Direct drive unit removal system and associated methods

Information

  • Patent Grant
  • 10982596
  • Patent Number
    10,982,596
  • Date Filed
    Thursday, January 21, 2021
    3 years ago
  • Date Issued
    Tuesday, April 20, 2021
    3 years ago
Abstract
Described herein are embodiments of systems and methods for the removal of a direct drive unit (DDU) housed in an enclosure, such as a direct drive turbine (DDT) connected to a gearbox for driving a driveshaft connected to a pump for use in a hydraulic fracturing operations.
Description
BACKGROUND OF THE DISCLOSURE

This disclosure relates to embodiments of systems and methods for the removal and/or positioning of a direct drive unit housed in an enclosure, such as a direct drive turbine (DDT) when connected to a gearbox for driving a driveshaft, which, in turn, may be connected to a pump such as for use in a hydraulic fracturing system.


Traditional fracturing pumping fleets have had fuel supplied from a single fuel source. In such units, when a unit runs low on fuel (for example diesel), that unit is shutdown while another stand by unit is brought in, refueled, and then put into service. Some inefficiencies included in this process are that the unit once low on primary fuel must be stopped, refueled while another unit is simultaneously being introduced into its place to make up for the loss of the pumping power that the unit provides. This may affect the pumping performance during a section as well as requiring human intervention to perform the refueling, lining up suction and discharge valves. This may require multiple personnel to relay back the information so the process is performed in the correct series of steps. Using a single fuel source also limits the ability for the fracturing fleet to make it continuously through a section when low on fuel which results in delays in pumping completion.


In addition, in cases where the unit needs to be taken offline for maintenance or replacement, significant disassembly is required to remove the unit from its enclosure and to install a replacement unit, potentially resulting in excessive downtime. In some cases, the entire trailer and enclosure need to be removed from the site so a new, fully equipped trailer may be moved into place.


Accordingly, it may be seen that a need exists for more efficient ways of accessing the drive units for maintenance purposes and/or replacement with minimum disruption to the system operations and the surrounding equipment. The present disclosure addresses these and other related and unrelated problems in the art.


SUMMARY OF THE DISCLOSURE

According to one embodiment of the disclosure, a method of removing a direct drive unit (DDU) housed in an enclosure. The DDU includes a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power hydraulic fracturing operations. The method may include accessing the enclosure. The enclosure contains air inlet ducting connected to the turbine engine and air exhaust ducting connected to the turbine engine. The method may further include disconnecting the turbine engine from the air inlet ducting, disconnecting the turbine engine from at least one fuel line, disconnecting the gearbox from the driveshaft, disconnecting the turbine engine from an at least one exhaust flange connected to the air exhaust ducting, and operating a DDU positioner assembly to position the DDU for withdrawal from the enclosure, and removing the DDU from the enclosure.


According to another embodiment of the disclosure, a direct drive unit (DDU) positioner assembly is disclosed for positioning a DDU housed in an enclosure for removal from the enclosure. The DDU includes a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power hydraulic fracturing operations. The DDU positioner assembly may include a plurality of longitudinal rails extending in a longitudinal direction along the central axis of the DDU and a plurality of lateral rails extending in a lateral direction transverse to the longitudinal direction. The DDU positioner assembly may further include a platform slidably connected to the plurality of lateral rails. The plurality of longitudinal rails may be mounted on the platform and the DDU may be slidably connected to the longitudinal rails. The DDU may be movable in the longitudinal direction along the longitudinal rails and the platform may be movable in the lateral direction along the lateral rails.


According to yet another embodiment of the disclosure, a direct drive unit (DDU) positioner assembly is disclosed for positioning a DDU housed in an enclosure for removal from the enclosure. The DDU includes a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power, hydraulic fracturing operations. The DDU positioner assembly may include a platform connected to a support of the gearbox and mounted on an enclosure base of the enclosure. The enclosure base may have a plurality of lubrication grooves for facilitating sliding movement of the platform relative to the enclosure base. The DDU positioner assembly may include a lubricator to convey lubricant to the lubrication grooves. The platform may be fixedly attached to the enclosure base by one or more fasteners during operation of the DDU and in slidable engagement with the enclosure base upon removal of the one or more fasteners.


Those skilled in the art will appreciate the benefits of various additional embodiments reading the following detailed description of the embodiments with reference to the below-listed drawing figures. It is within the scope of the present disclosure that the above-discussed aspects be provided both individually and in various combinations.





BRIEF DESCRIPTION OF THE DRAWINGS

According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings may be expanded or reduced to more clearly illustrate the embodiments of the disclosure.



FIG. 1A is a schematic diagram of a pumping unit according to an embodiment of the disclosure.



FIG. 1B is a schematic diagram of a layout of a fluid pumping system according to an embodiment of the disclosure.



FIG. 2 is a perspective view of an enclosure for housing a direct drive unit (DDU) according to an embodiment of the disclosure.



FIG. 3 is a top plan view of the enclosure housing the DDU according to an embodiment of the disclosure.



FIG. 4 is a side elevation view of the DDU mounted on a DDU positioner assembly according to a first embodiment of the disclosure.



