value that increased by 16 or 32 from each mass value.


As shown in the Examples below, the present inventors have found that one or two methionine residues among seven methionine residues (39, 67, 126, 129, 245, 248 and 265) in the NDM protein exist in an oxidized state. Accordingly, it may be determined that, even when molecular weights that increased by one oxygen atom (+16) or two oxygen atoms (+32) from the above-listed mass values are measured, a strain expressing the NDM protein is present in the sample, whereby it is possible to more closely detect the presence of an antibiotic-resistant strain.


More specifically, the mass values (m/z×z) further include mass values that increased by 14, 28 or 42 from each mass value.


As described below, the present inventors have found that the NDM protein may exist in a state in which one, two, or three methylations have occurred therein. Thus, it may be determined that, even when molecular weights that increased by 1 methylation (+14), 2 methylations (+28) or 3 methylations (+42) from the above-listed mass values are measured, a strain expressing the NDM protein is present in the sample.


More specifically, the mass values (m/z×z) further include a mass value that increased by 238 from each mass value.


As shown in the Examples below, peaks corresponding to the palmitoylated protein type were observed in the NDM protein. Thus, it may be determined that, even when molecular weights that increased by the mass value (+238) caused by palmitoylation are measured, a strain expressing the NDM protein is present in the sample, whereby it is possible to more closely diagnose infection with an antibiotic-resistant strain.


According to a specific embodiment of the present invention, it is determined that, when one or more mass values (m/z×z) selected from the group consisting of 25113, 25151, 25011, 25080, 25020, 25083, 25025, 24952, 25192, 25161, 24973, 24988, 25078, 25365, 25268, 25006, 25186, 24994, 25043, 24945, 25208, 25000, 24980, 25128, 25216, 24983, 25115, 25112, 25116, 25414, 25205, 25041, 25139, 25254, 25050, 24910, 25101, 25021, 25212, 25073, 24961, 25105, 24831, 25353, 25234, 24995, 25071, 25094, 25351, 25174, 25156, 25199, 25129, 24981, 25018, 25335, 25232, 24872, 24982, 25204, 24796, 25259, 25214, 25085, 25135, 25131, 25141, 25145, 25172, 25126, 24990 and values within the ranges of these values±5 are detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample. More specifically, in this case, the pathogenic strain present in the sample is an IMP protein-producing strain.


According to the present invention, the mass values listed above are the mass values of IMP subtype proteins from which 18, 19, 20 or 21 amino acid residues at the N-terminus have been removed. It may be determined that, when one or more of these mass values are detected as a result of mass spectrometry, the subject has been infected with a strain expressing one or more the IMP subtype proteins.


According to a specific embodiment of the present invention, it is determined that, when one or more mass values (m/z×z) selected from the group consisting of 25322, 25515, 25488, 25391, 25339, 25516, 25464, 25485, 25527, 25531, 25414, 25455, 25421, 25499, 25542, 25129, 25405, 25534, 25446, 25472, 25444, 25298, 25338, 25367, 25355, 25508, 25264, 25306, 25336, 25352, 25543, 25407, 25268, 25419, 25514, 25501, 25487, 25445, 25341, 25364, 25424, 25458, 25491, 25513, 25348, 25518, 25350 and values within the ranges of these values±5 are detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample. More specifically, in this case, the pathogenic strain present in the sample is a VIM protein-producing strain.


According to the present invention, the mass values listed above are the mass values of VIM subtype proteins from which 25 or 26 amino acid residues at the N-terminus have been removed. It may be determined that, when one or more of these mass values are detected as a result of the mass spectrometry, the subject has been infected with a strain expressing one or more the VIM subtype proteins.


According to a specific embodiment of the present invention, it is determined that, when one or more mass values (m/z×z) selected from the group consisting of 29217, 29274, 29186, 29216, 29247, 29246, 29259, 29203, 29231, 29201, 29273, 29261, 29237, 29248, 29230, 29213, 29275, 29278, 29221, 29194, 29338, 29232, 29227, 29251, 29202, 29175, 29369, 29661 and values within the ranges of these values±5 are detected as a result of the mass spectrometry, a pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample. More specifically, in this case, the pathogenic strain present in the sample is a GES protein-producing strain.


According to the present invention, the mass values listed above are the mass values of GES subtype proteins from which 18 amino acid residues at the N-terminus have been removed. It may be determined that, when one or more of these mass values are detected as a result of the mass spectrometry, the subject has been infected with a strain expressing one or more the GES subtype proteins.


According to a specific embodiment of the present invention, the mass value (m/z×z) further include a mass value that increased by 16 or 32 from each mass value. More specifically, the mass values (m/z×z) additionally include a mass value that decreased by 2 from each mass value.


As described below, the present inventors have found that one or two of six methionine residues (62, 95, 112, 143, 164 and 181) in the GES protein can exist in an oxidized state. Thus, it may be determined that, even when molecular weights that increased by one oxygen atom (+16) or two oxygen atoms (+32) from the above-listed mass values are measured, a strain expressing the GES protein is present in the sample. In addition, the present inventors also found that the GES protein can exist in a state in which there is a disulfide bond between Cys63 and Cys233. Thus, it may be determined that, even when molecular weights that decreased by the detachment of two hydrogen atoms (−2) from the above-listed mass values due to the disulfide bond are measured, a strain expressing the GES protein is present in the sample, whereby it is possible to more closely diagnose infection with an antibiotic-resistant strain.


Advantageous Effects

The features and advantages of the present invention are summarized as follows:


(a) The present invention provides a method of detecting in a biological sample a pathogenic strain having resistance to carbapenem antibiotics.


(b) According to the present invention, it is possible to directly identify carbapenemase, specifically KPC, OXA, NDM, IMP, VIM and/or GES protein, by mass spectrometry, thereby making it possible to quickly determine not only whether a pathogenic strain has resistance to antibiotics, but also the type of protein involved in the resistance.


(c) According to the present invention, the physical and chemical properties of each carbapenemase in vivo, such as the unique N-terminal truncation length, methionine residue oxidation and disulfide bond formation in each type of carbapenemase, are identified and are reflected on reference mass values. Accordingly, it is possible to more closely detect the presence of an antibiotic-resistant strain with high reliability, and thus the present invention may be advantageously used to quickly establish an appropriate strategy for antibiotic administration at an early stage of infection.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1A shows the results of SDS-PAGE analysis for the expression and sizes of KPC and OXA proteins derived from an antibiotic-resistant strain. FIG. 1B shows SDS-PAGE analysis results for the expression and sizes of three proteins (NDM, IMP and VIM) of the Metallo-β-Lactamase (hereinafter referred to as MBL) family, and the Class A carbapenemase GES protein. FIGS. 1C, 1D, 1E, 1F, 1G and 1H show the results of SDS-PAGE analysis for the expression and sizes of KPC, OXA, NDM, IMP, VIM and GES subtype proteins, respectively.



FIGS. 2A, 2B, 2C, 2D and 2E show the results of SDS-PAGE analysis for the expression and sizes of KPC and OXA proteins derived from a clinical strain (FIG. 2A), the MBL proteins NDM (FIG. 2B), IMP (FIG. 2C) and VIM (FIG. 2D), and GES-5 protein (FIG. 2E).



FIG. 3 shows the results of SDS-PAGE analysis for the expression and sizes of the MBL proteins depending on the concentration of zinc sulfate (ZnSO4).



FIGS. 4A, 4B and 4C show the results of comparing the protein difference between a crude extract and a crude enzyme solution after sample pretreatment. For KPC and OXA proteins, cells were disrupted using each of a nonionic surfactant (FIG. 4A), an ionic surfactant (FIG. 4B) and a volatile buffer (FIG. 4C), the expression and solubility of each protein were analyzed by SDS-PAGE gel analysis. In addition, FIG. 4D shows the expression and solubility of the MBL protein in cells disrupted using a nonionic surfactant and FIG. 4E shows the expression and solubility of the GES protein in cells disrupted using with a volatile buffer, both as analyzed by SDS-PAGE gel analysis.



FIGS. 5A, 5B, 5C, 5D, 5E and 5F show the results of separating and purifying target proteins using ion chromatography. KPC (FIG. 5A), OXA (FIG. 5B), NDM (FIG. 5C), IMP (FIG. 5D), VIM (FIG. 5E) and GES-5 (FIG. 5F) were separated and purified using an anion exchange resin column.



FIGS. 6A, 6B, 6C, 6D, 6E and 6F show alignment results that comparatively show representative coverages (grey) for KPC protein, OXA protein, three MBL proteins, and GES protein, and oxidized methionine residues (bold and underlined).



FIGS. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K, 7L, 7M, 7N, 7O, 7P, 7Q, 7R, 7S and 7T show tandem spectrum results for peptides identified as N-terminal peptides in each protein. FIG. 7A shows the separation chromatogram of the KPC peptide, and FIG. 7B shows the results of identification of the N-terminal peptide of KPC. FIG. 7C shows the separation chromatogram of the OXA peptide, and FIG. 7D shows the results of identification of the N-terminal peptide of OXA. FIG. 7E shows an example of the separation chromatogram of the NDM peptide, and FIG. 7F shows the results of identification of the N-terminal peptide of NDM. FIG. 7G shows an example of the separation chromatogram of the IMP peptide, and FIG. 7H shows the results of identification of the N-terminal peptide of IMP. FIG. 7I shows an example of the separation chromatogram of the VIM peptide, and FIG. 7J shows the results of identification of the N-terminal peptide of VIM. FIG. 7K shows an example of the separation chromatogram of the GES peptide, and FIG. 7L shows the results of identification of the N-terminal peptide of GES. FIGS. 7M, 7N, 7O, 7P, 7Q, 7R, 7S and 7T show exemplary N-terminal identification results for representative subtypes of each peptide, and show the results of identification of the N-termini of KPC-3 (FIG. 7M), KPC-17 (FIG. 7N), OXA-181 (FIG. 7O), IMP-1 (FIG. 7P), IMP-4 (FIG. 7Q), VIM-1 (FIG. 7R), VIM-4 (FIG. 7S), and GES-1 (FIG. 7T), respectively.



FIGS. 8A, 8B, 8C, 8D, 8E and 8F show examples of the results of multiple alignment analysis of the amino acid sequences of KPC (FIG. 8A), OXA (FIG. 8B), MBL (FIGS. 8C, 8D and 8E) proteins and GES protein (FIG. 8F), performed using the ClustalW program, the results of identification of the conservative amino acid sequences. Black boxes indicate N-terminal sequence regions.



FIGS. 9A, 9B, 9C, 9D, 9E and 9F show phylogenetic analysis results for KPC (FIG. 9A), OXA (FIG. 9B), NDM (FIG. 9C), IMP (FIG. 9D), VIM (FIG. 9E) and GES (FIG. 9F) proteins.



FIGS. 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H, 10I, 10J, 10K and 10L show the results of identification of KPC, OXA, NDM, IMP, VIM and GES proteins, performed using a high-resolution mass spectrometer. FIG. 10A shows the mass spectrum (monoisotopic mass: 28,700.69 m/z×z, average molecular weight: 28,718.13 m/z×z) of a multi-charged KPC protein, and FIG. 10B shows the tandem spectrum for KPC protein ions with a charge state of +17, and the identification result (E=1.8E-9) for the 22-293 a.a. sequence. FIG. 10C shows the mass spectrum (monoisotopic mass: 28,129.28 m/z×z, average molecular weight: 28,146.69 m/z×z) of a multi-charged OXA protein, and FIG. 10D shows the tandem spectrum for OXA protein ions with a charge state of +27, and the identification result (E=3.47E-42) for the 23-265 a.a. sequence. FIG. 10E shows the mass spectrum of a multi-charged NDM protein, and FIG. 10F shows the tandem spectrum for NDM protein ions with a charge state of the +25, and the identification result for the 20-270 a.a. sequence. FIG. 10G shows the mass spectrum of a multi-charged IMP protein, and FIG. 10H shows the tandem spectrum for IMP protein ions with a charge state of +30, and the identification result (E=2.99E-76) for the 19-246 a.a. sequence. FIG. 10I shows the mass spectrum of a multi-charged VIM protein, and FIG. 10J shows the tandem spectrum for VIM protein ions with a charge state of +20, and the identification result (E=4.76E-49) for the 27-266 a.a. sequence. FIG. 10K shows the mass spectrum of a multi-charged IMP protein, and FIG. 10L shows the tandem spectrum for GES protein ions with a charge state of +20, and the identification result (E=7.12E-8) for the 19-287 a.a. sequence.



FIGS. 11A and 11B show the modified mass values of NDM protein, obtained by top-down mass spectrometry through high-resolution mass spectrometry. FIG. 11A shows the mass value of the palmitoylated protein type, and FIG. 11B shows the results for the methylated protein of the NDM protein and the resulting elution time difference.



FIGS. 12A, 12B, 12C, 12D, 12E and 12F show sequence coverages for KPC (FIG. 12A), OXA (FIG. 12B), NDM (FIG. 12C), IMP (FIG. 12D), VIM (FIG. 12E) and GES (FIG. 12F) proteins, obtained by top-down mass spectrometry through a high-resolution mass spectrometer.



FIGS. 13A, 13B, 13C, 13D, 13E and 13F show examples of mass spectrometry spectra of KPC protein (FIG. 13A), OXA protein (FIG. 13B), the MBL proteins NDM (FIG. 13C), IMP (FIG. 13D) and VIM (FIG. 13E), and GES protein (FIG. 13F), obtained using a low-resolution mass spectrometer (MALDI-TOF).





MODE FOR INVENTION

Hereinafter, the present invention will be described in more detail with reference to examples. These examples serve merely to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention according to the subject matter of the present invention is not limited by these examples.


EXAMPLES

Experimental Methods


Example 1. Cloning of β-Lactam Antibiotic Resistance Gene and Construction of Antibiotic-Resistant Strain

Based on information about the gene sequences (European Molecular Biology Laboratory (EMBL) nucleotide sequence database accession numbers: KPC=CP026395.1, 882nt, OXA=AY236073.2, 798nt, NDM=CAZ39946.1, 813nt, VIM=AY884050.1, 801nt, IMP=AB616660.2, 741nt, GES=DQ236171.1, 864nt) obtained from the genes for carbapenemases, desired gene sequences were prepared by synthesis (Table 1). Using the synthetic genes, the following primers were prepared.









1) KPC


Primer 1:


5′-AACTGCAGGATGTCACTGTATCGCCGTCTA-3′ (30mer)





Primer 2:


5′-GGAATTCTTACTGCCCGTTGACGCC-3′ (25mer)





2) OXA


Primer 1:


5′-AACTGCAGGATGCGTGTATTAGCCTTATCGG-3′ (31mer)





Primer 2:


5′-GGAATTCCTAGGGAATAATTTTTTCCTGTTTGA-3′ (33mer)





3) NDM


Primer 1:


5′-AAC TGC AGG ATG GAA TTG CCC AAT ATT ATG CA-3′





(32mer)





Primer 2:


5′-GGA ATT CTC AGC GCA GCT TGT CGG-3′ (24mer)





4) IMP


Primer 1:


5′-AAC TGC AGG ATG AGC AAG TTA TCT GTA TTC TTT ATA





T-3′ (37mer)





Primer 2:


5′-GGA ATT CTT AGT TGC TTG GTT TTG ATG GTT TTT-3′





(33mer)





5) VIM


Primer 1:


5′-AAC TGC AGG ATG TTC AAA CTT TTG AGT AAG TTA





TTG-3′ (36mer)





Primer 2:


5′-GGA ATT CCT ACT CAA CGA CTG AGC GAT T-3′





(28mer)





6) GES


Primer 1:


5′-AAC TGC AGG ATG CGC TTC ATT CAC GCA CTA T-3′





(31mer)





Primer 2:


5′-CGG AAT TCC TAT TTG TCC GTG CTC AGG AT-3′





(29mer)






Restriction enzyme sites for cloning were added to the primers, and an open reading frame (ORF) was created to induce expression directly in a cloning vector.


Each target gene was amplified by PCR from three types of template DNA. For PCR, a total of 50 μl of a PCR reaction solution was prepared using 3 μl of template DNA, 1.25 μl of 5′ primer, 1.25 μl of 3′ primer, 1 μl of dNTPs, 10 μl of 5× buffer, and 5×GC enhance buffer, and then PCR was performed under the following conditions: 1) denaturation—at 98° C. for 10 sec; 2) annealing—at 57° C. for 30 sec; 3) extension—at 72° C. for 30 sec. Cloning for construction of a recombinant plasmid containing each target gene was performed as follows: 1) For the insert gene and the vector, both ends of the DNA were cut into sticky ends using restriction enzymes, and 2) the insert gene was ligated into the vector using DNA ligase. 3) Thereafter, the vector was transformed into E. coli (E. coli Top10), and 4) recombinant E. coli was selected by the white/blue screening method. 5) A recombinant plasmid was extracted from the selected strain, and 6) the extracted plasmid was treated with restriction enzymes, and the DNA size was determined. 7) Finally, the inserted gene was confirmed through DNA sequencing.









TABLE 1





Carbapenemases
















KPC
ATGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCT



GCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGC



GGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTG



AGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCG



CAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGT



TCCGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTC



CGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGG



CGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGAC



CGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCG



CGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAG



CGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCG



GCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGTGTATGGCACG



GCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACA



CCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCATCGCCGCTGCGGCTAGAC



TCGCGCTCGAGGGATTGGGCGTCAACGGGCAGTAA





OXA
ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCTGCGGT



AGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACA



GGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACG



GGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTC



GATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGCGAT



ATCGCCACTTGGAATCGCGATCATAATCTAATCACCGCGATGAAATATTCAGTTGTGCCTG



TTTATCAAGAATTTGCCCGCCAAATTGGCGAGGCACGTATGAGCAAGATGCTACATGCTTT



CGATTATGGTAATGAGGACATTTCGGGCAATGTAGACAGTTTCTGGCTCGACGGTGGTATT



CGAATTTCGGCCACGGAGCAAATCAGCTTTTTAAGAAAGCTGTATCACAATAAGTTACACG



TATCGGAGCGCAGCCAGCGTATTGTCAAACAAGCCATGCTGACCGAAGCCAATGGTGACT



ATATTATTCGGGCTAAAACTGGATACTCGACTAGAATCGAACCTAAGATTGGCTGGTGGGT



CGGTTGGGTTGAACTTGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACA



TCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAAAAAATT



ATTCCCTAG





NDM
ATGGAATTGCCCAATATTATGCACCCGGTCGCGAAGCTGAGCACCGCATTAGCCGCTGCA



TTGATGCTGAGCGGGTGCATGCCCGGTGAAATCCGCCCGACGATTGGCCAGCAAATGGAA



ACTGGCGACCAACGGTTTGGCGATCTGGTTTTCCGCCAGCTCGCACCGAATGTCTGGCAG



CACACTTCCTATCTCGACATGCCGGGTTTCGGGGCAGTCGCTTCCAACGGTTTGATCGTC



AGGGATGGCGGCCGCGTGCTGGTGGTCGATACCGCCTGGACCGATGACCAGACCGCCCAG



ATCCTCAACTGGATCAAGCAGGAGATCAACCTGCCGGTCGCGCTGGCGGTGGTGACTCAC



GCGCATCAGGACAAGATGGGCGGTATGGACGCGCTGCATGCGGCGGGGATTGCGACTTAT



GCCAATGCGTTGTCGAACCAGCTTGCCCCGCAAGAGGGGATGGTTGCGGCGCAACACAGC



CTGACTTTCGCCGCCAATGGCTGGGTCGAACCAGCAACCGCGCCCAACTTTGGCCCGCTC



AAGGTATTTTACCCCGGCCCCGGCCACACCAGTGACAATATCACCGTTGGGATCGACGGC



ACCGACATCGCTTTTGGTGGCTGCCTGATCAAGGACAGCAAGGCCAAGTCGCTCGGCAAT



CTCGGTGATGCCGACACTGAGCACTACGCCGCGTCAGCGCGCGCGTTTGGTGCGGCGTTC



CCCAAGGCCAGCATGATCGTGATGAGCCATTCCGCCCCCGATAGCCGCGCCGCAATCACT



CATACGGCCCGCATGGCCGACAAGCTGCGCTGA





IMP
ATGAGCAAGTTATCTGTATTCTTTATATTTTTGTTTTGCAGCATTGCTACCGCAGCAGAG



TCTTTGCCAGATTTAAAAATTGAAAAGCTTGATGAAGGCGTTTATGTTCATACTTCGTTT



GAAGAAGTTAACGGGTGGGGCGTTGTTCCTAAACATGGTTTGGTGGTTCTTGTAAATGCT



GAGGCTTACCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGG



TTTGTGGAGCGTGGCTATAAAATAAAAGGCAGCATTTCCTCTCATTTTCATAGCGACAGC



ACGGGCGGAATAGAGTGGCTTAATTCTCGATCTATCCCCACGTATGCATCTGAATTAACA



AATGAACTGCTTAAAAAAGACGGTAAGGTTCAAGCCACAAATTCATTTAGCGGAGTTAAC



TATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCGGGACACACTCCAGAT



AACGTAGTGGTTTGGTTGCCTGAAAGGAAAATATTATTCGGTGGTTGTTTTATTAAACCG



TACGGTTTAGGCAATTTGGGTGACGCAAATATAGAAGCTTGGCCAAAGTCCGCCAAATTA



TTAAAGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAGGTCACAGTGAAGTTGGAGAC



GCATCACTCTTGAAACTTACATTAGAGCAGGCGGTTAAAGGGTTAAACGAAAGTAAAAAA



CCATCAAAACCAAGCAACTAA





VIM
ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCG



AGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCG



GTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAG



TCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTG



CTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAG



AAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTC



GGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGC



CGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCG



AGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCG



ACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATT



TATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCC



ACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCAC



GGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACA



AATCGCTCAGTCGTTGAGTAG





GES
ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAA



AAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGT



GTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTT



GCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCA



GGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCT



CCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCT



GCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCT



GCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAA



GAGCCGGAGATGAGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCT



ATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCAC



ACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTT



CCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGAC



ATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCG



AAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAA



CTCATCCTGAGCACGGACAAATAG









Example 2. Analysis of Expression and Size of Each Target Protein

(1) Target Protein Production and Identification



E. coli transformed with the plasmid containing each target gene was inoculated into Luria-bertani liquid medium containing 50 mg/L of ampicillin antibiotic, and cultured at 37° C. for 16 hours or more. In order to analyze the expression and size of each target protein, the culture was centrifuged at 4,000 rpm for 15 minutes, and the cells were harvested by removing the supernatant. The harvested cells were added to SDS-sample buffer, heated at 95° C. for 5 min, and centrifuged at 15,000 rpm for 5 min. Using the prepared samples, the expression and size of each target protein were analyzed through SDS-PAGE gel analysis (FIGS. 1A, 1B, 1C, 1D, 1E, 1F, 1G and 1H).