FIG. 5 is an end elevation view of the DDU of FIG. 4 according to a first embodiment of the disclosure.



FIG. 6A is a perspective view of the DDU of FIG. 4 in a first position according to a first embodiment of the disclosure.



FIG. 6B is a perspective view of the DDU of FIG. 6A moved to a second position according to a first embodiment of the disclosure.



FIG. 6C is a perspective view of the DDU of FIG. 6B moved to a third position according to a first embodiment of the disclosure.



FIG. 7 is a side elevation view of the DDU mounted on a DDU positioner assembly according to a second embodiment of the disclosure.



FIG. 8A is a perspective view of the DDU of FIG. 7 in a first position according to a second embodiment of the disclosure.



FIG. 8B is a perspective view of the DDU of FIG. 8A moved to a second position according to a second embodiment of the disclosure.



FIG. 8C is a perspective view of the DDU of FIG. 8B moved to a third position according to a second embodiment of the disclosure.



FIG. 9 is an enlarged detail of a portion of the DDU positioner assembly according to a second embodiment of the disclosure.



FIG. 10 is a detail of a portion of the DDU positioner assembly according to a second embodiment.



FIG. 11 is a side elevation view of the DDU mounted on a DDU positioner assembly according to a third embodiment of the disclosure.



FIG. 12A is a perspective view of the DDU of FIG. 11 in a first position according to a third embodiment of the disclosure.



FIG. 12B is a perspective view of the DDU of FIG. 12A moved to a second position according to a third embodiment of the disclosure.



FIG. 12C is a perspective view of the DDU of FIG. 12B moved to a third position according to a third embodiment of the disclosure.





Corresponding parts are designated by corresponding reference numbers throughout the drawings.


DETAILED DESCRIPTION

Generally, this disclosure is directed to a direct drive unit (DDU) positioner assembly, positioning system, removal system, and/or associated mechanisms that will allow a DDU including a gearbox and a turbine engine connected to the gearbox to be detached from surrounding equipment and removed through the side of an enclosure housing the direct drive unit. The system will allow for inspections, maintenance, or even a complete exchange of the direct drive unit with another if necessary.



FIG. 1A illustrates a schematic view of a pumping unit 11 for use in a high-pressure, high power, fluid pumping system 13 (FIG. 1B) for use in hydraulic fracturing operations according to one embodiment of the disclosure. FIG. 1B shows a typical pad layout of the pumping units 11 (indicated as FP1, FP2, FP3, FP4, FP5, FP6, FP7, FP8) with the pumping units all operatively connected to a manifold M that is operatively connected to a wellhead W. By way of an example, the system 13 is a hydraulic fracturing application that may be sized to achieve a maximum rated horsepower of 24,000 HP for the pumping system 13, including a quantity of eight (8) 3000 horsepower (HP) pumping units 11 that may be used in one embodiment of the disclosure. It will be understood that the fluid pumping system 13 may include associated service equipment such as hoses, connections, and assemblies, among other devices and tools. As shown in FIG. 1, each of the pumping units 11 are mounted on a trailer 15 for transport and positioning at the jobsite. Each pumping unit 11 includes an enclosure 21 that houses a direct drive unit (DDU) 23 including a gas turbine engine 25 operatively connected to a gearbox 27. The pumping unit 11 has a driveshaft 31 operatively connected to the gearbox 27. The pumping unit 11 includes a high-pressure, high-power, reciprocating positive displacement pump 33 that is operatively connected to the DDU 23 via the driveshaft 31. In one embodiment, the pumping unit 11 is mounted on the trailer 15 adjacent the DDU 23. The trailer 15 includes other associated components such as a turbine exhaust duct 35 operatively connected to the gas turbine engine 25, air intake duct 37 operatively connected to the gas turbine, and other associated equipment hoses, connections, etc. to facilitate operation of the fluid pumping unit 11.


In the illustrated embodiment, the gas turbine engine 25 is a Vericor Model TF50F bi-fuel turbine; however, the direct drive unit 23 may include other gas turbines or suitable drive units, systems, and/or mechanisms suitable for use as a hydraulic fracturing pump drive without departing from the disclosure. The gas turbine engine 25 is cantilever mounted to the gearbox 27 with the gearbox supported by the floor 41 of the enclosure 21. The gearbox 27 may be a reduction helical gearbox that has a constant running power rating of 5500 SHP and intermittent power output of 5850 SHP, or other suitable gearbox. It should also be noted that, while the disclosure primarily describes the systems and mechanisms for use with direct drive units 23 to operate fracturing pumping units 33, the disclosed systems and mechanisms may also be directed to other equipment within the well stimulation industry such as, for example, blenders, cementing units, power generators and related equipment, without departing from the scope of the disclosure.



FIG. 2 illustrates the enclosure 21 that houses the direct drive unit 23 in an interior space 46 of the enclosure. In one embodiment, the enclosure has access doors 45 for removal of the DDU 23 from the enclosure and/or other components within the enclosure. The enclosure 21 provides sound attenuation of the DDU 23 during operation.


As shown in FIG. 3, the direct drive unit 23 and the enclosure 21 has a longitudinal axis L1 and a lateral axis L2 transverse to the longitudinal axis. FIG. 3 illustrates a top view of the enclosure 21 with the DDU 23 shown attached to the driveshaft 31 that extends through an opening 48 in a first longitudinal end 47 of the enclosure. An air exhaust assembly 35 extends through a second longitudinal end 49 of the enclosure. The DDU 23 has a central axis CL extending in the longitudinal direction L1 that extends through the centerline of the unit and is aligned with the centerline of the driveshaft 31. The gearbox 27 includes an outlet flange 50 that is connected to the driveshaft 31. The gas turbine engine 25 has two air inlet ports 51, 53 on a respective lateral side of the central axis CL and an exhaust duct flange 54 that connects the gas turbine engine to the air exhaust assembly 35 at the longitudinal end 49 of the enclosure 21. In one embodiment, the access doors 45 are mounted on a first lateral side 55 of the enclosure 21, but the enclosure may have additional access doors on a second lateral side 57 of the enclosure, or the access doors may be positioned only on the second lateral side without departing from the scope of this disclosure. The gas turbine engine 25 may include polymer expansion joints 61, 63 connected to air inlet ports 51, 53, to facilitate the removal of the gas turbine engine from the enclosure 21. The gas turbine engine 25 may include various fuel lines, communication lines, hydraulic and pneumatic connections, and other connections or accessories needed for operation of the gas turbine engine without departing from the disclosure. Such connections may utilize quick disconnect fittings and check valves to facilitate disconnection of the gas turbine engine 25 during removal of the DDU 23 from the enclosure 21. Further, such connections such as fuel lines and hydraulic lines may run to a single bulkhead (not shown) within or near the enclosure to allow for quick disconnection by locating these connections in a common location.



FIG. 4 is a side elevation view of the DDU 23 as viewed from the lateral side 55 of the enclosure 21, with the DDU being mounted on a DDU positioner assembly or DDU positioning system 101 (FIGS. 4-6C) for positioning the DDU for withdrawal or removal from the enclosure through the access doors 45. In one embodiment, the DDU positioner assembly 101 comprises a platform 103 slidably mounted to overlie two lateral rails 105, 107 mounted to overlie the floor 41 of the enclosure 21 and extending laterally across the enclosure generally between the lateral sides 55, 57. The DDU positioner assembly 101 comprises two longitudinal rails 109, 111 mounted to overlie the platform 103 and extending in the longitudinal direction L1. The DDU 23 is slidably mounted on the longitudinal rails 109, 111 for positioning the DDU in the longitudinal direction L1. In one embodiment, the DDU positioner assembly 101 includes lateral guide rollers 115, 117 mounted on a respective lateral rail 105, 107, and longitudinal guide rollers 121, 123 mounted on a respective longitudinal rail 109, 111. The platform 103 is connected to the lateral guide rollers 115, 117 to allow slidable movement and positioning of the DDU 23 mounted on the platform in the lateral direction L2 via the lateral rails 105, 107. The longitudinal guide rollers 121, 123 are connected to a mounting base 127 of the gearbox 27 to allow slidable movement and positioning of the DDU 23 in the longitudinal direction L1 via the longitudinal rails 109, 111. In one embodiment, the DDU positioner assembly 101 includes four lateral guide rollers 115, 117 and four longitudinal guide rollers 121, 123, but more or less than eight guide rollers may be provided without departing from the scope of the disclosure. Further, more or less than two longitudinal rails 109, 111, and more or less than two lateral rails 105, 107 may be provided without departing from the scope of the disclosure. In one embodiment, the guide rollers 115, 117, 121, 123 may be a caged ball type linear motion (LM) Guide, model number SPS20LR available from THK America Inc., or any similar make or model number without departing from the scope of the disclosure. The DDU positioner assembly 101 may be equipped with locking mechanisms 128 mounted on a respective guide roller 115, 117, 121, 123. The locking mechanisms 128 may be spring loaded and will default to the locked position to allow the DDU 23 to be secured in the operating position. The locking mechanism 128 may be otherwise located on the positioning system 101 without departing from the disclosure.


Exemplary loading calculations for sizing the guide rails 105, 107, 109, 111 are shown below and are based on the Vericor TF50F turbine parameters as follows: approximate turbine weight, 1475 lbs.; approximate fuel system weight, 85 lbs.; approximate gearbox weight, 4000 lbs.; for a total approximate weight of 5559 lbs. Various other parameters may be applicable based on the make, model, and size of the gas turbine engine 25.


Because of the arrangement the direct drive unit 23 including the gas turbine engine 25 cantilever mounted onto the gearbox 27 and extending in the longitudinal direction L1 from the gearbox, there is added load put onto the rear lateral guide rollers 115 and the rear longitudinal guide rollers 121, 123 (the guide rollers mounted closest to the gas turbine engine). Accordingly, an increased load rating may be applied to the rear guide rollers 115, 121, 123 if required. The calculation of the cantilever load and the reaction forces may be calculated with the formulas shown below, which may also be used for further design and implementation of the disclosed removal mechanisms.