(2) Confirmation of Genotypes of KPC and OXA Derived from Clinical Strain and Confirmation of Proteins


In order to confirm KPC and OXA derived from a clinical strain, a strain confirmed as positive for extended spectrum β-lactamase (ESBL) was collected. The collected strain was subjected to colony PCR using the primers used for KPC and OXA gene amplification. The resulting amplified PCR products were subjected to agar gel electrophoresis to confirm the sizes of the target genes. The PCR products whose sizes have been confirmed were subjected to DNA sequencing to confirm the exact genotypes of the KPC and OXA genes.


The strain whose genotypes have been confirmed was cultured in LB liquid medium, and SDS-PAGE gel analysis was performed to examine whether KPC and OXA proteins would be expressed. In addition, a recombinant strain containing the KPC and OXA genes derived from the clinical strain was constructed in the same manner as the existing recombinant strain comprising the vector containing the KPC and OXA genes, and the recombinant strain was also subjected to SDS-PAGE gel analysis in the same manner as the clinical strain to confirm the sizes of the actually expressed KPC and OXA proteins (FIGS. 2A, 2B, 2C, 2D and 2E).


Clinical strain-derived KPC and OXA proteins were each identified through the Q-TOF MS method. For KPC, it was confirmed that the sequence coverage for the identified peptides was 62.46% (183/293) in the full-length protein sequence and 67.28% (183/272) in the active form excluding the N-terminus. In addition, for OXA, it was confirmed that the sequence coverage for the identified peptides was 16.98% (45/265) in the full-length protein amino acid sequence and 18.52% (45/243) in the sequence of the active form.


(3) MBL Protein Production and Identification



E. coli transformed with the plasmid containing the target MBL gene was inoculated into Luria-bertani liquid medium containing 50 mg/L of ampicillin antibiotic and zinc sulfate (0.01 mM to 1 mM ZnSO4), and cultured at 37° C. for 16 hours or more. In order to analyze the expression and size of the target protein, the culture was centrifuged at 4,000 rpm for 15 minutes, and the cells were harvested by removing the supernatant. The harvested cells were added to SDS-sample buffer, heated at 95° C. for 5 min, and centrifuged at 15,000 rpm for 5 min. Using the prepared sample, the expression and size of the target protein were analyzed through SDS-PAGE gel analysis (FIG. 3).


Example 3. Sample Pretreatment Method and Identification of Target Protein from Crude Enzyme Solution

(1) Sample Pretreatment with Nonionic Surfactant


For sample pretreatment, the culture was centrifuged at 4,000 rpm for 15 minutes, and the cells were harvested by removing the supernatant. To obtain a crude extract, the cells were treated with a buffer solution (0.25 mM Tris-HCl, 2% OG) and incubated at room temperature for 10 minutes. The prepared crude extract was separated into a supernatant (hereinafter referred to as crude enzyme solution) and a precipitate by centrifugation at 15,000 rpm at 4° C. for 10 minutes. From the crude enzyme solution, the expression and size of the target protein were analyzed by SDS-PAGE analysis (FIG. 4A).


(2) Sample Pretreatment with Ionic Surfactant


Sample pretreatment was performed by the following steps: 1) 100 ml of the expressed cell culture was centrifuged and to recover the cells, and 2) the supernatant was removed, and then a buffer solution (0.25 mM Tris-HCl, pH 8.0 and 2% DOC) containing 2% sodium deoxycholate (DOC) as a nonionic surfactant was added to the cells. 3) The suspension was incubated at room temperature for 10 minutes, and 4) centrifuged at 15,000 rpm at 4° C. for 10 minutes to obtain a crude enzyme solution.


From the crude extract and the crude enzyme solution, obtained by treatment with the ionic surfactant (DOC), the expression and size of the protein were analyzed by SDS-PAGE gel analysis (FIG. 4B).


(3) Sample Pretreatment with Volatile Buffer


The sample pretreatment method is as follows: 1) 50 mM ammonium bicarbonate (hereinafter referred to as ABC) solution was added to the harvested cells, 2) the cells were resuspended by pipetting, and then 3) the suspension was centrifuged at 12,000 rpm and 4° C. for 10 minutes to recover the supernatant. From the crude extract and crude enzyme solution obtained by treatment, the expression and size of the protein were analyzed by SDS-PAGE gel analysis (FIGS. 4C and 4E).


(4) Sample Pretreatment by Sonication


The cells in the suspensions treated by the methods (1) to (3) above were disrupted by sonication using a Sonic bath (JAC 2010, Hansol Tech, Korea) at 40 Hz and 200 W for 5 to 10 minutes, and centrifuged at 15,000 rpm for 10 min, and the supernatant was recovered.


Example 4. Separation/Purification of Target Protein

Ion exchange chromatography was used to separate/purify each target protein. For anion exchange chromatography, a column containing Q-resin was used, and for cation exchange chromatography, a column containing SP-resin was used.


(1) Anion Exchange Resin Chromatography


The crude enzyme solution was loaded into a column containing Q-resin, and then the eluted solution was collected. The column was washed with 1 ml of 20 mM Tris-HCl (pH 8.0) buffer, and elution solutions containing 100 mM NaCl, 200 mM NaCl, 300 mM NaCl, 400 mM NaCl and 500 mM NaCl 1M, respectively, in buffer, were sequentially loaded into the column in an amount of 250 μl for each elution solution, and the eluate was collected for each zone.


(2) Cation Exchange Resin Chromatography


Using a column containing SP-resin, each target protein was separated/purified in the same manner as (1) anion exchange resin chromatography.


Finally, six desired target proteins were separated/purified through the above ion exchange chromatography method (FIGS. 5A, 5B, 5C, 5D, 5E and 5F). Finally, each high-purity protein was separated/purified from the cell lysate using the same method as described above.


Example 5. Analysis of Expression and Size of Each Target Protein

The proteins whose expression and size were confirmed on the SDS-PAGE gel were identified using the in-gel digestion method and the nano-LC-MS/MS method, thereby confirming the type of antibiotic resistance protein actually expressed in the strain (FIGS. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K, 7L, 7M, 7N, 7O, 7P, 7Q, 7R, 7S and 7T).


(1) In-Gel Digestion


Only the band portion corresponding to the size of each target protein on the SDS-PAGE gel was obtained, and the stained gel was destained. The destained gel was subjected to a reduction/alkylation process, and then the protein was selectively digested using a trypsin enzyme. The digested peptides were recovered and desalted using DK-Tip (C18 Tip).


(2) Nano-LC-MS/MS


In order to confirm the sequence and coverage of the active protein expressed in the strain, nano liquid chromatography and high-resolution mass spectrometry were performed (Q-Exactive HF-X mass spectrometry system). The desalted peptide sample was dissolved with 0.1% formic acid solution and then loaded into a column. The peptide sample was separated using a C18 column (75 μm×70 cm) and nanoflow liquid chromatography. Examples of the gradient conditions for sample loading and separation used in this case are as follows:

    • buffer A: 0.1% formic acid in water/buffer B: 0.1% formic acid in acetonitrile
    • sample loading: from 0 to 5 min, 5% (B), 5 μL/min flow rate
    • concentration gradient for separation:


from 5 to 7 min, from 5% to 10% (B), 300 nL/min flow rate


from 7 to 38 min, from 10% to 40% (B), 300 nL/min flow rate


from 38 to 38.5 min, from 40% to 80% (B), 300 nL/min flow rate


from 38.5 to 39.5 min, 80% (B), 300 nL/min flow rate


from 39.5 to 40 min, from 80% to 5% (B), 300 nL/min flow rate


from 40 to 60 min, 5% (B), 300 nL/min flow rate


Examples of the parameters of the mass spectrometer used in this case are as follows:

    • resolution: Full MS 60,000, MS2 30,000
    • Full MS: 350 to 2,000 m/z, 100 msec
    • MS2: 50 msec, NCE 28, 1, ionized materials with a charge state of >6 were excluded from MS2 analysis


‘Proteome Discoverer (v2.4)’ software (Thermo scientific) was used to identify peptides and proteins based on bottom-up data, and protein/peptide identification was based on a FDR (false discovery rate) of 1%. Among proteins from E. coli, KPC, OXA, MBL proteins or GES protein was identified, 200 peptides (Table 2) for KPC protein, 177 peptides (Table 3) for OXA, 109 peptides (Table 4) for NDM protein, 146 peptides (Table 5) for IMP (Table 5), 159 peptides (Table 6) for VIM protein, and 111 peptides (Table 7) for GES were identified.









TABLE 2







Information on position and sequence of each peptide identified as


KPC protein


















Oxidation

SEQUEST
SEQUEST
Observed
Actual


Start
Stop
Sequence
site
z
XCorr
deltaCn
m/z
mass (Da)


















22
35
(S)ATALTNLVAEPFAK(L)

2
4.48
0.67
723.40
1,444.79





23
35
(A)TALTNLVAEPFAK(L)

2
4.56
0.67
687.88
1,373.75





24
35
(T)ALTNLVAEPFAK(L)

2
3.17
0.53
637.36
1,272.71





25
35
(A)LTNLVAEPFAK(L)

2
3.38
0.56
601.84
1,201.67





26
36
(L)TNLVAEPFAKL(E)

2
2.05
0.27
601.84
1,201.67





26
60
(L)TNLVAEPFAKLEQDFGGSIGVY
M(49)
3
2.99
0.50
1,223.26
3,666.76




AmDTGSGATVSYR(A)











27
35
(T)NLVAEPFAK(L)

2
2.25
0.33
494.78
987.54





29
35
(L)VAEPFAK(L)

1
2.65
0.43
761.41
760.41





34
47
(F)AKLEQDFGGSIGVY(A)

2
3.15
0.52
742.38
1,482.74





34
60
(F)AKLEQDFGGSIGVYAmDTGSGA
M(49)
3
5.39
0.72
932.78
2,795.31




TVSYR(A)











34
60
(F)AKLEQDFGGSIGVYAMDTGSGA

3
3.97
0.62
927.45
2,779.32




TVSYR(A)











36
60
(K)LEQDFGGSIGVYAmDTGSGATV
M(49)
2
6.81
0.78
1,299.10
2,596.18




SYR(A)











36
60
(K)LEQDFGGSIGVYAMDTGSGATV

2
6.83
0.78
1,291.10
2,580.18




SYR(A)











42
60
(G)GSIGVYAmDTGSGATVSYR(A)
M(49)
2
2.01
0.25
954.44
1,906.87





45
60
(I)GVYAMDTGSGATVSYR(A)

2
2.35
0.36
817.88
1,633.74





48
59
(Y)AmDTGSGATVSY(R)
M(49)
2
2.84
0.47
588.25
1,174.48





48
59
(Y)AMDTGSGATVSY(R)

2
2.67
0.44
580.25
1,158.49





48
60
(Y)AmDTGSGATVSYR(A)
M(49)
2
3.30
0.55
666.30
1,330.58





48
60
(Y)AMDTGSGATVSYR(A)

2
3.92
0.62
658.30
1,314.59





50
60
(M)DTGSGATVSYR(A)

2
2.25
0.33
557.27
1,112.52





60
67
(Y)RAEERFPL(C)

2
1.76
0.15
509.28
1,016.54





60
71
(Y)RAEERFPLcSSF(K)

2
2.80
0.46
749.86
1,497.71





61
67
(R)AEERFPL(C)

2
1.98
0.24
431.23
860.44





61
72
(R)AEERFPLcSSFK(G)

2
4.26
0.65
735.86
1,469.70





62
72
(A)EERFPLcSSFK(G)

2
3.39
0.56
700.34
1,398.67





63
72
(E)ERFPLcSSFK(G)

2
3.86
0.61
635.82
1,269.62





65
72
(R)FPLcSSFK(G)

2
2.35
0.36
493.25
984.48





68
74
(L)cSSFKGF(L)

2
2.16
0.31
416.69
831.36

















72
80
(F)KGFLAAAVL(A)























72
82
(F)KGFLAAAVLAR(S)

2
2.01
0.25
558.85
1,115.69





73
82
(K)GFLAAAVLAR(S)

2
3.21
0.53
494.80
987.59





74
82
(G)FLAAAVLAR(S)

2
1.97
0.24
466.29
930.56





75
82
(F)LAAAVLAR(S)

2
2.96
0.49
392.76
783.50





76
82
(L)AAAVLAR(S)

1
2.24
0.33
671.42
670.41





81
96
(L)ARSQQQAGLLDTPIRY(G)

2
3.60
0.58
908.99
1,815.96





83
95
(R)SQQQAGLLDTPIR(Y)

2
4.74
0.68
713.88
1,425.75





83
98
(R)SQQQAGLLDTPIRYGK(N)

2
5.57
0.73
887.98
1,773.94





84
95
(S)QQQAGLLDTPIR(Y)

2
2.45
0.39
670.37
1,338.73





85
95
(Q)QQAGLLDTPIR(Y)

2
3.39
0.56
606.34
1,210.67





87
95
(Q)AGLLDTPIR(Y)

2
2.37
0.37
478.28
954.55





90
96
(L)LDTPIRY(G)

2
1.96
0.23
439.24
876.47





96
110
(R)YGKNALVPWSPISEK(Y)

2
1.87
0.20
844.95
1,687.89





97
104
(Y)GKNALVPW(S)

2
1.89
0.21
442.75
883.50





97
111
(Y)GKNALVPWSPISEKY(L)

2
4.27
0.65
844.96
1,687.90





99
110
(K)NALVPWSPISEK(Y)

2
3.22
0.53
670.86
1,339.71





100
110
(N)ALVPWSPISEK(Y)

2
2.11
0.29
613.84
1,225.67





102
110
(L)VPWSPISEK(Y)

1
2.69
0.44
1,042.55
1,041.54





103
110
(V)PWSPISEK(Y)

2
2.19
0.31
472.25
942.48





105
111
(W)SPISEKY(L)

2
1.90
0.21
412.22
822.42





105
112
(W)SPISEKYL(T)

2
1.87
0.20
468.76
935.50





105
121
(W)SPISEKYLTTGmTVAEL(S)
M(116)
2
3.60
0.58
928.47
1,854.93





111
139
(K)YLTTGmTVAELSAAAVQYSDN
M(116)
2
8.51
0.82
1,508.27
3,014.53




AAANLLLK(E)











111
139
(K)YLTTGMTVAELSAAAVQYSDN

2
8.88
0.83
1,500.27
2,998.53




AAANLLLK(E)











112
121
(Y)LTTGmTVAEL(S)
M(116)
2
1.90
0.21
526.27
1,050.53





113
139
(L)TTGMTVAELSAAAVQYSDNAA

2
3.10
0.52
1,362.20
2,722.39




ANLLLK(E)











117
139
(M)TVAELSAAAVQYSDNAAANLL

2
5.53
0.73
1,167.12
2,332.23




LK(E)











122
128
(L)SAAAVQY(S)

1
1.62
0.07
709.35
708.35





122
139
(L)SAAAVQYSDNAAANLLLK(E)

2
4.23
0.65
910.48
1,818.94





123
139
(S)AAAVQYSDNAAANLLLK(E)

2
3.20
0.53
866.97
1,731.92





125
139
(A)AVQYSDNAAANLLLK(E)

2
3.41
0.56
795.93
1,589.84





128
139
(Q)YSDNAAANLLLK(E)

2
3.76
0.60
646.85
1,291.68





129
137
(Y)SDNAAANLL(L)

1
2.19
0.32
888.45
887.44





129
139
(Y)SDNAAANLLLK(E)

2
2.65
0.43
565.31
1,128.61





138
147
(L)LKELGGPAGL(T)

2
3.57
0.58
477.79
953.56





139
150
(L)KELGGPAGLTAF(M)

2
2.89
0.48
580.82
1,159.63





140
152
(K)ELGGPAGLTAFmR(S)
M(151)
2
3.56
0.58
668.34
1,334.67





140
152
(K)ELGGPAGLTAFMR(S)

2
3.94
0.62
660.34
1,318.67





142
152
(L)GGPAGLTAFmR(S)
M(151)
2
2.11
0.29
547.28
1,092.54





143
152
(G)GPAGLTAFmR(S)
M(151)
2
2.63
0.43
518.77
1,035.52





144
152
(G)PAGLTAFmR(S)
M(151)
2
2.42
0.38
490.25
978.49





148
159
(L)TAFmRSIGDTTF(R)
M(151)
2
3.43
0.56
681.82
1,361.63





148
159
(L)TAFMRSIGDTTF(R)

2
3.89
0.61
673.83
1,345.64





151
159
(F)mRSIGDTTF(R)
M(151)
2
2.57
0.42
522.25
1,042.48





151
159
(F)MRSIGDTTF(R)

2
2.52
0.40
514.25
1,026.49





153
160
(R)SIGDTTFR(L)

2
2.15
0.30
448.73
895.44





153
163
(R) SIGDTTFRLDR(W)

2
2.55
0.41
640.83
1,279.65





153
177
(R)SIGDTTFRLDRWELELNSAIPGD

3
1.99
0.25
944.82
2,831.43




AR(D)











154
160
(S)IGDTTFR(L)

2
2.08
0.28
405.21
808.41





154
163
(S)IGDTTFRLDR(W)

2
1.88
0.20
597.32
1,192.62





155
163
(I)GDTTFRLDR(W)

2
1.85
0.19
540.78
1,079.54





156
163
(G)DTTFRLDR(W)

2
1.92
0.22
512.27
1,022.52





161
177
(R)LDRWELELNSAIPGDAR(D)

2
3.95
0.62
978.00
1,953.99





161
183
(R)LDRWELELNSAIPGDARDTSSPR

3
2.59
0.42
866.77
2,597.29







(A)











164
177
(R)WELELNSAIPGDAR(D)

2
4.22
0.64
785.90
1,569.78





164
183
(R)WELELNSAIPGDARDTSSPR(A)

3
3.34
0.55
738.70
2,213.08





165
177
(W)ELELNSAIPGDAR(D)

2
3.42
0.56
692.86
1,383.70





184
191
(R)AVTESLQK(L)

2
2.27
0.34
438.24
874.47





184
203
(R)AVTESLQKLTLGSALAAPQR(Q)

2
3.16
0.53
1,027.58
2,053.15





185
191
(A)VTESLQK(L)

2
1.97
0.24
402.73
803.44





192
203
(K)LTLGSALAAPQR(Q)

2
4.07
0.63
599.35
1,196.69





192
204
(K)LTLGSALAAPQRQ(Q)

2
1.85
0.19
663.38
1,324.75





193
203
(L)TLGSALAAPQR(Q)

2
2.24
0.33
542.81
1,083.61





193
206
(L)TLGSALAAPQRQQF(V)

2
4.04
0.63
744.40
1,486.79





194
203
(T)LGSALAAPQR(Q)

2
3.44
0.56
492.28
982.56





195
206
(L)GSALAAPQRQQF(V)

2
2.10
0.29
637.34
1,272.66





199
209
(L)AAPQRQQFVDW(L)

2
3.25
0.54
673.34
1,344.66





199
210
(L)AAPQRQQFVDWL(K)

2
1.82
0.18
729.88
1,457.74





204
211
(R)QQFVDWLK(G)

2
2.89
0.48
532.28
1,062.55





204
219
(R)QQFVDWLKGNTTGNHR(I)

2
2.91
0.48
950.98
1,899.94





210
228
(W)LKGNTTGNHRIRAAVPADW(A)

3
1.93
0.22
693.04
2,076.11





212
219
(K)GNTTGNHR(I)

2
2.39
0.37
428.70
855.39





222
233
(R)AAVPADWAVGDK(T)

2
2.66
0.44
600.31
1,198.60





222
235
(R)AAVPADWAVGDKTG(T)

2
3.29
0.54
679.34
1,356.67





222
236
(R)AAVPADWAVGDKTGT(C)

2
3.82
0.61
729.86
1,457.71





222
254
(R)AAVPADWAVGDKTGTcGVYGT

3
3.57
0.58
1,142.54
3,424.60




ANDYAVVWPTGR(A)











223
233
(A)AVPADWAVGDK(T)

2
2.43
0.38
564.79
1,127.56





224
233
(A)VPADWAVGDK(T)

2
2.89
0.48
529.27
1,056.52





225
233
(V)PADWAVGDK(T)

2
3.15
0.52
479.73
957.46





226
233
(P)ADWAVGDK(T)

1
2.59
0.42
861.41
860.40





229
240
(W)AVGDKTGTcGVY(G)

2
3.20
0.53
614.29
1,226.56





229
246
(W)AVGDKTGTcGVYGTANDY(A)

2
3.02
0.50
924.91
1,847.81





234
254
(K)TGTcGVYGTANDYAVVWPTGR

2
3.04
0.51
1,123.02
2,244.02




(A)











238
254
(C)GVYGTANDYAVVWPTGR(A)

2
4.23
0.65
913.45
1,824.88





239
254
(G)VYGTANDYAVVWPTGR(A)

2
4.11
0.64
884.94
1,767.86





240
254
(V)YGTANDYAVVWPTGR(A)

2
3.37
0.55
835.40
1,668.79





241
254
(Y)GTANDYAVVWPTGR(A)

2
1.98
0.24
753.87
1,505.73





245
254
(N)DYAVVWPTGR(A)

2
2.69
0.44
582.29
1,162.58





247
259
(Y)AVVWPTGRAPIVL(A)

2
2.21
0.32
689.92
1,377.82





251
262
(W)PTGRAPIVL AVY(T)

2
2.40
0.38
628.87
1,255.73





255
264
(R)APIVLAVYTR(A)

2
3.49
0.57
551.83
1,101.65





255
271
(R)APIVLAVYTRAPNKDDK(H)

3
1.75
0.14
624.35
1,870.03





256
264
(A)PIVLAVYTR(A)

2
2.99
0.50
516.32
1,030.62





257
264
(P)IVLAVYTR(A)

2
1.99
0.25
467.79
933.56





260
283
(L)AVYTRAPNKDDKHSEAVIAAA

4
3.51
0.57
642.60
2,566.37




ARL(A)











263
283
(Y)TRAPNKDDKHSEAVIAAAARL(A)

3
5.25
0.71
745.41
2,233.20





263
285
(Y)TRAPNKDDKHSEAVIAAAARLA

3
3.67
0.59
806.78
2,417.33




L(E)











265
282
(R)APNKDDKHSEAVIAAAAR(L)

2
5.92
0.75
932.49
1,862.96





266
282
(A)PNKDDKHSEAVIAAAAR(L)

3
5.88
0.74
598.31
1,791.92





267
282
(P)NKDDKHSEAVIAAAAR(L)

2
4.96
0.70
848.44
1,694.87





268
282
(N)KDDKHSEAVIAAAAR(L)

2
5.04
0.70
791.42
1,580.82





269
282
(K)DDKHSEAVIAAAAR(L)

2
3.34
0.55
727.37
1,452.73





270
282
(D)DKHSEAVIAAAAR(L)

3
2.12
0.29
446.91
1,337.71





271
282
(D)KHSEAVIAAAAR(L)

2
3.35
0.55
612.35
1,222.68





272
282
(K)HSEAVIAAAAR(L)

2
3.92
0.62
548.30
1,094.58





273
282
(H)SEAVIAAAAR(L)

2
2.34
0.36
479.77
957.52





283
291
(R)LALEGLGVN(G)

1
2.36
0.36
885.50
884.49





283
293
(R)LALEGLGVNGQ(—)

2
3.66
0.59
535.80
1,069.58





284
293
(L)ALEGLGVNGQ(—)

2
2.09
0.28
479.25
956.49
















TABLE 3







Information on position and sequence of each peptide identified as


OXA protein























Actual





Oxidation

SEQUEST
SEQUEST
Observed
mass


Start
Stop
Sequence
site
z
XCorr
deltaCn
m/z
(Da)


















23
29
(A)KEWQENK(S)

2
2.01
0.25
481.24
960.47





23
39
(A)KEWQENKSWNAHFTEHK(S)

4
5.28
0.72
550.52
2198.03





28
39
(E)NKSWNAHFTEHK(S)

2
3.06
0.51
749.87
1497.72





30
37
(K)SWNAHFTE(H)

2
1.78
0.16
496.22
990.43





30
38
(K)SWNAHFTEH(K)

2
3.14
0.52
564.75
1127.48





30
39
(K)SWNAHFTEHK(S)

2
3.71
0.60
628.80
1255.58





31
39
(S)WNAHFTEHK(S)

2
3.47
0.57
585.28
1168.54





32
39
(W)NAHFTEHK(S)

2
3.09
0.51
492.24
982.46





32
39
(W)NAHFTEHK(S)

3
2.80
0.46
328.50
982.47





33
39
(N)AHFTEHK(S)

2
2.06
0.27
435.22
868.42





38
51
(E)HKSQGVVVLWNENK(Q)

2
5.32
0.72
819.45
1636.88





40
49
(K) SQGVVVLWNE(N)

2
2.56
0.41
565.80
1129.58





40
51
(K)SQGVVVLWNENK(Q)

3
3.90
0.62
458.25
1371.71





40
60
(K)SQGVVVLWNENKQQGFTNNLK(R)

2
4.90
0.69
1202.14
2402.26





40
61
(K)SQGVVVLWNENKQQGFTNNLKR(A)

3
6.25
0.76
853.78
2558.33





42
51
(Q)GVVVLWNENK(Q)

2
3.13
0.52
579.32
1156.63





49
60
(N)ENKQQGFTNNLK(R)

2
2.79
0.46
710.87
1419.72





49
61
(N)ENKQQGFTNNLKR(A)

3
4.16
0.64
526.28
1575.82





50
60
(E)NKQQGFTNNLK(R)

2
3.50
0.57
646.34
1290.67





50
61
(E)NKQQGFTNNLKR(A)

3
5.40
0.72
483.27
1446.77





51
60
(N)KQQGFTNNLK(R)

2
3.73
0.60
589.32
1176.63





51
61
(N)KQQGFTNNLKR(A)

2
2.07
0.28
667.37
1332.73





52
60
(K)QQGFTNNLK(R)

2
3.28
0.54
525.27
1048.53





52
61
(K)QQGFTNNLKR(A)

3
3.92
0.62
402.55
1204.64





53
61
(Q)QGFTNNLKR(A)

2
2.93
0.49
539.29
1076.57





54
60
(Q)GFTNNLK(R)

1
2.16
0.31
793.42
792.41





54
61
(Q)GFTNNLKR(A)

2
2.44
0.38
475.26
948.51





55
61
(G)FTNNLKR(A)

2
2.40
0.37
446.75
891.50





61
72
(K)RANQAFLPASTF(K)

2
2.99
0.50
661.85
1321.68





61
73
(K)RANQAFLPASTFK(I)

2
4.14
0.64
725.90
1449.78





62
72
(R)ANQAFLPASTF(K)

2
2.30
0.35
583.80
1165.58





62
73
(R)ANQAFLPASTFK(I)

2
3.95
0.62
647.85
1293.68





62
76
(R)ANQAFLPASTFKIPN(S)

2
2.10
0.29
809.94
1617.86





63
73
(A)NQAFLPASTFK(I)

2
3.07
0.51
612.33
1222.64





64
73
(N)QAFLPASTFK(I)

2
3.31
0.55
555.31
1108.60





65
73
(Q)AFLPASTFK(I)

2
1.95
0.23
491.28
980.54





66
73
(A)FLPASTFK(I)

1
2.53
0.41
910.51
909.50





67
73
(F)LPASTFK(I)

1
3.04
0.51
763.43
762.43





74
87
(K)IPNSLIALDLGVVK(D)

2
3.39
0.56
726.45
1450.88





74
94
(K)IPNSLIALDLGVVKDEHQVFK(W)

3
8.46
0.82
779.11
2334.30





74
100
(K)IPNSLIALDLGVVKDEHQVFKWDGQ

5
2.45
0.39
616.53
3077.63




TR(D)











75
94
(I)PNSLIALDLGWKDEHQVFK(W)

4
5.10
0.71
556.31
2221.20





77
94
(N)SLIALDLGVVKDEHQVFK(W)

2
4.75
0.68
1006.07
2010.12





80
94
(I)ALDLGWKDEHQVFK(W)

2
2.13
0.30
849.46
1696.91





81
94
(A)LDLGVVKDEHQVFK(W)

2
1.82
0.18
813.95
1625.88





82
94
(L)DLGVVKDEHQVFK(W)

2
3.04
0.51
757.40
1512.79





83
94
(D)LGVVKDEHQVFK(W)

2
3.16
0.53
699.89
1397.77





83
100
(D)LGVVKDEHQVFKWDGQTR(D)

3
3.36
0.55
714.71
2141.11





84
94
(L)GVVKDEHQVFK(W)

2
3.26
0.54
643.35
1284.68





88
95
(K)DEHQVFKW(D)

2
2.60
0.42
544.76
1087.51





88
100
(K)DEHQVFKWDGQTR(D)

2
3.91
0.62
823.39
1644.77





89
100
(D)EHQVFKWDGQTR(D)

3
1.82
0.18
510.92
1529.74





90
100
(E)HQVFKWDGQTR(D)

3
3.49
0.57
467.91
1400.70





92
100
(Q)VFKWDGQTR(D)

2
1.92
0.22
568.80
1135.58





96
107
(W)DGQTRDIATWNR(D)

3
3.29
0.54
478.24
1431.69





101
107
(R)DIATWNR(D)

2
2.13
0.30
438.22
874.43





101
110
(R)DIATWNRDHN(L)

2
1.94
0.23
621.29
1240.56





101
116
(R)DIATWNRDHNLITAmK(Y)
M(115)
3
5.46
0.73
638.99
1913.94





101
116
(R)DIATWNRDHNLITAMK(Y)

3
5.23
0.71
633.66
1897.95





103
116
(I)ATWNRDHNLITAmK(Y)
M(115)
3
6.00
0.75
562.95
1685.83





103
116
(I)ATWNRDHNLITAMK(Y)

3
3.52
0.57
557.62
1669.84





104
116
(A)TWNRDHNLITAmK(Y)
M(115)
3
2.18
0.31
539.27
1614.79





105
128
(T)WNRDHNLITAMKYSVVPVYQEFAR

3
2.26
0.34
979.83
2936.46




(Q)











107
116
(N)RDHNLITAMK(Y)

2
2.89
0.48
599.82
1197.63





108
116
(R)DHNLITAmK(Y)
M(115)
2
3.80
0.61
529.77
1057.53





108
116
(R)DHNLITAMK(Y)

2
3.45
0.56
521.77
1041.53





108
128
(R)DHNLITAmKYSVVPVYQEFAR(Q)
M(115)
4
2.38
0.37
625.07
2496.25





109
116
(D)HNLITAMK(Y)

2
3.74
0.60
464.26
926.50





116
128
(M)KYSVVPVYQEFAR(Q)

2
3.73
0.60
793.43
1584.84





117
125
(K)YSVVPVYQE(F)

2
1.93
0.22
542.27
1082.53





117
126
(K)YSVVPVYQEF(A)

2
2.25
0.33
615.81
1229.60





117
128
(K)YSVVPVYQEFAR(Q)

2
3.11
0.52
729.38
1456.74





121
128
(V)PVYQEFAR(Q)

2
1.86
0.19
505.26
1008.51





138
152
(K)mLHAFDYGNEDISGN(V)
M(138)
2
2.27
0.34
849.86
1697.71





138
155
(K)MLHAFDYGNEDISGNVDS(F)

2
2.38
0.37
992.43
1982.84





138
163
(K)mLHAFDYGNEDISGNVDSFWLDGGI
M(138)
3
3.08
0.51
982.11
2943.31




R(I)











138
163
(K)MLHAFDYGNEDISGNVDSFWLDGGI

2
3.14
0.52
1464.67
2927.32




R(I)











143
153
(F)DYGNEDISGNV(D)

2
2.50
0.40
591.75
1181.49





147
163
(N)EDISGNVDSFWLDGGIR(I)

2
2.56
0.41
940.44
1878.87





153
163
(N)VDSFWLDGGIR(I)

2
2.90
0.48
632.82
1263.63





164
174
(R)ISATEQISFLR(K)

2
4.43
0.66
632.85
1263.68





164
175
(R)ISATEQISFLRK(L)

2
4.21
0.64
696.90
1391.79





165
174
(I)SATEQISFLR(K)

2
2.42
0.38
576.31
1150.60





165
175
(I)SATEQISFLRK(L)

2
3.50
0.57
640.36
1278.70





166
174
(S)ATEQISFLR(K)

2
2.46
0.39
532.79
1063.56





166
175
(S)ATEQISFLRK(L)

2
3.28
0.54
596.84
1191.67





167
174
(A)TEQISFLR(K)

2
2.28
0.34
497.27
992.53





167
175
(A)TEQISFLRK(L)

2
2.74
0.45
561.32
1120.63





169
175
(E)QISFLRK(L)

3
2.05
0.27
297.85
890.54





175
186
(R)KLYHNKLHVSER(S)

3
2.58
0.42
508.62
1522.84





176
186
(K)LYHNKLHVSER(S)

3
2.90
0.48
465.92
1394.75





190
206
(R)IVKQAmLTEANGDYIIR(A)
M(195)
2
3.21
0.53
976.03
1950.04





193
200
(K)QAMLTEAN(G)

1
2.61
0.42
877.41
876.40





193
206
(K)QAmLTEANGDYIIR(A)
M(195)
2
3.19
0.53
805.89
1609.77





193
206
(K)QAMLTEANGDYIIR(A)

2
4.43
0.66
797.90
1593.79





194
206
(Q)AmLTEANGDYIIR(A)
M(195)
2
3.76
0.60
741.87
1481.73





196
206
(M)LTEANGDYIIR(A)

2
2.90
0.48
632.83
1263.65





207
218
(R)AKTGYSTRIEPK(I)

3
2.31
0.35
450.92
1349.74





209
218
(K)TGYSTRIEPK(I)

2
2.21
0.32
576.31
1150.60





210
218
(T)GYSTRIEPK(I)

2
1.81
0.17
525.79
1049.56





219
250
(K)IGWWVGWVELDDNVWFFAmNmDm
M(237,
4
1.86
0.19
952.18
3804.69




PTSDGLGLR(Q)
239, 241)










235
250
(F)FAMNMDMPTSDGLGLR(Q)

2
3.17
0.53
878.40
1754.78





236
250
(F)AMNmDmPTSDGLGLR(Q)
M(239,
2
3.15
0.52
820.86
1639.71





241)










236
250
(F)AMNMDMPTSDGLGLR(Q)

2
2.98
0.50
804.86
1607.71





238
250
(M)NmDMPTSDGLGLR(Q)
M(239)
2
3.11
0.52
711.82
1421.63





238
250
(M)NMDMPTSDGLGLR(Q)

2
2.95
0.49
703.82
1405.63





239
250
(N)mDmPTSDGLGLR(Q)
M(239,
2
2.39
0.37
662.80
1323.58





241)










245
265
(S)DGLGLRQAITKEVLKQEKIIP(—)

3
2.55
0.41
783.80
2348.39





251
262
(R)QAITKEVLKQEK(I)

2
4.24
0.65
707.92
1413.82





256
262
(K)EVLKQEK(I)

2
2.55
0.41
437.26
872.50





256
265
(K)EVLKQEKIIP(—)

2
2.11
0.29
598.87
1195.72
















TABLE 4







Information on position and sequence of each peptide identified as


NDM protein























Actual








SEQUEST

mass





Oxidation
Charge
SEQUEST
delta
Observed
value


Start
Stop
Sequence
site
(z)
XCorr
Cn
m/z
(Da)


















28
45
(M)PGEIRPTIGQQmETGDQR(F)
M(39)
3
3.61
0.58
677.00
2027.98





28
45
(M)PGEIRPTIGQQMETGDQR(F)

3
2.30
0.35
671.67
2011.99





30
45
(G)EIRPTIGQQMETGDQR(F)

3
1.64
0.09
620.31
1857.91





33
45
(R)PTIGQQmETGDQR(F)
M(39)
2
2.33
0.36
738.84
1475.67





33
45
(R)PTIGQQMETGDQR(F)

2
2.31
0.35
730.84
1459.68





35
45
(T)IGQQmETGDQR(F)
M(39)
2
2.27
0.34
639.79
1277.57





45
52
(Q)RFGDLVFR(Q)

2
1.39
0.00
505.29
1008.56





46
52
(R)FGDLVFR(Q)

2
2.72
0.45
427.23
852.45





47
52
(F)GDLVFR(Q)

1
1.19
0.00
706.39
705.38





53
61
(R)QLAPNVWQH(T)

2
1.33
0.00
546.79
1091.56





53
76
(R)QLAPNVWQHTSYLDMPGFGAVASN

2
1.97
0.24
1302.13
2602.25







(G)











53
81
(R)QLAPNVWQHTSYLDmPGFGAVASN
M(67)
3
3.91
0.62
1053.20
3156.58







GLIVR(D)











53
81
(R)QLAPNVWQHTSYLDMPGFGAVASN

3
5.86
0.74
1047.87
3140.60







GLIVR(D)











53
82
(R)QLAPNVWQHTSYLDMPGFGAVASN

4
1.61
0.07
814.92
3255.64







GLIVRD(G)











53
85
(R)QLAPNVWQHTSYLDmPGFGAVASN
M(67)
4
2.41
0.38
886.45
3541.77







GLIVRDGGR(V)











58
81
(N)VWQHTSYLDMPGFGAVASNGLIVR

3
2.26
0.34
873.45
2617.34







(D)











62
81
(H)TSYLDmPGFGAVASNGLIVR(D)
M(67)
2
3.46
0.57
1042.53
2083.05





68
81
(M)PGFGAVASNGLIVR(D)

2
2.92
0.49
679.39
1356.76





71
81
(F)GAVASNGLIVR(D)

2
1.41
0.00
528.82
1055.62





86
92
(R)VLVVDTA(W)

1
0.79
0.00
716.42
715.41





86
102
(R)VLVVDTAWTDDQTAQIL(N)

2
2.06
0.27
944.49
1886.97





86
106
(R)VLVVDTAWTDDQTAQILNWIK(Q)

2
4.86
0.69
1215.15
2428.28





91
106
(D)TAWTDDQTAQILNWIK(Q)

2
1.98
0.24
952.49
1902.96





94
106
(W)TDDQTAQILNWIK(Q)

2
2.84
0.47
773.40
1544.79





96
106
(D)DQTAQILNWIK(Q)

2
1.71
0.12
665.37
1328.72





104
125
(N)WIKQEINLPVALAVVTHAHQDK(M)

3
1.84
0.19
837.47
2509.40





107
120
(K)QEINLPVALAVVTH(A)

2
2.24
0.33
752.43
1502.85





107
121
(K)QEINLPVALAVVTHA(H)

2
2.26
0.34
787.95
1573.89





107
124
(K)QEINLPVALAVVTHAHQD(K)

3
3.06
0.51
652.35
1954.03





107
125
(K)QEINLPVALAVVTHAHQDK(M)

3
7.39
0.80
695.05
2082.13





110
125
(I)NLPVALAVVTHAHQDK(M)

3
2.55
0.41
571.66
1711.95





ill
125
(N)LPVALAVVTHAHQDK(M)

2
2.58
0.42
799.96
1597.90





112
125
(LJPVALAVVTHAHQDK(M)

3
5.46
0.73
495.95
1484.82





114
125
(V)ALAVVTHAHQDK(M)

2
3.84
0.61
645.35
1288.69





115
125
(A)LAVVTHAHQDK(M)

2
3.89
0.61
609.84
1217.66





116
125
(L)AVVTHAHQDK(M)

2
3.30
0.55
553.29
1104.57





117
125
(A)VVTHAHQDK(M)

2
2.14
0.30
517.78
1033.54





118
125
(V)VTHAHQDK(M)

1
1.59
0.06
935.47
934.46





119
125
(V)THAHQDK(M)

1
0.55
0.03
836.40
835.39





126
135
(K)mGGmDALHAA(G)
M(126),
2
1.65
0.09
503.21
1004.41





M(129)










126
140
(K)mGGmDALHAAGIATY(A)
M(126),
2
1.40
0.00
755.84
1509.67





M(129)










126
140
(K)MGGMDALHAAGIATY(A)

2
1.63
0.08
739.85
1477.68





126
142
(K)MGGmDALHAAGIATYAN(A)
M(129)
2
1.93
0.00
840.38
1678.75


126
142
(K)mGGmDALHAAGIATYAN(A)
M(126),
2
2.78
0.46
848.38
1694.75








M(129)







126
142
(K)MGGMDALHAAGIATYAN(A)

2
2.25
0.33
832.39
1662.76





126
144
(K)MGGMDALHAAGIATYANAL(S)

2
2.24
0.33
924.45
1846.88





126
146
(K)mGGMDALHAAGIATYANALSN(Q)
M(126)
2
2.18
0.04
1032.98
2063.95





126
146
(K)MGGMDALHAAGIATYANALSN(Q)

2
2.10
0.29
1024.99
2047.96





126
159
(K)mGGmDALHAAGIATYANALSNQLA
M(126),
3
2.59
0.42
1147.88
3440.61




PQEGMVAAQH(S)
M(129)










126
159
(K)MGGMDALHAAGIATYANALSNQLA

3
3.73
0.60
1137.22
3408.63




PQEGMVAAQH(S)











126
161
(K)MGGMDALHAAGIATYANALSNQLA

3
3.83
0.61
1203.92
3608.74




PQEGMVAAQHSL(T)











126
163
(K)MGGMDALHAAGIATYANALSNQLA

3
3.62
0.59
1286.63
3856.85




PQEGMVAAQHSLTF(A)