Maximum Reaction at the fixed end may be expressed as: RA=qL.


where: RA=reaction force in A (N, lb), q=uniform distributed load (N/m, N/mm, lb/in), and


L=length of cantilever beam (m, mm, in).

Maximum Moment at the fixed end may be expressed as MA=−qL2/2
Maximum Deflection at the end may be expressed as δB=qL4/(8EI).


where: δB=maximum deflection in B (m, mm, in).


In one embodiment, the longitudinal guide rollers 121, 123 connected to the support structure 127 of the gearbox 27 are positioned between each pair of the lateral guide rollers 115, 117 to ensure equal weight distribution over the platform 103 and to avoid cantilever loading the platform. Different configurations of platforms, sliders, rails and mounts are contemplated and considered within the scope of the disclosure. The configurations of the DDU positioner assembly 101 may vary to suit a particular DDU 23 with various alternative combinations of makes, model, and sizes of the gas turbine engine 25 and the gearbox 27.


In one embodiment, the guide rails 105, 107, 109, 111 are made from a steel composition that has been mill finished and shot blasted to protect the rail from the high heat environment within the turbine enclosure 21 and ensure strength retention under the exposed temperatures. In one embodiment, the platform 103 is constructed out of a composite material; however, other materials are contemplated and considered within the scope of the disclosure, such as but not limited to, steel or stainless steel. The guide rails 105, 107, 109, 111, platform 103, and/or other components of the DDU positioner assembly 101 may be made of various other suitable materials without departing from the scope of the disclosure.



FIGS. 6A-6B illustrate an exemplary method of removing the direct drive unit 23 from the enclosure 21 utilizing the DDU positioner assembly 101. FIG. 6A shows the DDU 23 in a first/operating position for operation with the pump 33 of the pumping unit 11. The method includes accessing the enclosure 21 and disconnecting the gas turbine engine 25 from the air inlet ducting 37. The flanges 51, 53 may be disconnected from the air inlet ducting 37 and the expansion joints 61, 63 flexed to allow separation of the DDU 23 from the air inlet ducting. The gas turbine engine 25 may be disconnected from the air exhaust ducting 35 by disconnecting the exhaust duct flange 54 from the air exhaust ducting. Corresponding hoses, piping, wiring, and cabling including fuel lines, electrical lines, hydraulic lines, control lines or any other connection that is needed for operation of the gas turbine engine 25 may also be disconnected so that the gas turbine engine is free to move without damaging any of the operational connections needed for operation of the gas turbine engine. For example, the air bleed off valve ducting may be removed from the turbine engine 25 and secured at a location free of interference with movement of the turbine engine. Alternatively, some hoses, piping, wiring, etc. may include enough slack or flexibility so that the DDU 23 may be initially moved before complete disconnection of the connections from the gas turbine engine 25 are required for removal of the DDU from the enclosure 21. The gearbox 27 may be disconnected from the driveshaft 31 by disconnecting the outlet flange 50 from the driveshaft. In one embodiment, the driveshaft 31 may be a slip-fit driveshaft allowing the driveshaft to contract to facilitate disconnection from the DDU 23. In one embodiment, the driveshaft 31 may be a 390 Series, GWB Model 390.80 driveshaft available Dana Corporation, or other suitable driveshaft. The gearbox 27 may be disconnected from any other connections needed for operation of the DDU 23 to obtain freedom of movement of the gearbox without damaging any of the operating connections.


Once the gas turbine engine 25 is disconnected from the respective connections and the gearbox 27 is disconnected from the driveshaft 31, the DDU positioner assembly 101 is operated to position the direct drive unit 23 for withdrawal from the enclosure 21. As shown in FIG. 6B, the DDU 23 is positioned in a second position where the DDU is first moved in the longitudinal direction L1 in the direction of arrow A1 by sliding the DDU along the longitudinal rails 109, 111. In one embodiment, prior to initial movement of the DDU 23 in the longitudinal direction L1, the longitudinal locks 128 associated with the longitudinal guide rollers 121, 123 must be released to allow the movement of the DDU in the longitudinal direction. After the movement of the DDU 23 in the longitudinal direction L1 to the second position, the longitudinal locks 128 may be reengaged to lock the longitudinal guide rollers 121, 123 and prevent further or additional unwanted movement of the DDU 23 along the longitudinal rails 109, 111, and the lateral locks 128 associated with the lateral guide rollers 115, 117 may be disengaged to allow lateral movement of the DDU 23. Next, the platform 103 may be moved to a third position by moving in the lateral direction L2 in the direction of arrow A2 (FIG. 6C) by sliding movement of the lateral guide rollers 115, 117 along the lateral guide rails 105, 107. The DDU 23 is mounted to the platform 103 and moves with the platform in the lateral direction L2 to the third position of FIG. 6C. As shown in FIGS. 3 and 5, the lateral guide rails 105, 107 may extend to the access doors 45 in either side 55, 57 of the enclosure 21. In some embodiments, lateral guide rail extensions 107′ (FIG. 5) may be used to extend outside of the enclosure 21 to allow the platform 103 and DDU 23 to be slid out of the enclosure onto an adjacent supporting structure or vehicle (e.g., maintenance inspection platform or other suitable structure), or the platform 103 and DDU 23 may be accessed through the access doors 45 of the enclosure 21 by a lifting mechanism (e.g., a forklift, crane, or other suitable lifting mechanism) to fully remove the DDU from the enclosure. The various method steps described herein for the method of positioning or removing the DDU 23 may be otherwise performed in an alternative order or simultaneously, or more or less steps may be used without departing from the scope of the disclosure.