126
166
(K)MGGMDALHAAGIATYANALSNQLA

3
2.81
0.47
1372.00
4112.98




PQEGMVAAQHSLTFAAN(G)











143
181
(N)ALSNQLAPQEGmVAAQHSLTFAANG
M(153)
4
2.20
0.32
1013.25
4048.97




WVEPATAPNFGPLK(V)











143
181
(N)ALSNQLAPQEGMVAAQHSLTFAAN

3
4.58
0.67
1345.36
4033.05




GWVEPATAPNFGPLK(V)











167
181
(N)GWVEPATAPNFGPLK(V)

2
1.99
0.25
792.41
1582.81





168
181
(G)WVEPATAPNFGPLK(V)

2
2.36
0.36
763.91
1525.80





169
181
(W)VEPATAPNFGPLK(V)

2
2.04
0.26
670.87
1339.72





171
181
(E)PATAPNFGPLK(V)

2
2.24
0.33
556.81
1111.61





173
181
(A)TAPNFGPLK(V)

2
1.59
0.05
472.77
943.52





175
181
(A)PNFGPLK(V)

2
2.07
0.28
386.72
771.43





182
202
(K)VFYPGPGHTSDNITVGIDGTD(I)

2
2.26
0.34
1081.51
2161.01





182
207
(K)VFYPGPGHTSDNITVGIDGTDIAFGG

2
1.78
0.16
1304.13
2606.24




(C)











182
208
(K)VFYPGPGHTSDNITVGIDGTDIAFGGc

2
2.85
0.47
1384.14
2766.26




C)











182
211
(K)VFYPGPGHTSDNITVGIDGTDIAFGGc

3
6.14
0.76
1041.19
3120.54




LIK(D)











182
214
(K)VFYPGPGHTSDNITVGIDGTDIAFGGc

3
8.25
0.82
1151.24
3450.71




LIKDSK(A)











182
216
(K)VFYPGPGHTSDNITVGIDGTDIAFGGc

4
3.32
0.55
913.47
3649.84




LIKDSKAK(S)











185
216
(Y)PGPGHTSDNITVGIDGTDIAFGGcLIK

3
1.88
0.20
1081.20
3240.59




DSKAK(S)











190
214
(H)TSDNITVGIDGTDIAFGGcLIKDSK(A)

3
3.11
0.52
866.43
2596.28





193
211
(D)NITVGIDGTDIAFGGcLIK(D)

2
4.00
0.63
982.52
1963.03





194
211
(N)ITVGIDGTDIAFGGcLIK(D)

2
2.98
0.50
925.50
1848.98





194
214
(N)ITVGIDGTDIAFGGcLIKDSK(A)

3
1.93
0.22
727.38
2179.12





200
211
(D)GTDIAFGGcLIK(D)

2
1.56
0.04
626.33
1250.64





200
214
(D)GTDIAFGGcLIKDSK(A)

2
2.57
0.42
791.41
1580.80





203
214
(D)IAFGGcLIKDSK(A)

2
1.63
0.08
654.86
1307.70





215
234
(K)AKSLGNLGDADTEHYAASAR(A)

2
4.25
0.65
1024.00
2045.99





217
223
(K)SLGNLGD(A)

1
0.69
0.00
675.33
674.32





217
229
(K)SLGNLGDADTEHY(A)

2
1.87
0.20
696.31
1390.61





217
231
(K)SLGNLGDADTEHYAA(S)

2
1.75
0.14
767.35
1532.69





217
232
(K)SLGNLGDADTEHYAAS(A)

2
2.34
0.36
810.87
1619.72





217
234
(K)SLGNLGDADTEHYAASAR(A)

2
5.99
0.75
924.43
1846.85





217
242
(K)SLGNLGDADTEHYAASARAFGAAFP

3
4.83
0.69
879.77
2636.28




K(A)











218
234
(S)LGNLGDADTEHYAASAR(A)

3
2.68
0.44
587.61
1759.81





219
234
(L)GNLGDADTEHYAASAR(A)

2
4.78
0.69
824.37
1646.73





220
234
(G)NLGDADTEHYAASAR(A)

2
2.16
0.31
795.86
1589.70





221
234
(N)LGDADTEHYAASAR(A)

2
4.99
0.70
738.85
1475.68





222
234
(L)GDADTEHYAASAR(A)

2
4.57
0.67
682.30
1362.58





225
234
(A)DTEHYAASAR(A)

2
1.83
0.18
560.75
1119.49





235
242
(R)AFGAAFPK(A)

2
2.26
0.34
404.72
807.43





235
256
(R)AFGAAFPKASmIVMSHSAPDSR(A)
M(245)
2
2.65
0.00
1147.56
2293.11





235
256
(R)AFGAAFPKASmlVmSHSAPDSR(A)
M(245),
3
1.86
0.19
770.71
2309.11





M(248)










235
256
(R)AFGAAFPKASMIVMSHSAPDSR(A)

2
3.89
0.61
1139.56
2277.11





236
242
(A)FGAAFPK(A)

2
1.97
0.24
369.20
736.39





237
242
(F)GAAFPK(A)

1
1.22
0.00
590.33
589.32





243
254
(K)ASMIVMSHSAPD(S)

2
1.67
0.10
623.29
1244.56





243
256
(K)ASmIVMSHSAPDSR(A)
M(245)
3
5.03
0.70
502.24
1503.69





243
256
(K)ASmIVmSHSAPDSR(A)
M(245),
3
4.91
0.69
507.57
1519.69





M(248)










243
256
(K)ASMIVMSHSAPDSR(A)

3
5.74
0.74
496.91
1487.69





244
256
(A)SmIVmSHSAPDSR(A)
M(248)
2
1.67
0.10
725.33
1448.64





244
256
(A)SMIVMSHSAPDSR(A)

2
4.54
0.67
709.33
1416.65





245
256
(S)MIVmSHSAPDSR(A)
M(248)
2
2.85
0.47
673.82
1345.62





245
256
(S)MIVMSHSAPDSR(A)

2
3.54
0.58
665.82
1329.62





246
256
(M)IVmSHSAPDSR(A)
M(248)
2
3.10
0.52
608.29
1214.57





247
256
(I)VMSHSAPDSR(A)

2
3.06
0.51
543.76
1085.50





251
256
(H)SAPDSR(A)

1
0.54
0.00
632.30
631.29





257
264
(R)AAITHTAR(M)

2
2.74
0.45
420.74
839.46





258
264
(A)AITHTAR(M)

2
1.81
0.17
385.22
768.42





259
264
(A)ITHTAR(M)

1
1.38
0.00
698.39
697.39





265
270
(R)mADKLR(—)
M(265)
2
2.08
0.28
375.20
748.39
















TABLE 5







Peptide information on position and sequence of each peptide


identified as IPM protein


















Oxi-




Actual





dation
Charge
SEQUEST
SEQUEST
Observed 
mass value


Start
Stop
Sequence
site
(z)
XCorr
deltaCn
m/z
(Da)





 19
 26
(A)AESLPDLK(I)

2
2.48
0.40
 436.74
 871.47





 19
 29
(A)AESLPDLKIEK(L)

2
3.47
0.57
 621.85
1241.69





 20
 26
(A)ESLPDLK(I)

2
2.06
0.27
 401.22
 800.43





 20
 29
(A)ESLPDLKIEK(L)

2
3.20
0.53
 586.33
1170.65





 21
 29
(E)SLPDLKIEK(L)

3
2.53
0.41
 348.21
1041.61





 22
 29
(S)LPDLKIEK(L)

2
2.99
0.50
 478.29
 954.57





 23
 29
(L)PDLKIEK(L)

2
3.04
0.51
 421.75
 841.49





 27
 37
(K)IEKLDEGVYVH(T)

3
2.29
0.34
 434.56
1300.67





 27
 51
(K)IEKLDEGVYVHTSFEEVNG

3
5.36
0.72
 944.49
2830.44




WGVVPK(H)











 30
 37
(K)LDEGVYVH(T)

2
2.43
0.38
 466.23
 930.45





 30
 51
(K)LDEGVYVHTSFEEVNGWG

2
6.47
0.77
1231.11
2460.20




VVPK(H)











 38
 51
(H)TSFEEVNGWGVVPK(H)

2
2.67
0.44
 774.89
1547.76





 52
 59
(K)HGLVVLVN(A)

2
1.88
0.20
 425.76
 849.51





 52
 72
(K)HGLVVLVNAEAYLIDTPFT

2
6.65
0.77
1136.13
2270.25




AK(D)











 52
 76
(K)HGLVVLVNAEAYLIDTPFT

2
5.68
0.74
1372.74
2743.46




AKDTEK(L)











 58
 72
(L)VNAEAYLIDTPFTAK(D)

2
3.34
0.55
 826.93
1651.85





 60
 72
(N)AEAYLIDTPFTAK(D)

2
3.60
0.58
 720.38
1438.74





 60
 76
(N)AEAYLIDTPFTAKDTEK(L)

2
4.60
0.67
 956.98
1911.95





 61
 72
(A)EAYLIDTPFTAK(D)

2
1.97
0.24
 684.86
1367.70





 64
 72
(Y)LIDTPFTAK(D)

2
1.84
0.19
 503.29
1004.56





 64
 76
(Y)LIDTPFTAKDTEK(L)

2
3.50
0.57
 739.90
1477.78





 73
 84
(K)DTEKLVTWFVER(G)

2
3.91
0.62
 761.90
1521.79





 73
 87
(K)DTEKLVTWFVERGYK(I)

3
3.36
0.55
 624.33
1869.97





 75
 84
(T)EKLVTWFVER(G)

2
2.62
0.43
 653.86
1305.72





 76
 84
(E)KLVTWFVER(G)

2
2.32
0.35
 589.34
1176.67





 77
 84
(K)LVTWFVER(G)

2
2.62
0.43
 525.29
1048.57





 77
 85
(K)LVTWFVERG(Y)

2
2.43
0.38
 553.81
1105.60





 77
 87
(K)LVTWFVERGYK(I)

2
2.49
0.40
 699.39
1396.76





 78
 84
(L)VTWFVER(G)

2
1.85
0.19
 468.75
 935.49





 88
 99
(K)IKGSISSHFHSD(S)

3
3.27
0.54
 438.89
1313.64





 88
100
(K)IKGSISSHFHSDS(T)

3
2.29
0.35
 467.90
1400.67





 88
102
(K)IKGSISSHFHSDSTG(G)

3
2.29
0.34
 520.59
1558.74





 88
105
(K)IKGSISSHFHSDSTGGIE(W)

2
5.14
0.71
 929.96
1857.90





 88
110
(K)IKGSISSHFHSDSTGGIEWLN

3
8.19
0.82
 839.08
2514.23




SR(S)











 90
 98
(K)GSISSHFHS(D)

2
1.88
0.20
 479.73
 957.44





 90
 99
(K)GSISSHFHSD(S)

3
1.85
0.19
 358.49
1072.46





 90
101
(K)GSISSHFHSDST(G)

2
2.83
0.47
 631.28
1260.54





 90
102
(K)GSISSHFHSDSTG(G)

2
3.51
0.57
 659.79
1317.56





 90
105
(K)GSISSHFHSDSTGGIE(W)

2
3.89
0.61
 809.36
1616.71





 90
110
(K)GSISSHFHSDSTGGIEWLNS

3
8.69
0.83
 758.69
2273.05




R(S)











 90
111
(K)GSISSHFHSDSTGGIEWLNS

3
2.00
0.25
 787.70
2360.09




RS(I)











 97
110
(F)HSDSTGGIEWLNSR(S)

2
4.66
0.68
 779.87
1557.72





 98
110
(H)SDSTGGIEWLNSR(S)

2
3.76
0.60
 711.34
1420.67





 99
110
(S)DSTGGIEWLNSR(S)

2
2.13
0.30
 667.82
1333.63





100
110
(D)STGGIEWLNSR(S)

2
2.80
0.46
 610.31
1218.61





103
110
(G)GIEWLNSR(S)

2
2.33
0.36
 487.76
 973.50





104
110
(G)IEWLNSR(S)

2
2.09
0.28
 459.25
 916.48





111
125
(R)SIPTYASELTNELLK(K)

2
4.29
0.65
 839.95
1677.88





111
126
(R)SIPTYASELTNELLKK(D)

3
4.86
0.69
 603.00
1805.98





111
127
(R)SIPTYASELTNELLKKD(G)

2
3.35
0.55
 961.51
1921.02





111
129
(R)SIPTYASELTNELLKKDGK

3
4.29
0.65
 703.05
2106.13




(V)











113
125
(I)PTYASELTNELLK(K)

2
4.75
0.68
 739.89
1477.76





113
126
(I)PTYASELTNELLKK(D)

3
7.19
0.79
 536.30
1605.87





113
129
(I)PTYASELTNELLKKDGK(V)

3
3.48
0.57
 636.34
1906.00





114
126
(P)TYASELTNELLKK(D)

2
3.89
0.61
 755.42
1508.82





115
126
(T)YASELTNELLKK(D)

3
1.96
0.24
 470.26
1407.77





116
125
(Y)ASELTNELLK(K)

2
1.77
0.15
 559.31
1116.61





116
126
(Y)ASELTNELLKK(D)

2
2.90
0.48
 623.36
1244.70





116
129
(Y)ASELTNELLKKDGK(V)

2
3.63
0.59
 773.43
1544.84





118
126
(S)ELTNELLKK(D)

3
1.83
0.18
 363.22
1086.63





126
136
(K)KDGKVQATNSF(S)

2
1.99
0.25
 597.81
1193.61





126
145
(K)KDGKVQATNSFSGVNYWL

2
5.39
0.72
1121.09
2240.16




VK(N)











127
136
(K)DGKVQATNSF(S)

2
2.04
0.26
 533.76
1065.51





127
140
(K)DGKVQATNSFSGVN(Y)

2
2.68
0.44
 712.35
1422.68





127
141
(K)DGKVQATNSFSGVNY(W)

2
3.35
0.55
 793.88
1585.74





127
145
(K)DGKVQATNSFSGVNYWLV

2
6.57
0.77
1057.04
2112.07




K(N)











129
145
(G)KVQATNSFSGVNYWLVK

2
6.17
0.76
 971.02
1940.03




(N)











130
136
(K)VQATNSF(S)

1
2.42
0.38
 766.38
 765.37





130
141
(K)VQATNSFSGVNY(W)

2
2.28
0.34
 643.81
1285.60





130
145
(K)VQATNSFSGVNYWLVK(N)

2
5.47
0.73
 906.97
1811.92





132
145
(Q)ATNSFSGVNYWLVK(N)

2
4.10
0.63
 793.41
1584.80





133
145
(A)TNSFSGVNYWLVK(N)

2
3.14
0.52
 757.89
1513.76





134
145
(T)NSFSGVNYWLVK(N)

2
2.64
0.43
 707.36
1412.71





135
145
(N)SFSGVNYWLVK(N)

2
3.07
0.51
 650.34
1298.67





137
145
(F)SGVNYWLVK(N)

1
2.26
0.34
1065.58
1064.57





146
157
(K)NKIEVFYPGPGH(T)

2
3.85
0.61
 679.35
1356.68





146
158
(K)NKIEVFYPGPGHT(P)

2
2.75
0.45
 729.88
1457.74





146
160
(K)NKIEVFYPGPGHTPD(N)

2
4.74
0.68
 835.92
1669.82





146
161
(K)NKIEVFYPGPGHTPDN(V)

2
4.79
0.69
 892.94
1783.86





146
169
(K)NKIEVFYPGPGHTPDNVVV

3
7.92
0.81
 921.81
2762.41




WLPER(K)











146
170
(K)NKIEVFYPGPGHTPDNVVV

3
7.59
0.80
 964.51
2890.52




WLPERK(I)











147
170
(N)KIEVFYPGPGHTPDNVVVW

3
1.79
0.16
 926.50
2776.48




LPERK(I)











148
160
(K)IEVFYPGPGHTPD(N)

2
2.83
0.47
 714.85
1427.68





148
161
(K)IEVFYPGPGHTPDN(V)

2
2.54
0.41
 771.87
1541.72





148
169
(K)IEVFYPGPGHTPDNVVVWL

2
4.76
0.69
1261.15
2520.28




PER(K)











148
170
(K)IEVFYPGPGHTPDNVVVWL

3
5.72
0.74
 883.80
2648.37




PERK(I)











152
170
(F)YPGPGHTPDNVVVWLPERK

3
1.99
0.25
 721.04
2160.11




(I)











153
170
(Y)PGPGHTPDNVVVWLPERK

3
2.90
0.48
 666.69
1997.05




(I)











155
169
(G)PGHTPDNVVVWLPER(K)

3
3.66
0.59
 572.64
1714.89





157
169
(G)HTPDNVVVWLPER(K)

3
3.39
0.56
 521.28
1560.81





158
169
(H)TPDNVVVWLPER(K)

2
4.30
0.65
 712.88
1423.75





158
170
(H)TPDNVVVWLPERK(I)

2
2.16
0.31
 776.93
1551.85





161
170
(D)NVVVWLPERK(I)

2
2.01
0.25
 620.37
1238.72





162
169
(N)VVVWLPER(K)

2
2.01
0.25
 499.30
 996.58





162
170
(N)WVWLPERK(I)

2
2.25
0.33
 563.35
1124.68





170
176
(R)KILFGGc(F)

2
1.99
0.25
 397.72
 793.42





170
177
(R)KILFGGcF(I)

2
1.76
0.15
 471.25
 940.49





170
179
(R)KILFGGcFIK(P)

2
3.85
0.61
 591.84
1181.67





170
181
(R)KILFGGcFIKPY(G)

2
3.83
0.61
 721.90
1441.79





170
185
(R)KILFGGcFIKPYGLGN(L)

2
4.54
0.67
 892.49
1782.96





170
196
(R)KILFGGcFIKPYGLGNLGDA

3
3.74
0.60
 993.53
2977.58




NIEAWPK(S)











171
181
(K)ILFGGcFIKPY(G)

2
2.71
0.45
 657.85
1313.69





171
182
(K)ILFGGcFIKPYG(L)

2
1.99
0.25
 686.36
1370.71





171
196
(K)ILFGGcFIKPYGLGNLGDANI

2
3.43
0.56
1425.75
2849.48




EAWPK(S)











177
196
(C)FIKPYGLGNLGDANIEAWPK

3
2.71
0.45
 735.06
2202.16




(S)











178
196
(F)IKPYGLGNLGDANIEAWPK

2
3.24
0.54
1028.55
2055.08




(S)











180
196
(K)PYGLGNLGDANIEAWPK(S)

2
2.53
0.41
 907.96
1813.91





182
196
(Y)GLGNLGDANIEAWPK(S)

2
4.68
0.68
 777.90
1553.79





182
199
(Y)GLGNLGDANIEAWPKSAK

2
2.71
0.45
 920.99
1839.96




(L)











184
196
(L)GNLGDANIEAWPK(S)

2
3.70
0.59
 692.85
1383.69





186
196
(N)LGDANIEAWPK(S)

2
3.55
0.58
 607.32
1212.62





205
225
(K)YGKAKLVVPGHSEVGDASL

3
5.90
0.75
 723.41
2167.21




LK(L)











206
225
(Y)GKAKLVVPGHSEVGDASLL

3
3.58
0.58
 669.06
2004.15




K(L)











208
220
(K)AKLVVPGHSEVGD(A)

2
2.98
0.50
 654.35
1306.69





208
224
(K)AKLVVPGHSEVGDASLL(K)

2
3.35
0.55
 846.48
1690.94





208
225
(K)AKLVVPGHSEVGDASLLK

2
5.43
0.72
 910.52
1819.03




(L)











208
233
(K)AKLVVPGHSEVGDASLLKL

3
2.13
0.30
 901.52
2701.54




TLEQAVK(G)











209
225
(A)KLVVPGHSEVGDASLLK(L)

3
5.50
0.73
 583.67
1747.99





210
219
(K)LVVPGHSEVG(D)

2
1.83
0.18
 497.27
 992.53





210
220
(K)LVVPGHSEVGD(A)

2
2.52
0.41
 554.79
1107.56





210
221
(K)LVVPGHSEVGDA(S)

2
1.89
0.21
 590.31
1178.60





210
224
(K)LVVPGHSEVGDASLL(K)

2
2.71
0.45
 746.90
1491.79





210
225
(K)LVVPGHSEVGDASLLK(L)

2
4.77
0.69
 810.96
1619.90





210
226
(K)LVVPGHSEVGDASLLKL(T)

2
1.99
0.25
 867.50
1732.98





210
233
(K)LVVPGHSEVGDASLLKLTL

3
3.22
0.53
 835.14
2502.41




EQAVK(G)











211
225
(L)VVPGHSEVGDASLLK(L)

2
3.87
0.61
 754.41
1506.81





212
225
(V)VPGHSEVGDASLLK(L)

2
5.14
0.71
 704.88
1407.74





213
225
(V)PGHSEVGDASLLK(L)

2
5.48
0.73
 655.34
1308.67





214
225
(P)GHSEVGDASLLK(L)

2
4.50
0.67
 606.81
1211.61





215
225
(G)HSEVGDASLLK(L)

2
4.18
0.64
 578.30
1154.59





216
225
(H)SEVGDASLLK(L)

2
2.52
0.41
 509.78
1017.54





219
225
(V)GDASLLK(L)

2
2.38
0.37
 352.20
 702.39





225
233
(L)KLTLEQAVK(G)

2
3.47
0.57
 515.32
1028.62





225
239
(L)KLTLEQAVKGLNESK(K)

2
4.55
0.67
 829.48
1656.95





226
233
(K)LTLEQAVK(G)

2
2.44
0.38
 451.27
 900.53





226
239
(K)LTLEQAVKGLNESK(K)

2
4.86
0.69
 765.43
1528.85





226
246
(K)LTLEQAVKGLNESKKPSKPS

4
6.74
0.78
 567.82
2267.25




N(-)











227
233
(L)TLEQAVK(G)

2
2.31
0.35
 394.73
 787.45





227
246
(L)TLEQAVKGLNESKKPSKPSN

3
8.03
0.81
 719.06
2154.17




(-)











228
246
(T)LEQAVKGLNESKKPSKPSN

3
5.99
0.75
 685.38
2053.11




(-)











229
246
(L)EQAVKGLNESKKPSKPSN(-)

3
6.06
0.75
 647.69
1940.03





230
246
(E)QAVKGLNESKKPSKPSN(-)

3
5.71
0.74
 604.67
1810.98





231
246
(Q)AVKGLNESKKPSKPSN(-)

3
4.71
0.68
 561.99
1682.94





232
246
(A)VKGLNESKKPSKPSN(-)

3
3.90
0.62
 538.30
1611.89





234
246
(K)GLNESKKPSKPSN(-)

2
4.18
0.64
 693.37
1384.73





238
246
(E)SKKPSKPSN(-)

2
2.49
0.40
 486.78
 971.54
















TABLE 6







Information on position and sequence of each peptide identified as


VIM protein























Actual





Oxi-




mass





dation
Charge
SEQUEST
SEQUEST
Observed
value


Start
Stop
Sequence
site
(z)
XCorr
deltaCn
m/z
(Da)





 27
 45
(S)VDSSGEYPTVSEIPVGEVR(L)

2
5.08
0.70
1010.50
2018.99





 28
 45
(V)DSSGEYPTVSEIPVGEVR(L)

2
3.43
0.56
 960.97
1919.92





 29
 45
(D)SSGEYPTVSEIPVGEVR(L)

2
4.55
0.67
 903.45
1804.89





 31
 45
(S)GEYPTVSEIPVGEVR(L)

2
3.85
0.61
 816.42
1630.83





 33
 45
(E)YPTVSEIPVGEVR(L)

2
2.45
0.39
 723.39
1444.76





 34
 45
(Y)PTVSEIPVGEVR(L)

2
4.25
0.65
 641.86
1281.70





 34
 46
(Y)PTVSEIPVGEVRL(Y)

2
2.80
0.47
 698.40
1394.78





 34
 47
(Y)PTVSEIPVGEVRLY(Q)

2
4.39
0.66
 779.93
1557.85





 35
 45
(P)TVSEIPVGEVR(L)

2
1.97
0.24
 593.33
1184.65





 36
 45
(T)VSEIPVGEVR(L)

2
2.91
0.48
 542.81
1083.60





 37
 45
(V)SEIPVGEVR(L)

2
1.74
0.14
 493.27
 984.53





 46
 56
(R)LYQIADGVWSH(I)

2
2.76
0.46
 644.82
1287.63





 46
 60
(R)LYQIADGVWSHIATQ(S)

2
2.67
0.44
 851.44
1700.86





 55
 62
(W)SHIATQSF(D)

2
2.15
0.30
 445.72
 889.43





 55
 67
(W)SHIATQSFDGAVY(P)

2
3.51
0.57
 698.33
1394.65





 55
 72
(W)SHIATQSFDGAVYPSNGL(I)

2
4.66
0.68
 932.45
1862.89





 55
 75
(W)SHIATQSFDGAVYPSNGLIVR(D)

2
4.76
0.68
1116.58
2231.14





 57
 75
(H)IATQSFDGAVYPSNGLIVR(D)

2
3.76
0.60
1004.53
2007.05





 59
 75
(A)TQSFDGAVYPSNGLIVR(D)

2
3.29
0.54
 912.47
1822.92





 60
 75
(T)QSFDGAVYPSNGLIVR(D)

2
2.97
0.49
 861.95
1721.88





 63
 75
(F)DGAVYPSNGLIVR(D)

2
3.00
0.50
 680.87
1359.72





 68
 80
(Y)PSNGLIVRDGDEL(L)

2
3.43
0.56
 692.86
1383.71





 68
 81
(Y)PSNGLIVRDGDELL(L)

2
5.05
0.70
 749.40
1496.79





 73
 81
(L)IVRDGDELL(L)

2
2.27
0.34
 515.28
1028.55





 76
 90
(R)DGDELLLIDTAWGAK(N)

2
3.70
0.59
 808.92
1615.82





 77
 90
(D)GDELLLIDTAWGAK(N)

2
2.13
0.30
 751.40
1500.79





 81
 87
(L)LLIDTAW(G)

1
1.63
0.08
 831.46
 830.46





 81
 90
(L)LLIDTAWGAK(N)

2
1.77
0.15
 544.31
1086.61





 88
 96
(W)GAKNTAALL(A)

2
1.85
0.19
 429.76
 857.50





 88
109
(W)GAKNTAALLAEIEKQIGLPVTR(A)

3
6.16
0.76
 765.12
2292.33





 89
101
(G)AKNTAALLAEIEK(Q)

3
2.13
0.29
 457.94
1370.78





 90
101
(A)KNTAALLAEIEK(Q)

2
4.46
0.66
 650.88
1299.74





 91
101
(K)NTAALLAEIEK(Q)

2
3.92
0.62
 586.83
1171.65





 91
109
(K)NTAALLAEIEKQIGLPVTR(A)

2
5.72
0.74
1019.10
2036.18





 92
101
(N)TAALLAEIEK(Q)

2
3.40
0.56
 529.81
1057.61





 92
109
(N)TAALLAEIEKQIGLPVTR(A)

3
4.81
0.69
 641.72
1922.13





 93
101
(T)AALLAEIEK(Q)

1
2.41
0.38
 957.56
 956.56





 95
101
(A)LLAEIEK(Q)

1
2.47
0.00
 815.49
 814.48





 96
109
(L)LAEIEKQIGLPVTR(A)

2
3.17
0.53
 783.97
1565.92





 96
115
(L)LAEIEKQIGLPVTRAVSTHF(H)

2
5.38
0.72
1105.13
2208.25





 97
109
(L)AEIEKQIGLPVTR(A)

3
2.86
0.47
 485.29
1452.83





 97
115
(L)AEIEKQIGLPVTRAVSTHF(H)

2
4.43
0.66
1048.58
2095.15





 97
126
(L)AEIEKQIGLPVTRAVSTHFHDDRV

3
4.13
0.64
1086.92
3257.74




GGVDVL(R)











100
109
(I)EKQIGLPVTR(A)

2
2.16
0.30
 570.84
1139.67





102
109
(K)QIGLPVTR(A)

2
2.81
0.47
 442.27
 882.53





102
119
(K)QIGLPVTRAVSTHFHDDR(V)

4
2.34
0.36
 513.02
2048.07





103
109
(Q)IGLPVTR(A)

2
1.84
0.19
 378.24
 754.47





109
127
(T)RAVSTHFHDDRVGGVDVLR(A)

4
4.65
0.68
 534.78
2135.11





110
117
(R)AVSTHFHD(D)

2
1.97
0.24
 457.21
 912.41





110
119
(R)AVSTHFHDDR(V)

2
3.67
0.59
 592.78
1183.54





110
121
(R)AVSTHFHDDRVG(G)

2
1.88
0.20
 670.82
1339.63





110
122
(R)AVSTHFHDDRVGG(V)

3
1.99
0.24
 466.56
1396.66





110
124
(R)AVSTHFHDDRVGGVD(V)

2
2.94
0.49
 806.38
1610.75





110
127
(R)AVSTHFHDDRVGGVDVLR(A)

2
3.95
0.62
 990.51
1979.00





110
140
(R)AVSTHFHDDRVGGVDVLRAAGVA

4
1.86
0.19
 803.91
3211.63




TYASPSTR(R)











111
119
(A)VSTHFHDDR(V)

2
2.62
0.43
 557.26
1112.50





111
127
(A)VSTHFHDDRVGGVDVLR(A)

3
4.76
0.68
 637.00
1907.97





112
119
(V)STHFHDDR(V)

2
2.67
0.44
 507.72
1013.43





112
127
(V)STHFHDDRVGGVDVLR(A)

3
4.15
0.64
 603.97
1808.90





113
127
(S)THFHDDRVGGVDVLR(A)

3
1.76
0.15
 574.96
1721.87





114
127
(T)HFHDDRVGGVDVLR(A)

3
3.69
0.59
 541.28
1620.82





115
127
(H)FHDDRVGGVDVLR(A)

2
2.80
0.46
 742.88
1483.76





116
126
(F)HDDRVGGVDVL(R)

2
2.89
0.48
 591.30
1180.59





116
127
(F)HDDRVGGVDVLR(A)

2
2.93
0.49
 669.35
1336.69





116
134
(F)HDDRVGGVDVLRAAGVATY(A)

3
4.41
0.66
 657.68
1970.00





116
140
(F)HDDRVGGVDVLRAAGVATYASPS

3
2.16
0.31
 857.44
2569.29




TR(R)











117
127
(H)DDRVGGVDVLR(A)

2
2.87
0.48
 600.82
1199.62





118
127
(D)DRVGGVDVLR(A)

3
2.35
0.36
 362.54
1084.60





120
127
(R)VGGVDVLR(A)

2
2.83
0.47
 407.74
 813.47





120
140
(R)VGGVDVLRAAGVATYASPSTR(R)

3
4.02
0.63
 683.04
2046.09





121
127
(V)GGVDVLR(A)

1
1.28
0.00
 715.41
 714.40





125
140
(D)VLRAAGVATYASPSTR(R)

3
2.14
0.30
 540.64
1618.89





127
134
(L)RAAGVATY(A)

2
1.82
0.18
 404.72
 807.43





128
140
(R)AAGVATYASPSTR(R)

2
3.99
0.62
 626.32
 1250.63





128
141
(R)AAGVATYASPSIRR(L)

2
3.09
0.51
 704.37
1406.73





129
140
(A)AGVATYASPSTR(R)

2
3.22
0.53
 590.80
1179.59





129
141
(A)AGVATYASPSTRR(L)

2
1.87
0.20
 668.85
1335.69





130
140
(A)GVATYASPSTR(R)

2
2.80
0.46
 555.29
1108.56





130
141
(A)GVATYASPSTRR(L)

2
3.03
0.51
 633.34
1264.66





131
140
(G)VATYASPSTR(R)

2
2.63
0.43
 526.77
1051.53





132
141
(V)ATYASPSTRR(L)

2
2.27
0.34
 555.29
1108.57





135
155
(Y)ASPSTRRLAEVEGNEIPTHSL(E)

4
2.34
0.36
 566.80
2263.17





135
158
(Y)ASPSTRRLAEVEGNEIPTHSLEGL

4
4.13
0.64
 641.58
2562.31




(S)











141
153
(R)RLAEVEGNEIPTH(S)

3
2.33
0.36
 488.92
1463.74





141
155
(R)RLAEVEGNEIPTHSL(E)

3
2.98
0.50
 555.63
1663.86





141
156
(R)RLAEVEGNEIPTHSLE(G)

2
2.51
0.40
 897.46
1792.90





141
157
(R)RLAEVEGNEIPTHSLEG(L)

3
3.43
0.56
 617.65
1849.92





141
158
(R)RLAEVEGNEIPTHSLEGL(S)

3
4.87
0.69
 655.34
1963.01





141
163
(R)RLAEVEGNEIPTHSLEGLSSSGD(A)

3
3.95
0.62
 799.73
2396.17





141
166
(R)RLAEVEGNEIPTHSLEGLSSSGDAV

4
8.05
0.81
 681.60
2722.38




R(F)











142
155
(R)LAEVEGNEIPTHSL(E)

2
3.01
0.50
 754.89
1507.76





142
158
(R)LAEVEGNEIPTHSLEGL(S)

2
2.70
0.44
 904.47
1806.93





142
163
(R)LAEVEGNEIPTHSLEGLSSSGD(A)

2
3.54
0.58
1121.03
2240.05





142
166
(R)LAEVEGNEIPTHSLEGLSSSGDAVR

2
7.36
0.80
1284.13
2566.25




(F)











143
155
(L)AEVEGNEIPTHSL(E)

2
2.41
0.38
 698.34
1394.67





143
158
(L)AEVEGNEIPTHSLEGL(S)

2
3.41
0.56
 847.92
1693.82





143
166
(L)AEVEGNEIPTHSLEGLSSSGDAVR

2
4.68
0.68
1227.60
2453.19




(F)











143
167
(L)AEVEGNEIPTHSLEGLSSSGDAVRF

3
6.07
0.75
 867.76
2600.25




(G)











144
166
(A)EVEGNEIPTHSLEGLSSSGDAVR(F)

3
5.10
0.71
 795.05
2382.14





145
166
(E)VEGNEIPTHSLEGLSSSGDAVR(F)

3
5.67
0.74
 752.04
2253.09





146
166
(V)EGNEIPTHSLEGLSSSGDAVR(F)

2
5.27
0.72
1078.02
2154.02





147
166
(E)GNEIPTHSLEGLSSSGDAVR(F)

3
5.07
0.70
 676.00
2024.98





148
166
(G)NEIPTHSLEGLSSSGDAVR(F)

3
4.97
0.70
 656.99
1967.96





149
166
(N)EIPTHSLEGLSSSGDAVR(F)

3
4.99
0.70
 618.98
1853.91





151
166
(I)PTHSLEGLSSSGDAVR(F)

2
5.07
0.70
 806.90
1611.79





153
166
(T)HSLEGLSSSGDAVR(F)

2
3.24
0.54
 707.85
1413.69





154
166
(H)SLEGLSSSGDAVR(F)

2
3.10
0.52
 639.32
1276.63





156
166
(L)EGLSSSGDAVR(F)

2
2.69
0.44
 539.26
1076.51





156
167
(L)EGLSSSGDAVRF(G)

2
2.59
0.42
 612.79
1223.57





157
166
(E)GLSSSGDAVR(F)

2
2.61
0.42
 474.74
 947.47





159
167
(L)SSSGDAVRF(G)

2
2.27
0.34
 463.22
 924.43





159
172
(L)SSSGDAVRFGPVEL(F)

2
2.68
0.44
 710.86
1419.71





167
179
(R)FGPVELFYPGAAH(S)

2
3.73
0.60
 702.85
1403.69





167
180
(R)FGPVELFYPGAAHS(T)

2
2.07
0.28
 746.37
1490.73





167
182
(R)FGPVELFYPGAAHSTD(N)

2
2.59
0.42
 854.41
1706.80





174
187
(F)YPGAAHSTDNLVVY(V)

2
2.45
0.39
 753.87
1505.72





188
194
(Y)VPSASVL(Y)

1
2.07
0.28
 672.39
 671.39





188
201
(Y)VPSASVLYGGcAIY(E)

2
2.36
0.37
 728.86
1455.71





191
205
(S)ASVLYGGcAIYELSR(T)

2
1.88
0.20
 829.92
1657.82





192
205
(A)SVLYGGcAIYELSR(T)

2
2.70
0.44
 794.40
1586.78





193
205
(S)VLYGGcAIYELSR(T)

2
3.12
0.52
 750.88
1499.75





195
205
(L)YGGcAIYELSR(T)

2
3.62
0.59
 644.81
1287.60





196
205
(Y)GGcAIYELSR(T)

2
2.09
0.28
 563.27
1124.53





197
205
(G)GcAIYELSR(T)

2
2.29
0.35
 534.76
1067.51





197
225
(G)GcAIYELSRTSAGNVADADLAEWP

3
3.45
0.56
1051.50
3151.48




TSIER(I)











199
205
(C)AIYELSR(T)

2
2.15
0.30
 426.24
 850.46





202
216
(Y)ELSRTSAGNVADADL(A)

2
3.79
0.60
 759.88
1517.74





206
215
(R)TSAGNVADAD(L)

1
1.87
0.20
 920.40
 919.39





206
218
(R)TSAGNVADADLAE(W)

2
2.97
0.50
 617.29
1232.56





206
225
(R)TSAGNVADADLAEWPTSIER(I)

2
6.34
0.76
1052.00
2101.99





208
225
(S)AGNVADADLAEWPTSIER(I)

2
2.78
0.46
 957.97
1913.92





211
225
(N)VADADLAEWPTSIER(I)

2
4.37
0.66
 836.92
1671.82





214
225
(D)ADLAEWPTSIER(I)

2
2.27
0.34
 694.35
1386.68





216
225
(D)LAEWPTSIER(I)

2
3.20
0.53
 601.32
1200.62





220
235
(W)PTSIERIQQHYPEAQF(V)

2
2.77
0.46
 972.49
1942.96





226
234
(R)IQQHYPEAQ(F)

2
2.41
0.38
 557.27
1112.53





226
239
(R)IQQHYPEAQFVIPG(H)

2
2.40
0.37
 813.92
1625.84





226
240
(R)IQQHYPEAQFVIPGH(G)

3
4.16
0.64
 588.64
1762.89





226
242
(R)IQQHYPEAQFVIPGHGL(P)

3
1.97
0.24
 645.34
1932.99





226
244
(R)IQQHYPEAQFVIPGHGLPG(G)

3
2.41
0.38
 696.70
2087.07





226
245
(R)IQQHYPEAQFVIPGHGLPGG(L)

3
2.70
0.45
 715.71
2144.09





226
246
(R)IQQHYPEAQFVIPGHGLPGGL(D)

3
3.95
0.62
 753.40
2257.18





226
247
(R)IQQHYPEAQFVIPGHGLPGGLD(L)

3
4.63
0.68
 791.74
2372.20





226
248
(R)IQQHYPEAQFVIPGHGLPGGLDL(L)

3
2.67
0.44
 829.44
2485.28





226
249
(R)IQQHYPEAQFVIPGHGLPGGLDLL

3
2.70
0.44
 867.13
2598.37




(K)











226
250
(R)IQQHYPEAQFVIPGHGLPGGLDLL

3
7.74
0.81
 909.83
2726.47




K(H)











226
254
(R)IQQHYPEAQFVIPGHGLPGGLDLL

4
2.63
0.43
 795.93
3179.69




KHTTN(V)











226
257
(R)IQQHYPEAQFVIPGHGLPGGLDLL

5
3.45
0.57
 702.19
3505.89




KHTTNVVK(A)











235
250
(Q)FVIPGHGLPGGLDLLK(H)

3
2.23
0.33
 544.99
1631.95





236
246
(F)VIPGHGLPGGL(D)

2
1.98
0.24
 508.80
1015.59





236
248
(F)VIPGHGLPGGLDL(L)

2
2.70
0.44
 622.86
1243.70





236
250
(F)VIPGHGLPGGLDLLK(H)

2
3.04
0.51
 743.45
1484.89





237
250
(V)IPGHGLPGGLDLLK(H)

2
3.93
0.62
 693.91
1385.80





238
250
(I)PGHGLPGGLDLLK(H)

2
4.71
0.68
 637.37
1272.72





241
250
(H)GLPGGLDLLK(H)

2
1.80
0.17
 491.80
 981.59





243
250
(L)PGGLDLLK(H)

2
2.19
0.32
 406.75
 811.48





251
257
(K)HTTNVVK(A)

2
2.44
0.38
 399.73
 797.44





251
262
(K)HTTNVVKAHTNR(S)

3
2.09
0.28
 459.92
1376.74





251
266
(K)HTTNVVKAHTNRSVVE(-)

3
2.25
0.33
 597.99
1790.95
















Table 7







Information on position and sequence of each peptide identified as


GES protein


















Oxi-




Actual





dation
Charge
SEQUEST
SEQUEST
Observed
mass


Start
Stop
Sequence
site
(z)
XCorr
deltaCn
m/z
value (Da)





 19
 25
(A)SEKLTFK(T)

2
2.70
0.45
 426.75
 851.48





 22
 30
(K)LTFKTDLEK(L)

3
2.62
0.43
 365.54
1093.61





 22
 33
(K)LTFKTDLEKLER(E)

3
4.22
0.64
 498.29
1491.84





 26
 33
(K)TDLEKLER(E)

2
3.65
0.59
 502.28
1002.54





 26
 35
(K)TDLEKLEREK(A)

3
2.55
0.41
 420.90
1259.68





 27
 33
(T)DLEKLER(E)

2
2.31
0.35
 451.75
 901.49





 34
 55
(R)EKAAQIGVAIVDPQGEIVAGHR

4
7.82
0.81
 565.31
2257.21




(M)











 36
 55
(K)AAQIGVAIVDPQGEIVAGHR(M)

2
6.48
0.77
1001.05
2000.08





 38
 55
(A)QIGVAIVDPQGEIVAGHR(M)

3
3.42
0.56
 620.34
1858.01





 39
 55
(Q)IGVAIVDPQGEIVAGHR(M)

2
3.98
0.62
 865.98
1729.94





 40
 55
(I)GVAIVDPQGEIVAGHR(M)

2
2.90
0.48
 809.44
1616.86





 41
 55
(G)VAIVDPQGEIVAGHR(M)

3
4.05
0.63
 520.95
1559.84





 42
 55
(V)AIVDPQGEIVAGHR(M)

2
4.01
0.63
 731.40
1460.78





 43
 55
(A)IVDPQGEIVAGHR(M)

3
3.70
0.59
 464.25
1389.73





 44
 55
(I)VDPQGEIVAGHR(M)