FIGS. 7-10 illustrates a second embodiment of a DDU positioner assembly or system 201 for positioning the direct drive unit 23 housed in the enclosure 21. In the illustrated embodiment, the DDU 23 includes a gas turbine engine 25 and a gearbox 27 identical to the first embodiment of the disclosure, but the DDU positioner assembly 201 may be used to position a DDU that is alternatively configured without departing from the disclosure. As such, like or similar reference numbers will be used to describe identical or similar features between the two embodiments.


In one embodiment, the DDU positioner assembly 201 includes a platform 203 that supports the gearbox 27 and has a top surface 205, a bottom surface 207, two sides 208, and two ends 210. The gearbox 27 is fixedly mounted to the top surface 205 of the platform 203. The platform 203 is slidably mounted on the base 41 of the enclosure 21 with the bottom surface 207 of the platform being in slidable engagement with the floor of the enclosure. In a first or operating position (FIGS. 7 and 8A) of the direct drive unit 23, the platform 203 is fixedly attached to the base 41 by a plurality of fasteners 211. Upon removal of the fasteners 211, the platform 203 is capable of slidable movement with respect to the base 41. The platform 203 is connected to the support structure 127 of the gearbox 27 so that the drive unit 23 moves with the platform. In one embodiment, the platform 203 has two lifting openings 215, 217 extending between respective sides 208 of the platform. As shown in FIG. 7, the lifting opening 215 towards the front of the gearbox 27 (closest to the drive shaft flange 50) is spaced a first distance D1 from a centerline CT of the gearbox and the lifting opening 217 towards the rear of the gearbox (closest to the gas turbine engine 25) is spaced a second distance from the centerline CT of the gearbox, with the distance D2 being greater than the distance D2. The rear lifting opening 217 is farther from the centerline CT of the gearbox 27 because of the cantilever mounted gas turbine engine 25 that shifts the center of gravity of the DDU 23 from the centerline CT of the gearbox in the longitudinal direction toward the gas turbine engine. The platform 203 may be otherwise configured and/or arranged without departing from the scope of the disclosure.


In one embodiment, the DDU positioner assembly 201 includes a lubricator or lubrication system 221 (FIG. 9) to convey lubricant (e.g., grease or other suitable lubricant) from a lubricant reservoir 244 to a location between the bottom surface 207 of the platform 201 and the base 41 of the enclosure. The DDU positioner assembly 201 includes a lubrication portion 225 (FIG. 10) of the base 41 below the platform 203. As shown in FIG. 10, the portion 225 of the base 41 includes a plurality of lubrication grooves 227. The lubrication grooves 227 are in fluid communication with the lubricator 221 so that the lubricator provides lubricant to the grooves to facilitate sliding engagement between the platform 203 and the portion 225 of the base 41. The lubricator 221 includes a source of lubricant 244, tubing 243, and other required components (e.g., pump, controls, etc.) for delivering the lubricant to the lubrication portion 225 at a sufficiently high pressure for lubricant to fill the grooves 227 of the lubrication portion 225. In one embodiment, the lubricator 221 may be an automatic lubricator such as a model TLMP lubricator available from SKF Corporation, or the lubricator may be any other suitable lubricator including other automatic lubricators or manual lubricators without departing from the scope of the disclosure. In one embodiment, the lubrication portion 225 of the base 41 is an integral portion with the base or the floor of the enclosure 21, but the lubrication portion 225 may be a separate pad or component that is mounted between the base and the platform without departing from the disclosure. The lubricator 221 may be mounted inside the enclosure 21 or at least partially outside the enclosure without departing from the scope of the disclosure.


In one embodiment, the DDU positioner assembly 201 includes drive fasteners 241 mounted at one end 210 of the platform 203. In the illustrated embodiment, the drive fasteners 241 include a bracket 245 mounted to the floor 41 of the enclosure 21 and an impact screw 247 operatively connected to the bracket and the platform 203. The drive fasteners 241 may have other components and be otherwise arranged without departing from the disclosure. Further, more or less than two drive fasteners 241 may be provided without departing from the disclosure.



FIGS. 8A-9 illustrate an exemplary method of removing the DDU 23 from the enclosure 21 utilizing the DDU positioner assembly 201 of the second embodiment. The method is similar to the method of the first embodiment, in that the gas turbine engine 25 is disconnected from the air inlet ducting 37, the air exhaust ducting 35, and from other corresponding connections and components in a similar manner as discussed above for the first embodiment so that the gas turbine engine is free to move without damaging any of the operational connections and components needed for operation of the gas turbine engine. Further, the gearbox 27 is disconnected from the driveshaft 31 in a similar manner as the first embodiment, so that the DDU 23 has clearance for movement in the longitudinal direction L1 without interference with the driveshaft.