2
2.44
0.38
 639.33
1276.65





 45
 55
(V)DPQGEIVAGHR(M)

2
2.91
0.48
 589.80
1177.58





 46
 55
(D)PQGEIVAGHR(M)

2
3.02
0.50
 532.28
1062.56





 60
 67
(R)FAmcSTFK(F)
M(62)
2
2.60
0.42
 504.22
1006.43





 60
 67
(R)FAMcSTFK(F)

2
2.15
0.30
 496.22
 990.44





 60
 77
(R)FAmcSTFKFPLAALVFER(I)
M(62)
3
2.17
0.31
 717.70
2150.08





 61
 67
(F)AMcSTFK(F)

1
1.54
0.03
 844.37
 843.36





 68
 77
(K)FPLAALVFER(I)

2
3.43
0.56
 581.84
1161.66





 70
 77
(P)LAALVFER(I)

2
1.94
0.23
 459.78
 917.54





 71
 77
(L)AALVFER(I)

2
2.40
0.37
 403.23
 804.44





 78
 84
(R)IDSGTER(G)

2
2.17
0.31
 389.19
776.37





 78
 87
(R)IDSGTERGDR(K)

3
2.03
0.26
 369.18
1104.52





 88
105
(R)KLSYGPDmIVEWSPATER(F)
M(95)
3
4.89
0.69
 699.01
2094.01





 88
105
(R)KLSYGPDMIVEWSPATER(F)

3
3.35
0.55
 693.68
2078.01





 89
105
(K)LSYGPDmIVEWSPATER(F)
M(95)
2
4.26
0.65
 983.97
1965.92





 89
105
(K)LSYGPDMIVEWSPATER(F)

3
2.26
0.34
 650.98
1949.91





106
118
(R)FLASGHmTVLEAA(Q)
M(112)
2
2.65
0.43
 681.84
1361.66





106
118
(R)FLASGHMTVLEAA(Q)

2
2.68
0.44
 673.84
1345.67





106
120
(R)FLASGHmTVLEAAQA(A)
M(112)
3
3.34
0.55
 521.26
1560.76





106
120
(R)FLASGHMTVLEAAQA(A)

3
3.39
0.56
 515.93
1544.76





106
121
(R)FLASGHmTVLEAAQAA(V)
M(112)
3
4.55
0.67
 544.94
1631.80





106
121
(R)FLASGHMTVLEAAQAA(V)

3
2.84
0.47
 539.61
1615.80





106
123
(R)FLASGHmTVLEAAQAAVQ(L)
M(112)
3
3.89
0.61
 620.65
1858.93





106
123
(R)FLASGHMTVLEAAQAAVQ(L)

3
2.07
0.28
 615.32
1842.93





106
135
(R)FLASGHmTVLEAAQAAVQLSDN
M(112)
3
3.22
0.53
1043.21
3126.59




GATNLLLR(E)











106
135
(R)FLASGHMTVLEAAQAAVQLSDN

3
2.64
0.43
1037.87
3110.60




GATNLLLR(E)











110
135
(S)GHmTVLEAAQAAVQLSDNGATN
M(112)
3
3.49
0.57
 903.80
2708.39




LLLR(E)











110
135
(S)GHMTVLEAAQAAVQLSDNGATN

3
4.30
0.65
 898.47
2692.39




LLLR(E)











116
135
(L)EAAQAAVQLSDNGATNLLLR(E)

3
2.95
0.49
 685.70
2054.07





119
135
(A)QAAVQLSDNGATNLLLR(E)

3
4.24
0.65
 595.33
1782.96





121
135
(A)AVQLSDNGATNLLLR(E)

3
3.96
0.62
 528.96
1583.86





122
135
(A)VQLSDNGATNLLLR(E)

3
3.38
0.56
 505.28
1512.82





124
135
(Q)LSDNGATNLLLR(E)

3
2.56
0.42
 429.57
1285.70





125
135
(L)SDNGATNLLLR(E)

2
3.40
0.56
 587.32
1172.62





128
135
(N)GATNLLLR(E)

2
2.09
0.28
 429.26
 856.51





136
148
(R)EIGGPAAmTQYFR(K)
M(143)
2
3.76
0.60
 728.85
1455.68





136
148
(R)EIGGPAAMTQYFR(K)

2
3.68
0.59
 720.85
1439.69





136
149
(R)EIGGPAAmTQYFRK(I)
M(143)
2
3.26
0.54
 792.90
1583.78





138
148
(I)GGPAAmTQYFR(K)
M(143)
2
2.28
0.34
 607.78
1213.55





149
156
(R)KIGDSVSR(L)

2
2.47
0.39
 431.24
 860.48





149
159
(R)KIGDSVSRLDR(K)

3
2.38
0.37
 415.90
1244.69





150
159
(K)IGDSVSRLDR(K)

2
1.90
0.21
 559.30
1116.59





157
173
(R)LDRKEPEmSDNTPGDLR(D)
M(164)
3
5.69
0.74
 663.65
1987.93





157
173
(R)LDRKEPEMSDNTPGDLR(D)

3
6.08
0.75
 658.32
1971.93





160
173
(R)KEPEmSDNTPGDLR(D)
M (164)
3
4.63
0.68
 535.58
1603.73





160
173
(R)KEPEMSDNTPGDLR(D)

2
3.84
0.61
 794.87
1587.72





160
181
(R)KEPEmSDNTPGDLRDTTTPIAM
M(164)
3
2.39
0.37
 812.37
2434.09




(A)











160
181
(R)KEPEmSDNTPGDLRDTTTPIAm
M
3
1.82
0.18
 817.70
2450.09




(A)
(164),










M(181)










160
183
(R)KEPEmSDNTPGDLRDTTTPIAMA
M(164)
4
5.52
0.73
 666.32
2661.25




R(T)











160
183
(R)KEPEmSDNTPGDLRDTTTPIAmA
M
4
5.33
0.72
 670.32
2677.24




R(T)
(164),










M(181)










160
183
(R)KEPEMSDNTPGDLRDTTTPIAMA

3
4.74
0.68
 882.76
2645.24




R(T)











161
173
(K)EPEmSDNTPGDLR(D)
M (164)
2
3.35
0.55
 738.82
1475.63





161
173
(K)EPEMSDNTPGDLR(D)

2
2.84
0.47
 730.82
1459.62





161
181
(K)EPEmSDNTPGDLRDTTTPIAM(A)
M(164)
3
1.99
0.24
 769.67
2306.00





161
183
(K)EPEMSDNTPGDLRDTTTPIAmAR
M(181)
3
4.07
0.63
 845.39
2533.14




(T)











161
183
(K)EPEmSDNTPGDLRDTTTPIAmAR
M
4
3.75
0.60
 638.29
2549.14




(T)
(164),










M(181)










161
183
(K)EPEMSDNTPGDLRDTTTPIAMAR

3
3.93
0.62
 840.06
2517.15




(T)











174
183
(R)DTTTPIAmAR(T)
M(181)
2
2.49
0.40
 546.77
1091.52





174
183
(R)DTTTPIAMAR(T)

2
2.35
0.36
 538.78
1075.54





184
204
(R)TVAKVLYGGALTSTSTHTIER(W)

3
3.36
0.55
 735.73
2204.18





188
196
(K)VLYGGALTS(T)

1
2.08
0.28
 880.48
 879.47





188
197
(K)VLYGGALTST(S)

1
2.23
0.33
 981.52
 980.52





188
200
(K)VLYGGALTSTSTH(T)

2
2.92
0.49
 653.83
1305.65





188
204
(K)VLYGGALTSTSTHTIER(W)

3
5.96
0.75
 602.66
1804.95





188
217
(K)VLYGGALTSTSTHTIERWLIGNQ

4
2.09
0.28
 808.67
3230.66




TGDATLR(A)











189
204
(V)LYGGALTSTSTHTIER(W)

2
3.77
0.60
 853.94
1705.86





190
204
(L)YGGALTSTSTHTIER(W)

3
4.90
0.69
 531.93
1592.77





191
204
(Y)GGALTSTSTHTIER(W)

2
4.04
0.63
 715.87
1429.73





192
204
(G)GALTSTSTHTIER(W)

2
4.06
0.63
 687.35
1372.68





193
204
(G)ALTSTSTHTIER(W)

3
1.81
0.17
 439.56
1315.67





195
204
(L)TSTSTHTIER(W)

2
2.43
0.38
 566.78
1131.55





205
217
(R)WLIGNQTGDATLR(A)

3
3.79
0.60
 482.26
1443.74





206
217
(W)LIGNQTGDATLR(A)

2
2.56
0.41
 629.84
1257.67





218
229
(R)AGFPKDWVVGEK(T)

3
3.90
0.62
 444.90
1331.69





219
229
(A)GFPKDWVVGEK(T)

2
2.45
0.39
 631.33
1260.65





220
229
(G)FPKDWVVGEK(T)

2
2.70
0.44
 602.82
1203.63





221
229
(F)PKDWVVGEK(T)

2
3.42
0.56
 529.29
1056.56





223
229
(K)DWVVGEK(T)

2
1.96
0.23
 416.72
 831.42





230
245
(K)TGTcANGGRNDIGFFK(A)

3
2.49
0.40
 572.28
1713.81





239
245
(R)NDIGFFK(A)

2
2.68
0.44
 420.72
 839.42





239
249
(R)NDIGFFKAQER(D)

2
2.34
0.36
 662.84
1323.67





246
256
(K)AQERDYAVAVY(T)

2
1.83
0.18
 642.81
1283.61





246
261
(K)AQERDYAVAVYTTAPK(L)

3
4.80
0.69
 594.98
1781.91





250
261
(R)DYAVAVYTTAPK(L)

2
3.62
0.59
 649.84
1297.66





262
272
(K)LSAVERDELVA(S)

2
2.48
0.39
 601.32
1200.63





262
275
(K)LSAVERDELVASVG(Q)

2
2.56
0.41
 722.88
1443.75





262
276
(K)LSAVERDELVASVGQ(V)

3
1.99
0.25
 524.94
1571.81





262
279
(K)LSAVERDELVASVGQVIT(Q)

3
1.78
0.16
 629.34
1885.01





262
280
(K)LSAVERDELVASVGQVITQ(L)

3
3.75
0.60
 672.03
2013.07





262
281
(K)LSAVERDELVASVGQVITQL(I)

3
1.76
0.15
 709.73
2126.16





262
287
(K)LSAVERDELVASVGQVITQLILST

4
4.56
0.67
 696.89
2783.53




DK(-)











273
287
(A)SVGQVITQLILSTDK(-)

2
2.98
0.50
 801.46
1600.90





274
287
(S)VGQVITQLILSTDK(-)

3
2.82
0.47
 505.63
1513.87





276
287
(G)QVITQLILSTDK(-)

2
2.76
0.46
 679.90
1357.78





277
287
(Q)VITQLILSTDK(-)

2
3.08
0.51
 615.87
1229.72





280
287
(T)QLILSTDK(-)

2
1.80
0.17
 459.27
 916.52





281
287
(Q)LILSTDK(-)

1
2.28
0.34
 789.47
 788.46









For the KPC protein, a peptide in which one methionine among three methionine residues (49, 116 and 151) was in an oxidized form was identified (FIG. 6A). For OXA, a peptide in which one methionine or two or three methionine residues among six methionine residues (115, 138, 195, 237, 239 and 241) were in an oxidized form was identified (FIG. 6B).


Specifically, for the KPC protein, an N-terminal sequence peptide consisting of residues 1-21 was not detected, and for the OXA protein, an N-terminal sequence peptide consisting of residues 1-22 was not detected. For this KPC, when the sequence except residues 1-21 was considered, peptides covering the entire sequence were identified, and the sequence coverage increased from 92.8% (272/293) to 100% (272/272). For OXA, when the sequence except residues 1-22 was considered, the sequence coverage increased from 91.7% (243/265) to 100% (243/243).


For the NDM protein, a peptide in which one methionine among seven methionine residues (39, 67, 126, 129, 245, 248 and 265) was in an oxidized form was identified (FIG. 6E). For GES, a peptide in which one methionine or two methionine residues among six methionine residues (62, 95, 112, 143, 164 and 181) were in an oxidized form was identified (FIG. 6F). For IMP and VIM, a peptide in which methionine was in an oxidized form was not identified (FIGS. 6D and 6E).


For the IMP and VIM proteins, N-terminal sequence peptides consisting of residues 1-18 and residues 1-26, respectively, were not detected, and for GES, an N-terminal sequence peptide consisting of residues 1-18 was not detected. When the target protein sequences excluding the N-terminus were considered, the identified sequence coverages were 97.2 (243/250) for NDM, 97.8% (223/228) for IMP, 100% (240/240) for VIM, and 98.5% (265/269) for GES.


(3) Identification of N-Terminal Sequences (FIGS. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K, 7L, 7M, 7N, 7O, 7P, 7Q, 7R, 7S and 7T)











KPC



-N-terminal sequence:



(S)/ATALTNLVAEPFAK(L) (semi-tryptic)







KPC-3



-N-terminal sequence:



(S)/ATALTNLVAEPFAK(L) (semi-tryptic)







KPC-17



-N-terminal sequence:



(S)/ATALTNLVAEPFAK(L) (semi-tryptic)







OXA



-N-terminal sequence:



(A)/KEWQENK(S) (semi-tryptic)







OXA-181



-N-terminal sequence:



(A)/KEWQENKSWNAHFTEHK(S) (semi-tryptic)







NDM



-N-terminal sequence:



(M)PGEIRPTIGQQMETGDQR(F) (semi-tryptic)







IMP



-N-terminal sequence:



(A)AESLPDLK(I) (semi-tryptic)







IMP-1



-N-terminal sequence:



(A)/AESLPDLK(I) (semi-tryptic)







IMP-4



-N-terminal sequence:



(A)/AESLPDLK(I) (semi-tryptic)







VIM



-N-terminal sequence:



(S)/VDSSGEYPTVSEIPVGEVR(L) (semi-tryptic)







VIM-1



-N-terminal sequence:



(S)/GEPSGEYPTVNEIPVGEVR(L) (semi-tryptic)







VIM-4



-N-terminal sequence:



(S)/GEPSGEYPTVNEIPVGEVR(L) (semi-tryptic)







GES



-N-terminal sequence:



(A)SEKLTFK(T) (semi-tryptic)







GES-1



-N-terminal sequence:



(A)/SEKLTFK(T) (semi-tryptic)






Example 6: Amino Acid Sequencing and Characterization of Each Protein

Based on the MS2 results obtained in Example 5, multiple alignment analysis was performed on a total of 43 KPC subtype proteins (FIG. 8A), 660 OXA subtype proteins (FIG. 8B), 27 NDM subtype proteins (FIG. 8C), 79 IMP subtype proteins (FIG. 8D), 66 VIM subtype proteins (FIG. 8E) and 43 GES subtype proteins (FIG. 8F) known to date in the National Center for Biotechnology Information (NCBI) database.


KPC and OXA Proteins


It was confirmed that 97.3% or more of the full-length amino acid sequences of 42 proteins including KPC-2 are conserved, and for the OXA protein, 91.3% or more of the full-length amino acid sequences of 30 proteins including OXA-48 having resistance to carbapenem antibiotics are conversed. In order to identify the characteristics of each protein, phylogenetic tree analysis of KPC and OXA was performed through the MEGA X program (FIGS. 9A and 9B). Specifically, 43 KPC subtype proteins all contained the same N-terminal peptide (1 to 21 a.a.), and among them, 35 subtype proteins including KPC-2 were each composed of a sequence consisting of 293 amino acids. For OXA, 30 OXA proteins comprising the same N-terminal peptide (1 to 22 a.a.) were identified, and 23 OXA proteins were characterized by the same sequence as OXA-48 composed of a sequence consisting of 265 amino acids.


MBL Proteins and GES Protein


It was confirmed that sequence similarities were 90.9% (NDM), 44.8% (IMP), 63.5% (VIM), and 86.5% (GES). As subtype proteins having the same N-terminus, 27 NDM subtype proteins, 23 IMP subtype proteins (89.4%), 26 VIM subtype proteins (92.1%), and 35 GES subtype proteins (87.9%) were identified. As subtype proteins having the same peptide number as the N-terminal sequence and the same full-length amino acid sequence, 26 NDM subtype proteins (92.6%), 23 IMP subtype proteins (89.4%), 25 VIM subtype proteins (93.6%), and 34 GES subtype proteins (88.9%) were identified. In order to identify the characteristics of each protein, phylogenetic tree analysis was performed on the subtype proteins of the MBL protein and the GES protein through the MEGA X program (FIGS. 9C, 9D, 9E and 9F). As a result, it could be confirmed that the subgroups each containing NDM-1, IMP-6, VIM-2 and GES-5 were grouped in the phylogenetic tree analysis, like the results confirmed in the multiple alignment analysis.


Example 7. Target Protein Identification Using Mass Spectrometry (Top-Down Method)

To determine the mass value of the active protein expressed in the strain, top-down mass spectrometry was performed. To confirm the exact mass value of the protein, a sample obtained by partial purification from the crude protein extract derived from the strain was used, and an LC-MS/MS system (Nano-LC and Q-Exactive HF-X mass spectrometry system) capable of top-down analysis was used.


(1) Mass Spectrometry of Purified Protein


About 0.5 μg of the partially purified protein sample was injected. Analysis was performed using a direct infusion method without a column and using a nano-flow pump. The sample analysis conditions used in this case are as follows.

    • buffer A: 0.1% formic acid in water
    • sample analysis: from 0 to 10 min, 100% fixed buffer (A) 100%, 4 μL/min fixed flow rate


(2) Mass Spectrometry of Target Proteins Using High-Resolution Mass Spectrometry


Using the protein mode analysis method with the Q-Exactive HF-X mass spectrometer, the mass values of the intact proteins and the tandem mass spectra of the proteins were obtained and identified. The parameters used in this case are as follows.

    • Resolution: use of Full MS 120,000, MS2 60,000 or 120,000
    • Full MS: 620 to 2,400 m/z, 100 msec
    • MS2: use of 1 or 2 microscans, 1,000 msec, NCE 50; ionized materials with a charge state of 1 to 8 were excluded from MS2 analysis.


Software for identifying proteins based on top-down data, ‘Informed Proteomics’ developed by US PNNL (Pacific Northwest National Laboratory) was used.


KPC and OXA Proteins


Several multi-charged KPC protein (z=+13 to +20) or OXA protein (z=+22 to +37) peaks appeared (FIGS. 10A and 10B), and it was confirmed that a representative mass value obtained by deconvolution of the peaks was an average molecular weight of 28,718.13 m/z×z, corresponding to a monoisotopic mass of 28,700.69 m/z×z. The confirmed representative mass value represents the mass value of the KPC protein in a state in which there is a disulfide bond between Cys68 and Cys237. In addition, other peaks caused by methionine oxidation were observed (e.g., polypeptides with one oxidized methionine show an average molecular weight of 28,718+16 m/z×z). They partially coincided with the positions of oxidized methionine residues (49, 116 and 151 for KPC, and 115, 138, 195, 237, 239 and 241 for OXA) within the KPC or OXA protein sequence obtained through in-gel digestion (bottom-up method). Polypeptides including the N-terminal sequence consisting of residues 1-21 for KPC or residues 1-22 for OXA were not observed even in the analysis based on the top-down method. When each N-terminal sequence was excluded, both KPC (22-293 a.a.) and OXA (23-265 a.a.) showed a sequence coverage of 100% (FIGS. 12A and 12B).


MBL Proteins and GES Protein


Several peaks of multi-charged MBL proteins or GES protein appeared (FIGS. 10C, 10E, 10G and 10I), and it was confirmed that, for NDM, a representative mass value obtained by deconvolution of the peaks was an average molecular weight of 26,724 m/z X z, corresponding to a monoisotopic mass of 26,707 m/z×z. It was confirmed that the average molecular weight for IMP was 25082.68 m/z×z, corresponding to a monoisotopic mass of 25,067.19 m/z×z, the average molecular weight for VIM was 25,515.42 m/z×z, corresponding to a monoisotopic mass of 25,499.92 m/z×z, and the average molecular weight for GES was 29,245.15 m/z×z, corresponding to a monoisotopic mass of 29,226.92 m/z×z. It was confirmed that the identified representative mass value for NDM corresponded to a palmitoylated protein type (FIG. 11A). In addition, other peaks caused by methionine oxidation and methylation were observed (for example, polypeptides with one oxidized methionine show an average molecular weight of 26724+16 m/z×z, and polypeptides with one methylation show an average molecular weight of 26724+14 m/z x z) (FIG. 11B). On the other hand, for IMP and VIM, no specific protein modification was found. For GES, a disulfide bond between Cys63 and Cys233 was found, and other peaks caused by methionine oxidation were also observed. They partially coincided with the positions of oxidized methionine residues (39, 67, 126, 129, 245, 248 and 265 for NDM, and 62, 95, 112, 143, 164, 181 for GES) within the NDM or GES protein sequence obtained through in-gel digestion (bottom-up method). Polypeptides including the N-terminal sequence consisting of residues 1-19 or 1-20 for NDM, residues 1-18 for IMP, residues 1-26 for VIM, or residues 1-18 for GES were not observed even in the analysis based on the top-down method. When each N-terminal sequence was excluded, sequence coverage of 100% was identified in residues 21-270 for NDM protein (FIG. 12C), residues 19-246 for IMP protein (FIG. 12D), and residues 27-266 for VIM protein (FIG. 12E). In addition, for GES protein, sequence coverage of 100% was identified in residues 19-287 (FIG. 12F).