FIG. 8A shows the direct drive unit 23 in the first/operating position. Once the gas turbine engine 25 is disconnected from the respective components and connections and the gearbox 27 is disconnected from the driveshaft 31 and any other connections, the DDU positioner assembly 201 is operated to position the DDU 23 for withdrawal from the enclosure 21. First, the fasteners 211 fixedly attaching the platform 203 to the base 41 are removed. The lubricator 221 is operated to convey lubricant to the lubrication grooves 227 of the lubrication portion 225 of the base 41. After a sufficient amount of lubrication is located between the platform 203 and the lubrication portion 225 of the base 41, the drive fasteners 241 may be operated to move the platform 203 in the longitudinal direction L1 to a second position (FIG. 8B). As the impact screws 247 of the drive fasteners 241 are turned, the platform 203 is slid in the longitudinal direction L1 in the direction of arrow A3 (FIG. 8B). The lubricant provided in the lubrication grooves 227 and between the lubrication portion 225 and the bottom surface 207 of the platform reduces the sliding friction and allows the rotation of the impact screws 247 in the bracket 245 to advance the platform in the direction of arrow A3. The platform 203 is moved in the direction of arrow A3 a sufficient amount to allow access to the lifting openings 215, 217 by a lifting mechanism (e.g., forklift) 261 (FIG. 8C). The lifting mechanism 261 may include a forklift or other lifting mechanism that may access the interior 46 of the enclosure through the enclosure access doors 45. The lifting mechanism 261 is inserted into the lifting openings 215, 217 of the platform 203, and the DDU 23 is lifted and/or slid in the direction of arrow A4. The lifting mechanism 261 may move the DDU 23 to the third position (FIG. 8C), or transfer the DDU onto an adjacent supporting structure or vehicle (e.g., maintenance inspection platform or other suitable structure), or completely remove the platform 203 and DDU 23 from the enclosure. The various method steps described herein for the method of positioning or removing the DDU 23 by operating the DDU positioner assembly 201 may be otherwise performed in an alternative order or simultaneously, or more or less steps may be used without departing from the scope of the disclosure.



FIGS. 11-12C illustrate a third embodiment of a DDU positioner assembly or system 301 for positioning the direct drive unit 23 housed in the enclosure 21. In the illustrated embodiment, the DDU 23 includes a gas turbine engine 25 and a gearbox 27 identical to the first and second embodiments of the disclosure, but the DDU positioner assembly 301 may be used to position a DDU that is alternatively configured without departing from the disclosure as will be understood by those skilled in the art. The DDU positioner assembly 301 is generally similar to the DDU positioner assembly 201 of the second embodiment, except the drive fasteners 241 have been removed and an actuator 341 is added to the DDU positioner assembly of the third embodiment. As such, like or similar reference numbers will be used to describe identical or similar features between the second and third embodiments.


As shown in FIG. 11, the DDU positioner assembly 301 includes the actuator 341 that has a first end 345 connected to the base 41 of the enclosure 21 and a second end 347 connected to the end 210 of the platform 203. In one embodiment, the actuator 341 is a hydraulic cylinder that has a piston rod 351 that is extendible from a cylinder body 349 upon operation of the actuator. The actuator 341 may be controlled by a manual control valve or the actuator may be configured for remote operation by connection to corresponding automated control valves. In the illustrated embodiment, one actuator 341 is shown, but the DDU positioner assembly 301 may include more than one actuator without departing from the scope of the disclosure. Further, the actuator 341 may be otherwise located for attachment to the platform 203 without departing from the scope of the disclosure.



FIGS. 12A-12C illustrate an exemplary method of removing the DDU 23 from the enclosure 21 utilizing the DDU positioner assembly 301 of the second embodiment. The method is similar to the method of the utilizing the DDU positioner assembly 201 of the second embodiment, in that the gas turbine engine 25 is disconnected from the air inlet ducting 37, the air exhaust ducting 35, and from other corresponding connections and components in a similar manner as discussed above for the first embodiment so that the gas turbine engine is free to move without damaging any of the operational connections and components needed for operation of the gas turbine engine. Further, the gearbox 27 is disconnected from the driveshaft 31 in a similar manner as the first embodiment, so that the DDU 23 has clearance for movement in the longitudinal direction L1 without interference with the driveshaft. Also, the DDU positioner assembly 301 of the third embodiment includes the lubricator 221 (FIG. 9) for providing lubrication to lubrication grooves 227 of the lubrication portion 225 of the base 41 to facilitate sliding of the platform 203 in the longitudinal direction L1, so that the DDU positioner assembly of the third embodiment operates in a similar manner as the DDU positioner assembly 201 of the second embodiment.