(3) Mass Spectrometry of Target Proteins Using Low-Resolution Mass Spectrometry


The mass spectrometry spectrum of each protein was obtained using a low-resolution mass spectrometer (1, SciEX 4800; 2, Bruker Biotyper MALDI-TOF MS system). First, 1 μL of a sinapinic acid (SA, present at 10 mg/mL in 0.1% TFA/50% acetonitrile) matrix and about 100 ng of each protein were placed on the plate spot, dried completely, and subjected to mass spectrometry. As protein samples, all of the colonies cultured in solid culture, cells harvested in liquid culture, crude extract and crude enzyme solution after cell lysis, and purified proteins obtained after purification can be used. In this case, the maximum energy used was 30%, random position acquisition was performed, a total of 2,000 laser shots (40 shots per time) were irradiated, and each spectral data was cumulatively obtained. Mass spectrometry spectra were obtained for the range of 10,000 to 40,000 m/z (KPC and OXA) or 35,000 m/z (MBL and GES), and each target protein with a charge state of +1 as well as each target protein with a charge state of +2 were simultaneously detected (FIGS. 13A, 13B, 13C, 13D, 13E and 13F). As a result of low-resolution mass spectrometry, both charge states of +1 and +2 were detected for all the three MBL proteins and the GES protein. In particular, for the NDM protein which is a protein anchored to the cell membrane, both a molecular weight corresponding to palmitoylation (average mass=238.4136, monoisotopic mass=238.22966) and a molecular weight corresponding to non-palmitoylation were identified.


(4) Comparison of Mass Values of Protein Subtypes


The exact mass values of the KPC, OXA, MBL and GES proteins were confirmed through the above-described method, and the mass values of the active proteins from which the N-terminal peptide has been removed could be confirmed based on the confirmed mass values. Thus, for all the KPC, OXA, MBL and GES proteins found in the NCBI, the exact mass values of the active proteins can be confirmed through high-resolution or low-resolution mass spectrometry, and it is possible to rapidly and accurately identify various types of subtype proteins through mass spectrometry (Tables 8 to 13).









TABLE 8





Mass data of KPC protein




















Full-length KPC protein




Full-length KPC protein
(containing disulfide bond)
















Average


Average






molecular
Monoisotopic

molecular
Monoisotopic
Active protein


Subtypes
Da
weight
mass
Da
weight
mass
Da





2
31115
31115.35
31095.98
31113
31113.33
31093.96
28720


3
31141
31141.39
31121.99
31139
31139.37
31119.97
28746


4
31132
31132.34
31112.99
31130
31130.32
31110.97
28737


5
31174
31174.42
31155.03
31172
31172.40
31153.01
28780


6
31073
31073.27
31053.94
31071
31071.25
31051.92
28678


7
31123
31123.35
31104.03
31121
31121.33
31102.01
28728


8
31099
31099.30
31079.94
31097
31097.28
31077.92
28704


10
31200
31200.46
31181.04
31198
31198.44
31179.02
28806


11
31131
31131.39
31112.02
31129
31129.37
31110.00
28736


12
31133
31133.38
31113.94
31131
31131.36
31111.92
28738


13
31083
31083.35
31063.98
31081
31081.33
31061.96
28688


14
30957
30957.19
30937.92
30955
30955.17
30935.90
28562


15
31272
31271.58
31252.11
31270
31269.56
31250.09
28877


16
31071
31071.29
31051.98
31069
31069.27
31049.96
28676


17
31081
31081.33
31062.00
31079
31079.31
31059.98
28686


18
31129
31129.38
31110.00
31127
31127.36
31107.98
28720


19
31128
31128.39
31108.99
31126
31126.37
31106.97
28733


21
31085
31085.32
31066.01
31083
31083.30
31063.99
28690


22
30952
30952.17
30932.94
30950
30950.15
30930.92
28557


23
31113
31113.33
31093.96
31111
31111.31
31091.94
28718


24
31056
31056.28
31036.94
31054
31054.26
31034.92
28720


25
31358
31357.63
31338.11
31356
31355.61
31336.09
28963


26
31131
31131.35
31111.98
31129
31129.33
31109.96
28720


27
31111
31111.36
31092.01
31109
31109.34
31089.99
28716


28
30983
30983.23
30963.92
30981
30981.21
30961.90
28588


29
31500
31499.74
31480.14
31498
31497.72
31478.12
29105


30
31096
31096.30
31076.94
31094
31094.28
31074.92
28720


31
31189
31189.47
31170.03
31187
31187.45
31168.01
28795


32
31220
31219.56
31200.02
31218
31217.54
31198.00
28825


33
31163
31163.44
31144.02
31161
31161.42
31142.00
28769


34
32026
32026.29
32006.40
32024
32024.27
32004.38
29631


35
31099
31099.31
31079.95
31097
31097.29
31077.93
28704


36
31155
31155.41
31136.00
31153
31153.39
31133.98
28760


37
31051
31051.31
31032.02
31049
31049.29
31030.00
28656


38
31113
31113.33
31093.96
31111
31111.31
31091.94
28718


39
31171
31171.41
31152.00
31169
31169.39
31149.98
28776


40
31370
31369.63
31350.10
31368
31367.61
31348.08
28975


41
31481
31480.78
31461.18
31479
31478.76
31459.16
29086


42
31085
31085.32
31065.97
31083
31083.30
31063.95
28690


43
31143
31143.41
31124.03
31141
31141.39
31122.01
28748


44
32828
32828.19
32807.81
32826
32826.17
32805.79
30433


45
31142
31142.42
31123.03
31140
31140.40
31121.01
28748


46
31125
31125.34
31105.96
31123
31123.32
31103.94
28730

















Active protein





Active protein
(containing disulfide bond)
















Average


Average






molecular
Monoisotopic

molecular
Monoisotopic



Subtypes
weight
mass
Da
weight
mass
N-terminus







2
28720.43
28702.71
28718
28718.41
28700.69
1~21aa



3
28746.46
28728.71
28744
28744.44
28726.69
1~21aa



4
28737.42
28719.71
28735
28735.40
28717.69
1~21aa



5
28779.50
28761.76
28777
28777.48
28759.74
1~21aa



6
28678.35
28660.66
28676
28676.33
28658.64
1~21aa



7
28728.43
28710.76
28726
28726.41
28708.74
1~21aa



8
28704.38
28686.67
28702
28702.36
28684.65
1~21aa



10
28805.53
28787.76
28804
28803.51
28785.74
1~21aa



11
28736.47
28718.74
28734
28734.45
28716.72
1~21aa



12
28738.46
28720.67
28736
28736.44
28718.65
1~21aa



13
28688.43
28670.71
28686
28686.41
28668.69
1~21aa



14
28562.27
28544.64
28560
28560.25
28542.62
1~21aa



15
28876.66
28858.84
28875
28874.64
28856.82
1~21aa



16
28676.37
28658.70
28674
28674.35
28656.68
1~21aa



17
28686.41
28668.73
28684
28684.39
28666.71
1~21aa



18
28720.43
28702.71
28718
28718.41
28700.69
1~21aa



19
28733.47
28715.72
28731
28731.45
28713.70
1~21aa



21
28690.40
28179.59
28688
28688.38
28177.57
1~21aa



22
28557.25
28539.67
28555
28555.23
28537.65
1~21aa



23
28718.41
28700.68
28716
28716.39
28698.66
1~21aa



24
28720.43
28702.71
28718
28718.41
28700.69
1~21aa



25
28962.70
28944.84
28961
28960.68
28942.82
1~21aa



26
28720.43
28702.71
28718
28718.41
28700.69
1~21aa



27
28716.44
28698.74
28714
28714.42
28696.72
1~21aa



28
28588.31
28570.65
28586
28586.29
28568.63
1~21aa



29
29104.82
29086.86
29103
29102.80
29084.84
1~21aa



30
28720.43
28702.71
28718
28718.41
28700.69
1~21aa



31
28794.55
28776.75
28793
28792.53
28774.73
1~21aa



32
28824.64
28806.74
28823
28822.62
28804.72
1~21aa



33
28768.52
28750.75
28767
28766.50
28748.73
1~21aa



34
29631.37
29613.12
29629
29629.35
29611.10
1~21aa



35
28704.39
28686.68
28702
28702.37
28684.66
1~21aa



36
28760.49
28742.73
28758
28758.47
28740.71
1~21aa



37
28656.39
28638.75
28654
28654.37
28636.73
1~21aa



38
28718.41
28700.68
28716
28716.39
28698.66
1~21aa



39
28776.49
28758.72
28774
28774.47
28756.70
1~21aa



40
28974.71
28956.83
28973
28972.69
28954.81
1~21aa



41
29085.86
29067.90
29084
29083.84
29065.88
1~21aa



42
28690.40
28672.70
28688
28688.38
28670.68
1~21aa



43
28748.49
28730.75
28746
28746.47
28728.73
1~21aa



44
30433.27
30414.54
30431
30431.25
30412.52
1~21aa



45
28747.50
28729.76
28745
28745.48
28727.74
1~21aa



46
28730.42
28712.68
28728
28728.40
28710.66
1~21aa

















TABLE 9







Mass data of OXA protein










Full-length OXA protein
Active protein
















Average


Average






molecular
Monoisotopic

molecular
Monoisotopic


Subtypes
Da
weight
mass
Da
weight
mass
N-terminus

















48
30359
30358.76
30339.55
28147
28146.97
28129.28
1~22aa


54
30280
30279.68
30260.45
28098
28097.89
28080.23
1~22aa


162
30329
30328.74
30309.54
28117
28116.94
28099.27
1~22aa


163
29891
29891.19
29872.27
27679
27679.40
27662.00
1~22aa


181
30313
30312.74
30293.55
28172
28172.02
28154.31
1~22aa


199
30299
30298.71
30279.52
28158
28157.99
28140.29
1~22aa


204
30423
30422.85
30403.60
28282
28282.14
28264.37
1~22aa


232
30244
30243.63
30224.48
28032
28031.83
28014.21
1~22aa


244
30260
30259.63
30240.47
28048
28047.83
28030.20
1~22aa


245
30393
30392.82
30373.57
28252
28252.11
28234.34
1~22aa


247
29814
29814.11
29795.25
27673
27673.39
27656.02
1~22aa


252
30331
30330.71
30311.52
28190
28189.99
28172.29
1~22aa


370
30401
30400.80
30381.56
28260
28260.08
28242.33
1~22aa


405
29859
29859.19
29840.28
27718
27718.48
27701.04
1~22aa


416
30401
30400.84
30381.60
28260
28260.13
28242.37
1~22aa


436
30285
30284.74
30265.51
28126
28125.97
28108.35
1~22aa


438
30111
30111.42
30092.35
27900
27899.62
27882.08
1~22aa


439
29865
29865.16
29846.26
27653
27653.36
27635.99
1~22aa


484
30214
30213.60
30194.47
28002
28001.80
27984.20
1~22aa


505
30389
30388.79
30369.56
28147
28146.97
28129.28
1~22aa


514
30387
30386.82
30367.58
28175
28175.02
28157.31
1~22aa


515
30361
30360.73
30341.53
28149
28148.94
28131.26
1~22aa


517
30088
30088.47
30069.42
27877
27876.68
27859.15
1~22aa


519
30373
30372.79
30353.57
28161
28160.99
28143.30
1~22aa


535
30185
30184.62
30165.45
27955
27954.78
27937.26
1~22aa


538
30363
30362.75
30343.53
28151
28150.96
28133.26
1~22aa


546
30343
30342.76
30323.56
28131
28130.97
28113.29
1~22aa


547
30427
30426.88
30407.63
28215
28215.09
28197.36
1~22aa


566
30403
30402.77
30383.54
28191
28190.98
28173.27
1~22aa


567
30190
30189.58
30170.47
27978
27977.78
27960.2
1~22aa
















TABLE 10







Mass data of NDM protein












Active protein
Active protein



Full-length NDM protein
(N-terminal residues 1-19)
(N-terminal residues 1-20)


