FIG. 12A shows the direct drive unit 23 in the first/operating position. Once the gas turbine engine 25 is disconnected from the respective components and connections, and the gearbox 27 is disconnected from the driveshaft 31 and any other connections, the DDU positioner assembly 301 is operated to position the DDU 23 for withdrawal from the enclosure 21. First, the fasteners 211 fixedly attaching the platform 203 to the base 41 are removed. The lubricator 221 is operated to convey lubricant to the lubrication grooves 227 of the lubrication portion 225 of the base 41. After a sufficient amount of lubrication is located between the platform 203 and the lubrication portion 225 of the base 41, the actuator 341 may be operated to move the platform 203 in the longitudinal direction L1 to a second position (FIG. 12B). The extension of the piston rod 351 of the actuator 341 exerts a force on the platform 203 to slide the platform in the longitudinal direction L1 in the direction of arrow A3 (FIG. 12B). The lubricant provided in the lubrication grooves 227 and between the lubrication portion 225 and the bottom surface 207 of the platform reduces the sliding friction and allows the actuator 341 to advance the platform in the direction of arrow A3. As with the previous embodiment, the platform 203 is moved in the direction of arrow A3 a sufficient distance to allow access to the lifting openings 215, 217 by a lifting mechanism (e.g., forklift) 261 (FIG. 8C). The lifting mechanism 261 may include a forklift or other lifting mechanism that may access the interior 46 of the enclosure through the enclosure access doors 45. The lifting mechanism 261 is inserted into the lifting openings 215, 217 of the platform 203, and the DDU 23 is lifted and/or slid in the direction of arrow A4. Prior to moving the platform 203 in the direction of arrow A4, the actuator 341 may be disconnected from the platform (FIG. 12C) with the first end 347 of the actuator being separated from the platform and the second end 345 of the actuator remaining attached to the floor 41 of the enclosure. Alternatively, the second end 345 of the actuator 341 may be disconnected from the floor 41 of the enclosure and the first end 341 of the actuator may remain attached to the platform 203, or both ends of the actuator may be disconnected and the actuator removed without departing from the enclosure.


The lifting mechanism 261 may move the DDU 23 to the third position (FIG. 12C), or transfer the DDU onto an adjacent supporting structure or vehicle (e.g., maintenance inspection platform or other suitable structure), or completely remove the platform 203 and DDU 23 from the enclosure. The various method steps described herein for the method of positioning or removing the DDU 23 by operating the DDU positioner assembly 301 may be otherwise performed in an alternative order or simultaneously, or more or less steps may be used without departing from the scope of the disclosure.


Having now described some illustrative embodiments of the disclosure, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modifications and other embodiments are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the disclosure. In particular, although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Those skilled in the art should appreciate that the parameters and configurations described herein are exemplary and that actual parameters and/or configurations will depend on the specific application in which the systems and techniques are used. Those skilled in the art should also recognize or be able to ascertain, using no more than routine experimentation, equivalents to the specific embodiments of the disclosure. It is, therefore, to be understood that the embodiments described herein are presented by way of example only and that, within the scope of any appended claims and equivalents thereto; the embodiments of the disclosure may be practiced other than as specifically described.


Furthermore, the scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., above and to the above-described embodiments, which shall be considered to be within the scope of this disclosure. Accordingly, various features and characteristics as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiment, and numerous variations, modifications, and additions further may be made thereto without departing from the spirit and scope of the present disclosure as set forth in the appended claims.