Average


Average


Average





molecular
Monoisotopic

molecular
Monoisotopic

molecular
Monoisotopic


Subtypes
Da
weight
mass
Da
weight
mass
Da
weight
mass



















1
28499
28499.46
28481.22
26510
26510.04
26493.16
26439
26438.96
26422.12


2
28473
28473.42
28455.20
26484
26484.00
26467.14
26413
26412.92
26396.10


3
28498
28498.48
28480.23
26509
26509.05
26492.17
26438
26437.98
26421.14


4
28481
28481.43
28463.26
26492
26492.01
26475.20
26421
26420.93
26404.16


5
28495
28495.45
28477.27
26506
26506.03
26489.22
26435
26434.95
26418.18


6
28528
28527.51
28509.25
26538
26538.09
26521.19
26467
26467.01
26450.15


7
28480
28480.44
28462.27
26491
26491.02
26474.22
26420
26419.94
26403.18


8
28423
28423.39
28405.25
26434
26433.97
26417.19
26363
26362.89
26346.16


9
28499
28498.52
28480.27
26509
26509.10
26492.21
26438
26438.02
26421.17


10
28648
28647.58
28629.25
26658
26658.15
26641.19
26587
26587.08
26570.16


11
28467
28467.40
28449.24
26478
26477.98
26461.18
26407
26406.90
26390.15


12
28539
28539.46
28521.26
26550
26550.04
26533.21
26479
26478.96
26462.17


13
28480
28480.44
28462.27
26491
26491.02
26474.22
26420
26419.94
26403.18


14
28441
28441.42
28423.21
26452
26452.00
26435.15
26381
26380.92
26364.11


15
28509
28509.48
28491.29
26520
26520.06
26503.23
26449
26448.98
26432.19


16
28480
28480.41
28462.17
26491
26490.99
26474.11
26420
26419.91
26403.08


17
28495
28494.51
28476.33
26505
26505.09
26488.27
26434
26434.01
26417.23


18
29103
29103.10
29084.49
27114
27113.67
27096.43
27043
27042.60
27025.40


19
28509
28508.50
28490.31
26519
26519.07
26502.25
26448
26448.00
26431.21


20
28476
28476.41
28458.23
26487
26486.99
26470.17
26416
26415.91
26399.14


21
28525
28525.48
28507.28
26536
26536.06
26519.23
26465
26464.98
26448.19


22
28481
28481.43
28463.26
26492
26492.01
26475.20
26421
26420.93
26404.16


23
28499
28499.46
28481.22
26510
26510.04
26493.16
26439
26438.96
26422.12


24
28513
28513.49
28495.23
26524
26524.07
26507.17
26453
26452.99
26436.14


25
28515
28515.46
28497.21
26526
26526.04
26509.15
26455
26454.96
26438.11


27
28527
28526.53
28508.26
26537
26537.11
26520.20
26466
26466.03
26449.17


28
28528
28527.51
28509.25
26538
26538.09
26521.19
26467
26467.01
26450.15
















TABLE 11







Mass data of IMP protein










Full-length IMP protein
Active form of IMP protein
















Average


Average






molecular
Monoisotopic

molecular
Monoisotopic


Subtypes
Da
weight
mass
Da
weight
mass
N-terminus

















1
27120
27120.19
27103.24
25113
25112.71
25097.2
1~18aa


2
27180
27180.25
27163.13
25151
25150.65
25135.08
1~19aa


3
27018
27018.1
27001.21
25011
25010.62
24995.17
1~18aa


4
27087
27087.2
27070.24
25080
25079.72
25064.2
1~18aa


5
27176
27176.24
27159.12
25020
25019.56
25004.05
1~19aa


6
27090
27090.16
27073.23
25083
25082.68
25067.19
1~18aa


7
27134
27134.24
27117.21
25025
25024.6
25009.15
1~19aa


8
27053
27053.06
27036.02
24952
24952.38
24936.94
1~20aa


9
27277
27277.22
27260.01
25192
25191.61
25175.97
1~18aa


10
27168
27168.23
27151.24
25161
25160.75
25145.2
1~18aa


11
27061
27061.01
27044.05
24973
24973.34
24957.93
1~19aa


12
27101
27101.29
27084.27
24988
24987.6
24972.09
1~19aa


13
27212
27212.26
27195.02
25078
25077.56
25061.95
1~20aa


14
27441
27440.57
27423.32
25365
25364.9
25349.23
1~18aa


15
27139
27139.07
27121.93
25011
25011.44
24995.94
1~19aa


16
27298
27298.24
27281.06
25268
25267.62
25251.96
1~18aa


17
27141
27141.14
27123.95
25006
25006.44
24990.88
1~20aa


18
27199
27199.28
27182.22
25186
25185.69
25170.14
1~18aa


19
27095
27095.14
27078.06
24994
24994.46
24978.98
1~20aa


20
27143
27143.19
27126.06
25043
25042.5
25026.98
1~20aa


21
27033
27032.96
27016.02
24945
24945.29
24929.9
1~19aa


22
27224
27224.16
27207.03
25208
25207.56
25191.95
1~18aa


23
27101
27101.11
27084.02
25000
25000.42
24984.94
1~20aa


24
27081
27081.08
27064.02
24980
24980.39
24964.94
1~20aa


25
27120
27120.19
27103.24
25113
25112.71
25097.2
1~18aa


26
27135
27135.24
27118.24
25128
25127.76
25112.2
1~18aa


27
27303
27303.26
27286.12
25216
25215.59
25200
1~19aa


28
27139
27139.19
27122.09
24983
24982.5
24967.02
1~19aa


29
27219
27219.17
27202.09
25115
25114.53
25098.96
1~19aa


30
27119
27119.25
27102.29
25112
25111.77
25096.25
1~18aa


31
27176
27176.19
27159.15
25116
25115.56
25100.01
1~18aa


32
27490
27489.64
27472.34
25414
25413.98
25398.25
1~18aa


33
27211
27211.26
27194.09
25205
25204.69
25189.08
1~18aa


34
27048
27048.12
27031.22
25041
25040.64
25025.18
1~18aa


35
27257
27257.13
27240.07
25139
25139.45
25123.91
1~19aa


37
27388
27388.44
27371.1
25254
25253.74
25238.03
1~20aa


38
27057
27057.17
27040.23
25050
25049.69
25034.19
1~18aa


39
27011
27011.07
26994.03
24910
24910.39
24894.95
1~20aa


40
27108
27108.13
27091.2
25101
25100.65
25085.16
1~18aa


41
27109
27109.05
27092.05
25021
25021.38
25005.93
1~19aa


42
27219
27219.32
27202.32
25212
25211.84
25196.28
1~18aa


43
27182
27182.28
27165.21
25073
25072.65
25057.15
1~19aa


44
27049
27048.96
27032.01
24961
24961.29
24945.9
1~19aa


45
27247
27247.2
27230
25105
25104.53
25088.94
1~19aa


46
26841
26840.97
26824.13
24831
24831.37
24816.02
1~18aa


48
27429
27428.51
27411.29
25353
25352.85
25337.19
1~18aa


49
27247
27247.32
27230.22
25234
25233.73
25218.14
1~18aa


51
27104
27104.21
27087.2
24995
24994.58
24979.14
1~19aa


52
27078
27078.11
27061.19
25071
25070.63
25055.15
1~18aa


53
27237
27237.16
27219.98
25094
25094.49
25078.92
1~19aa


54
27427
27426.54
27409.31
25351
25350.88
25335.21
1~18aa


55
27147
27147.34
27130.36
25174
25173.88
25158.3
1~18aa


56
27169
27169.25
27152.21
25156
25155.66
25140.13
1~18aa


58
27272
27272.2
27255.03
25199
25198.56
25182.93
1~19aa


59
27136
27136.27
27119.26
25129
25128.79
25113.22
1~18aa


60
27119
27119.25
27102.29
25112
25111.77
25096.25
1~18aa


61
27119
27119.24
27102.28
25112
25111.76
25096.24
1~18aa


62
27109
27109.04
27091.92
24981
24981.42
24965.93
1~19aa


63
27131
27131.31
27114.28
25018
25017.62
25002.1
1~19aa


64
27317
27317.29
27300.14
25216
25215.59
25200
1~19aa


65
27411
27410.54
27393.31
25335
25334.88
25319.22
1~18aa


66
27168
27168.23
27151.24
25161
25160.75
25145.2
1~18aa


67
27319
27319.26
27302.11
25232
25231.59
25216
1~19aa


68
27031
27030.98
27014.04
24872
24872.24
24856.89
1~20aa


69
27083
27083.09
27066.03
24982
24982.4
24966.95
1~20aa


70
27120
27120.19
27103.24
25113
25112.71
25097.2
1~18aa


71
27217
27217.3
27200.21
25204
25203.71
25188.13
1~18aa


73
27106
27106.18
27089.18
24796
24796.35
24781.04
1~21aa


74
27346
27346.28
27329.06
25259
25258.61
25242.94
1~19aa


75
27227
27227.34
27210.23
25214
25213.74
25198.15
1~18aa


76
27092
27092.13
27075.21
25085
25084.65
25069.17
1~18aa


77
27142
27142.15
27125.19
25135
25134.67
25119.15
1~18aa


78
27138
27138.21
27121.23
25131
25130.73
25115.19
1~18aa


79
27148
27148.2
27131.25
25141
25140.72
25125.21
1~18aa


80
27152
27152.23
27135.25
25145
25144.75
25129.2
1~18aa


82
27255
27255.22
27238.03
25113
25112.56
25096.98
1~19aa


83
27185
27185.25
27168.21
25172
25171.66
25156.13
1~18aa


84
27260
27260.31
27243.02
25126
25125.61
25109.95
1~20aa


85
27146
27146.22
27129.11
24990
24989.53
24974.04
1~19aa
















TABLE 12







Mass data of VIM protein










Full-length VIM protein
Active form of VIM protein
















Average


Average






molecular
Monoisotopic

molecular
Monoisotopic


Subtypes
Da
weight
mass
Da
weight
mass
N-terminus

















1
28024
28024.46
28007.22
25322
25322.13
25306.78
1~26aa


2
28327
28326.94
28309.51
25515
25515.42
25499.92
1~26aa


3
28300
28299.96
28282.53
25488
25488.44
25472.94
1~26aa


4
28094
28093.57
28076.29
25391
25391.24
25375.85
1~26aa


5
28042
28041.57
28024.32
25339
25339.25
25323.88
1~26aa


6
28328
28327.97
28310.54
25516
25516.45
25500.95
1~26aa


7
28112
28111.92
28094.63
25464
25463.74
25448.26
1~25aa


8
28297
28296.91
28279.5
25485
25485.39
25469.91
1~26aa


9
28339
28338.99
28321.54
25527
25527.47
25511.95
1~26aa


10
28343
28342.94
28325.5
25531
25531.42
25515.91
1~26aa


11
28300
28299.91
28282.5
25488
25488.39
25472.91
1~26aa


12
28117
28116.55
28099.25
25414
25414.23
25398.81
1~26aa


13
28220
28219.63
28202.29
25455
25455.24
25439.83
1~26aa


14
28124
28123.59
28106.3
25421
25421.27
25405.86
1~26aa


15
28311
28310.94
28293.51
25499
25499.42
25483.92
1~26aa


16
28353
28353.02
28335.56
25542
25541.5
25525.97
1~26aa


17
28345
28344.97
28327.46
25515
25515.42
25499.92
1~26aa


18
27941
27940.58
27923.37
25129
25129.06
25113.79
1~26aa


19
28108
28107.64
28090.35
25405
25405.31
25389.9
1~26aa


20
28346
28345.98
28328.55
25534
25534.46
25518.96
1~26aa


23
28258
28257.83
28240.44
25446
25446.31
25430.85
1~26aa


24
28284
28283.91
28266.49
25472
25472.39
25456.9
1~26aa


25
28147
28146.76
28129.42
25444
25444.43
25428.98
1~26aa


26
28000
28000.47
27983.25
25298
25298.15
25282.81
1~26aa


27
28040
28040.46
28023.22
25338
25338.13
25322.78
1~26aa


28
28070
28069.58
28052.32
25367
25367.26
25351.88
1~26aa


29
28058
28057.57
28040.32
25355
25355.25
25339.88
1~26aa


30
28354
28353.96
28336.52
25542
25542.44
25526.93
1~26aa


31
28320
28319.95
28302.54
25508
25508.43
25492.96
1~26aa


32
27966
27966.42
27949.22
25264
25264.1
25248.78
1~26aa


33
28008
28008.46
27991.23
25306
25306.13
25290.79
1~26aa


34
28038
28038.48
28021.24
25336
25336.16
25320.8
1~26aa


35
28054
28054.48
28037.23
25352
25352.16
25336.79
1~26aa


36
28355
28354.99
28337.55
25543
25543.47
25527.96
1~26aa


37
28110
28109.56
28092.29
25407
25407.24
25391.85
1~26aa


38
28052
28051.59
28034.4
25367
25367.3
25351.91
1~26aa


39
27970
27970.45
27953.24
25268
25268.12
25252.8
1~26aa


40
28122
28121.62
28104.32
25419
25419.29
25403.88
1~26aa


41
28326
28325.95
28308.52
25514
25514.43
25498.93
1~26aa


42
28038
28038.48
28021.24
25336
25336.16
25320.8
1~26aa


43
28122
28121.62
28104.32
25391
25391.24
25375.85
1~26aa


44
28313
28312.87
28295.46
25501
25501.35
25485.87
1~26aa


45
28339
28338.99
28321.54
25527
25527.47
25511.95
1~26aa


46
28333
28332.9
28315.46
25487
25487.36
25471.89
1~26aa


47
28240
28239.62
28222.26
25455
25455.24
25439.83
1~26aa


48
28361
28360.96
28343.49
25515
25515.42
25499.92
1~26aa


49
28058
28057.57
28040.32
25355
25355.25
25339.88
1~26aa


50
28257
28256.88
28239.48
25445
25445.36
25429.89
1~26aa


51
28355
28354.99
28337.54
25543
25543.47
25527.95
1~26aa


52
28044
28043.5
28026.27
25341
25341.18
25325.82
1~26aa


53
28210
28209.74
28192.41
25487
25487.36
25471.89
1~26aa


54
28067
28066.54
28049.28
25364
25364.22
25348.84
1~26aa


55
28127
28126.68
28109.39
25424
25424.36
25408.95
1~26aa


56
28243
28242.82
28225.44
25458
25458.37
25442.9
1~26aa


57
28024
28024.46
28007.22
25322
25322.13
25306.78
1~26aa


58
28304
28303.9
28286.47
25458
25458.37
25442.9
1~26aa


59
28044
28043.5
28026.27
25341
25341.18
25325.82
1~26aa


60
28303
28302.96
28285.53
25491
25491.44
25475.94
1~26aa


61
28161
28160.99
28143.65
25513
25512.82
25497.28
1~25aa


62
28355
28354.99
28337.54
25515
25515.42
25499.92
1~26aa


63
28327
28326.94
28309.51
25515
25515.42
25499.92
1~26aa


64
28051
28050.54
28033.28
25348
25348.21
25332.83
1~26aa


65
28327
28326.94
28309.51
25515
25515.42
25499.92
1~26aa


66
28329
28329.04
28311.58
25518
25517.52
25502
1~26aa


67
28299
28298.88
28281.48
25487
25487.36
25471.89
1~26aa


68
28053
28052.51
28035.26
25350
25350.19
25334.81
1~26aa
















TABLE 13





Mass data of GES protein



















Full-length GES protein



Full-length GES protein
(containing disulfide bond)















Average


Average





molecular
Monoisotopic

molecular
Monoisotopic


Subtypes
Da
weight
mass
Da
weight
mass





1
31154
31154.48
31134.97
31152
31152.46
31132.95


2
31212
31211.53
31191.99
31210
31209.51
31189.97


3
31123
31123.45
31104.03
31121
31121.43
31102.01


4
31153
31153.48
31134.04
31151
31151.46
31132.02


5
31185
31184.50
31164.98
31182
31182.48
31162.96


6
31184
31183.56
31164.03
31182
31181.54
31162.01


7
31154
31153.54
31134.02
31152
31151.52
31132.00


8
31197
31196.56
31177.01
31195
31194.54
31174.99


9
31185
31184.50
31164.98
31182
31182.48
31162.96


10
31128
31128.40
31108.91
31126
31126.38
31106.89


11
31169
31168.50
31148.98
31166
31166.48
31146.96


12
31138
31138.48
31118.97
31136
31136.46
31116.95


13
31211
31210.59
31191.04
31209
31208.57
31189.02


14
31199
31198.53
31178.99
31197
31196.51
31176.97


15
31174
31174.47
31154.96
31172
31172.45
31152.94


16
31185
31185.49
31165.96
31183
31183.47
31163.94


17
31168
31167.56
31148.03
31166
31165.54
31146.01


18
31199
31198.53
31178.99
31197
31196.51
31176.97


19
31183
31182.53
31163.00
31181
31180.51
31160.98


20
31199
31198.53
31178.99
31197
31196.51
31176.97


21
31150
31150.49
31130.99
31148
31148.47
31128.97


22
31150
31150.47
31131.02
31148
31148.45
31129.00


23
31154
31154.48
31134.97
31152
31152.46
31132.95


24
31154
31154.42
31134.98
31152
31152.40
31132.96


25
31186
31186.48
31166.98
31184
31184.46
31164.96


26
31169
31168.50
31148.98
31166
31166.48
31146.96


27
31216
31215.52
31195.98
31214
31213.50
31193.96


28
31184
31183.52
31163.99
31182
31181.50
31161.97


29
31158
31158.47
31138.96
31156
31156.45
31136.94


30
31131
31131.46
31111.88
31129
31129.44
31109.86


31
31155
31154.52
31135.00
31153
31152.50
31132.98


32
31233
31233.48
31214.02
31231
31231.46
31212.00


33
31154
31153.54
31134.02
31152
31151.52
31132.00


34
31169
31169.49
31149.98
31167
31167.47
31147.96


35
31165
31164.50
31145.04
31162
31162.48
31143.02


36
31184
31183.56
31164.03
31182
31181.54
31162.01


37
31188
31188.49
31168.97
31186
31186.47
31166.95


38
31140
31139.51
31119.99
31137
31137.49
31117.97


39
31112
31112.44
31092.95
31110
31110.42
31090.93


40
31213
31212.56
31193.01
31211
31210.54
31190.99


41
31264
31264.45
31244.98
31262
31262.43
31242.96


42
31598
31597.98
31578.21
31596
31595.96
31576.19


43
31201
31200.50
31180.96
31198
31198.48
31178.94














Active protein



Active protein
(containing disulfide bond)















Average


Average





molecular
Monoisotopic

molecular
Monoisotopic


Subtypes
Da
weight
mass
Da
weight
mass





1
29217
29217.14
29198.92
29215
29215.12
29196.90


2
29274
29274.19
29255.94
29272
29272.17
29253.92


3
29186
29186.11
29167.97
29184
29184.09
29165.95


4
29216
29216.14
29197.99
29214
29214.12
29195.97


5
29247
29247.17
29228.93
29245
29245.15
29226.91


6
29246
29246.23
29227.98
29244
29244.21
29225.96


7
29216
29216.20
29197.97
29214
29214.18
29195.95


8
29259
29259.22
29240.96
29257
29257.20
29238.94


9
29247
29247.17
29228.93
29245
29245.15
29226.91


10
29203
29203.12
29184.90
29201
29201.10
29182.88


11
29231
29231.17
29212.93
29229
29229.15
29210.91


12
29201
29201.14
29182.92
29199
29199.12
29180.90


13
29273
29273.25
29254.99
29271
29271.23
29252.97


14
29261
29261.20
29242.94
29259
29259.18
29240.92


15
29237
29237.13
29218.90
29235
29235.11
29216.88


16
29248
29248.15
29229.91
29246
29246.13
29227.89


17
29230
29230.23
29211.98
29228
29228.21
29209.96


18
29261
29261.20
29242.94
29259
29259.18
29240.92


19
29231
29231.17
29212.93
29229
29229.15
29210.91


20
29247
29247.17
29228.93
29245
29245.15
29226.91


21
29213
29213.15
29194.94
29211
29211.13
29192.92


22
29213
29213.14
29194.97
29211
29211.12
29192.95


23
29217
29217.14
29198.92
29215
29215.12
29196.90


24
29217
29217.08
29198.93
29215
29215.06
29196.91


25
29275
29275.18
29256.93
29273
29273.16
29254.91


26
29217
29217.14
29198.92
29215
29215.12
29196.90


27
29278
29278.18
29259.93
29276
29276.16
29257.91


28
29246
29246.18
29227.94
29244
29244.16
29225.92


29
29221
29221.13
29202.91
29219
29219.11
29200.89


30
29194
29194.12
29175.83
29192
29192.10
29173.81


31
29217
29217.19
29198.95
29215
29215.17
29196.93


32
29338
29338.23
29320.02
29336
29336.21
29318.00


33
29216
29216.20
29197.97
29214
29214.18
29195.95


34
29232
29232.16
29213.93
29230
29230.14
29211.91


35
29227
29227.16
29208.99
29225
29225.14
29206.97


36
29246
29246.23
29227.98
29244
29244.21
29225.96


37
29251
29251.16
29232.92
29249
29249.14
29230.90


38
29202
29202.17
29183.94
29200
29200.15
29181.92


39
29175
29175.10
29156.90
29173
29173.08
29154.88


40
29261
29261.20
29242.94
29259
29259.18
29240.92


41
29369
29369.20
29350.98
29367
29367.18
29348.96


42
29661
29660.65
29642.16
29659
29658.63
29640.14


43
29237
29237.13
29218.90
29235
29235.11
29216.88









Example 8: Genotype Identification and Protein Identification of MBL Proteins and GES Derived from Clinical Strains

In order to identify clinical strain-derived NDM, IMP and VIM (MBL proteins) and GES (Class A carbapenem protein), a strain confirmed as positive for CRE (Carbapenem-Resistant Enterobacteriaceae) was collected. The collected strain was genotyped for each gene using the PCR method.


The strain whose genotype was confirmed was cultured using LB liquid medium, and whether MBL proteins (NDM, IMP and VIM) and GES protein were expressed was analyzed by SDS-PAGE gel analysis (FIGS. 2A, 2B, 2C, 2D and 2E).


The clinical strain-derived MBL proteins and GES protein were digested by the in-gel digestion method and identified by the Bottom-Up method using the Q-Exactive HF-X plus system. It was confirmed that, for NDM, the sequence coverage for the identified peptides was 61.11% (165/270) in the full-length protein sequence and 65.74% (165/251) in the active form from which the N-terminus has been removed. It was confirmed that, for IMP and VIM, the sequence coverages for the identified peptides were 22.76% (56/246) and 44.74% (119/266), respectively, in the full-length protein sequences, and 24.56% (56/228) and 49.58% (119/240), respectively, in the active forms from which the N-terminus has been removed. In addition, it was confirmed that, for GES, the sequence coverage for the identified peptides were 67.25% (193/287) in the full-length amino acid sequence, and 71.75% (193/269) in the active protein sequence.


Although the present invention has been described in detail with reference to the specific features, it will be apparent to those skilled in the art that this description is only of a preferred embodiment thereof, and does not limit the scope of the present invention. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereto.

Claims
  • 1. A method for detecting in a biological sample a pathogenic strain having resistance to carbapenem antibiotics, comprising: (a) isolating a protein expressed by a pathogenic strain in a biological sample isolated from a subject; and(b) performing top-down mass spectrometry on the isolated protein,wherein it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when a protein having the same mass as Klebsiella pneumoniae carbapenemase (KPC) or OXA carbapenemase from which 21 or 22 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry or when a protein having the same mass as at least one carbapenemase selected from the group consisting of New Delhi Metallo-beta-lactamase NDM), imipenemase (IMP), Verona integron-borne metallo-β-lactamase (VIM) and Guiana extended spectrum β-lactamase (GES), from which 18, 19, 20, 21 or 26 amino acid residues at the N-terminus have been removed, is detected as a result of the mass spectrometry.
  • 2-8. (canceled)
  • 9. The method of claim 1, wherein the carbapenemase is a KPC protein, and it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when a protein having the same mass as the KPC protein from which 21 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry.
  • 10. The method of claim 1, wherein the carbapenemase is an OXA protein, and it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when a protein having the same mass as the OXA protein from which 22 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry.
  • 11. The method of claim 1, wherein the carbapenemase is an NDM protein, and it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when a protein having the same mass as the NDM protein from which 19 or 20 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry.
  • 12. The method of claim 1, wherein the carbapenemase is an IMP protein, and it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when a protein having the same mass as the IMP protein from which 18 to 21 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry.
  • 13. The method of claim 1, wherein the carbapenemase is a VIM protein, and it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when a protein having the same mass as the VIM protein from which 25 or 26 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry.
  • 14. The method of claim 1, wherein the carbapenemase is a GES protein, and it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when a protein having the same mass as the GES protein from which 18 amino acid residues at the N-terminus have been removed is detected as a result of the mass spectrometry.
  • 15. The method of claim 1, wherein it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when one or more mass values (m/z×z) selected from the group consisting of 28720, 28746, 28737, 28780, 28678, 28728, 28704, 28806, 28736, 28738, 28688, 28562, 28877, 28676, 28686, 28733, 28690, 28557, 28718, 28963, 28716, 28588, 29105, 28795, 28825, 28769, 29631, 28760, 28656, 28776, 28975, 29086, 28748, 30433, 28730 and values within the ranges of these values±5 are detected as a result of the mass spectrometry.
  • 16. The method of claim 15, wherein the pathogenic strain having resistance to carbapenem antibiotics is a KPC protein-producing strain.
  • 17. The method of claim 15, wherein the mass values (m/z×z) additionally include a mass value that increased by 16 from each mass value.
  • 18. The method of claim 15 or 17, wherein the mass values (m/z×z) additionally include a mass value that decreased by 2 from each mass value.
  • 19. The method of claim 1, wherein it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when one or more mass values (m/z×z) selected from the group consisting of 28147, 28098, 28117, 27679, 28172, 28158, 28282, 28032, 28048, 28252, 27673, 28190, 28260, 27718, 28126, 27900, 27653, 28002, 28175, 28149, 27877, 28161, 27955, 28151, 28131, 28215, 28191, 27978 and values within the ranges of these values±5 are detected as a result of the mass spectrometry.
  • 20. The method of claim 19, wherein the pathogenic strain having resistance to carbapenem antibiotics is an OXA protein-producing strain.
  • 21. The method of claim 19, wherein the mass values (m/z×z) additionally include a mass value that increased by 16, 32 or 48 from each mass value.
  • 22. The method of claim 1, wherein it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when one or more mass values (m/z×z) selected from the group consisting of 26439, 26413, 26438, 26421, 26435, 26467, 26420, 26363, 26587, 26407, 26479, 26381, 26449, 26434, 27043, 26448, 26416, 26465, 26453, 26455, 26466, 26510, 26484, 26509, 26492, 26506, 26538, 26491, 26434, 26658, 26478, 26550, 26452, 26520, 26505, 27114, 26519, 26487, 26536, 26524, 26526, 26537 and values within the ranges of these values±5 are detected as a result of the mass spectrometry.
  • 23. The method of claim 22, wherein the pathogenic strain having resistance to carbapenem antibiotics is an NDM protein-producing strain.
  • 24. The method of claim 22, wherein the mass values (m/z×z) additionally include a mass value that increased by 16 or 32 from each mass value.
  • 25. The method of claim 22, wherein the mass values (m/z×z) additionally include a mass value that increased by 14, 28 or 42 from each mass value.
  • 26. The method of claim 22, wherein the mass values (m/z×z) additionally include a mass value that increased by 238 from each mass value.
  • 27. The method of claim 25, wherein the mass values (m/z×z) additionally include a mass value that increased by 238 from each mass value.
  • 28. The method of claim 1, wherein it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when one or more mass values (m/z×z) selected from the group consisting of 25113, 25151, 25011, 25080, 25020, 25083, 25025, 24952, 25192, 25161, 24973, 24988, 25078, 25365, 25268, 25006, 25186, 24994, 25043, 24945, 25208, 25000, 24980, 25128, 25216, 24983, 25115, 25112, 25116, 25414, 25205, 25041, 25139, 25254, 25050, 24910, 25101, 25021, 25212, 25073, 24961, 25105, 24831, 25353, 25234, 24995, 25071, 25094, 25351, 25174, 25156, 25199, 25129, 24981, 25018, 25335, 25232, 24872, 24982, 25204, 24796, 25259, 25214, 25085, 25135, 25131, 25141, 25145, 25172, 25126, 24990 and values within the ranges of these values±5 are detected as a result of the mass spectrometry.
  • 29. The method of claim 28, wherein the pathogenic strain having resistance to carbapenem antibiotics is an IMP protein-producing strain.
  • 30. The method of claim 1, wherein it is determined that the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when one or more mass values (m/z×z) selected from the group consisting of 25322, 25515, 25488, 25391, 25339, 25516, 25464, 25485, 25527, 25531, 25414, 25455, 25421, 25499, 25542, 25129, 25405, 25534, 25446, 25472, 25444, 25298, 25338, 25367, 25355, 25508, 25264, 25306, 25336, 25352, 25543, 25407, 25268, 25419, 25514, 25501, 25487, 25445, 25341, 25364, 25424, 25458, 25491, 25513, 25348, 25518, 25350 and values within the ranges of these values±5 are detected as a result of the mass spectrometry.
  • 31. The method of claim 30, wherein the pathogenic strain having resistance to carbapenem antibiotics is a VIM protein-producing strain.
  • 32. The method of claim 1, wherein the pathogenic strain having resistance to carbapenem antibiotics is present in the biological sample, when one or more mass values (m/z×z) selected from the group consisting of 29217, 29274, 29186, 29216, 29247, 29246, 29259, 29203, 29231, 29201, 29273, 29261, 29237, 29248, 29230, 29213, 29275, 29278, 29221, 29194, 29338, 29232, 29227, 29251, 29202, 29175, 29369, 29661 and values within the ranges of these values±5 are detected as a result of the mass spectrometry.
  • 33. The method of claim 32, wherein the pathogenic strain having resistance to carbapenem antibiotics is a GES protein-producing strain.
  • 34. The method of claim 32, wherein the mass values (m/z×z) additionally include a mass value that increased by 16 or 32 from each mass value.
  • 35. The method of claim 32, wherein the mass values (m/z×z) additionally include a mass value that decreased by 2 from each mass value.
Priority Claims (2)
Number Date Country Kind
10-2019-0177683 Dec 2019 KR national
10-2020-0012108 Jan 2020 KR national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. National Stage Application of International Patent Application no. PCT/KR2020/019464, filed Dec. 30, 2020, which claims the benefit of priority of Korean Patent Application no. 10-2019-0177683 filed on Dec. 30, 2019, and Korean Patent Application no. 10-2020-0012108 filed on Jan. 31, 2020.

PCT Information
Filing Document Filing Date Country Kind
PCT/KR20/19464 12/30/2020 WO