Claims
  • 1. A direct drive unit (DDU) positioner assembly for positioning a DDU housed in an enclosure for removal from the enclosure, the DDU including a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power, hydraulic fracturing operations, the enclosure having an enclosure base and a plurality of lubrication grooves positioned in the enclosure base, the DDU positioner assembly comprising: a platform configured to connect to a support of the gearbox when positioned adjacent thereto and mount on the enclosure base, the enclosure base having the plurality of lubrication grooves for facilitating sliding movement of the platform relative to the enclosure base; anda lubricator to convey lubricant to the lubrication grooves,the platform being configured to fixedly attached to the enclosure base by a plurality fasteners during operation of the DDU and in slidable engagement with the enclosure base upon removal of the plurality of fasteners.
  • 2. The DDU positioner assembly of claim 1, wherein upon removal of plurality of fasteners from the enclosure base, the platform is slidable on the enclosure base in a direction of the lubrication grooves, wherein the platform comprises a plurality of lift openings for access by a lifting mechanism, the plurality of lift openings being offset from a centerline of the gearbox when the platform is connected to the enclosure base, wherein the lift openings comprise a first lift opening and a second lift opening, the first lift opening being spaced apart from the centerline of the gearbox by a first distance, the second lift opening being spaced apart from the centerline of the gearbox by a second distance, the second distance being greater than the first distance, and wherein the second lift opening is positioned closer to the turbine engine than the first lift opening.
  • 3. The DDU positioner assembly of claim 2, further comprising one or more drive fasteners in contact with the platform, the one or more drive fasteners being operable to initiate sliding movement of the platform along the enclosure base to position the lift openings for access by the lifting mechanism, wherein the platform comprises an upper surface supporting the gearbox, a lower surface in slidable engagement with the enclosure base, two sides, and two ends, the lift openings extending in a lateral direction through the two sides of the platform, and wherein the one or more drive fasteners are operatively connected to one of the ends of the platform and are operable to initiate sliding movement of the platform in a longitudinal direction.
  • 4. The DDU positioner assembly of claim 1, wherein the enclosure base includes a lubrication portion of a floor of the enclosure, the lubrication portion having the lubrication grooves and being operably connected to the lubricator, and wherein the enclosure base comprises a removable pad secured to the floor of the enclosure, the removable pad having the lubrication grooves fluidly connected to the lubricator.
  • 5. The DDU positioner assembly of claim 3, further comprising one or more actuators operatively connected to the platform, the one or more actuators being operable to initiate sliding movement of the platform along the enclosure base to position the lift openings for access by the lifting mechanism, wherein the platform includes an upper surface supporting the gearbox, a lower surface in slidable engagement with the base, two sides, and two ends, the lift openings extending in a lateral direction through the two sides of the platform, and wherein the one or more actuators is operatively connected to one of the ends of the platform and is operable to initiate sliding movement of the enclosure base in a longitudinal direction.
  • 6. A direct drive unit (DDU) positioner assembly for positioning a DDU housed in an enclosure for removal from the enclosure, the DDU including a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power, hydraulic fracturing operations, the enclosure having an enclosure base and a plurality of lubrication grooves positioned in the enclosure base, the DDU positioner assembly comprising: a platform configured to connect to a support of the gearbox when positioned adjacent thereto and mount on the enclosure base, the enclosure base having the plurality of lubrication grooves for facilitating sliding movement of the platform relative to the enclosure base; anda lubricator to convey lubricant to the lubrication grooves,the platform being configured to fixedly attached to the enclosure base by a plurality fasteners during operation of the DDU and in slidable engagement with the enclosure base upon removal of the plurality of fasteners, upon removal of plurality of fasteners from the enclosure base, the platform being slidable on the enclosure base in a direction of the lubrication grooves, the platform also including one or more lift openings for access by a lifting mechanism.
  • 7. The DDU positioner assembly of claim 6, wherein the one or more lift openings comprise a plurality of lift openings for access by the lifting mechanism, the plurality of lift openings being offset from a centerline of the gearbox when the platform is connected to the enclosure base, wherein the lift openings comprise a first lift opening and a second lift opening, the first lift opening being spaced apart from the centerline of the gearbox by a first distance, the second lift opening being spaced apart from the centerline of the gearbox by a second distance, the second distance being greater than the first distance, and wherein the second lift opening is positioned closer to the turbine engine than the first lift opening.
  • 8. The DDU positioner assembly of claim 6, further comprising one or more drive fasteners in contact with the platform, the one or more drive fasteners being operable to initiate sliding movement of the platform along the enclosure base to position the one or more lift openings for access by the lifting mechanism, wherein the platform comprises an upper surface supporting the gearbox, a lower surface in slidable engagement with the base, two sides, and two ends, the one or more lift openings extending in a lateral direction through the two sides of the platform, and wherein the one or more drive fasteners are operatively connected to one of the ends of the platform and are operable to initiate sliding movement of the platform in a longitudinal direction.
  • 9. The DDU positioner assembly of claim 8, wherein the enclosure base includes a lubrication portion of a floor of the enclosure, the lubrication portion having the lubrication grooves and being operably connected to the lubricator, and wherein the enclosure base comprises a removable pad secured to the floor of the enclosure, the removable pad having the lubrication grooves fluidly connected to the lubricator.
  • 10. The DDU positioner assembly of claim 6, further comprising one or more actuators operatively connected to the platform, the one or more actuators being operable to initiate sliding movement of the platform along the enclosure base to position the one or more lift openings for access by the lifting mechanism, wherein the platform includes an upper surface supporting the gearbox, a lower surface in slidable engagement with the base, two sides, and two ends, the one or more lift openings extending in a lateral direction through the two sides of the platform, and is operable to initiate sliding movement of the enclosure base in a longitudinal direction.
  • 11. A direct drive unit (DDU) positioner assembly for positioning a DDU housed in an enclosure for removal from the enclosure, the DDU including a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power, hydraulic fracturing operations, the enclosure having an enclosure base and a plurality of lubrication grooves positioned in the enclosure base, the DDU positioner assembly comprising: a platform configured to connect to a support of the gearbox when positioned adjacent thereto and mount on the enclosure base, the enclosure base having the plurality of lubrication grooves for facilitating sliding movement of the platform relative to the enclosure base, the platform also being configured to fixedly attached to the enclosure base by a plurality fasteners during operation of the DDU and being configured in slidable engagement with the enclosure base upon removal of the plurality of fasteners;a lubricator to convey lubricant to the lubrication grooves; andone or more actuators operatively connected to the platform, the one or more actuators being operable to initiate sliding movement of the platform along the enclosure base to position one or more lift openings for access by a lifting mechanism,the platform also includes an upper surface supporting the gearbox, a lower surface in slidable engagement with the base, two sides, and two ends, the one or more lift openings extending in a lateral direction through the sides of the platform, and the one or more actuators being operatively connected to one of the ends of the platform and being operable to initiate sliding movement of the enclosure base in a longitudinal direction, and the enclosure base including a lubrication portion of a floor of the enclosure, the lubrication portion having the lubrication grooves and being operably connected to the lubricator, andthe enclosure base comprises a removable pad secured to the floor of the enclosure, the removable pad having the lubrication grooves fluidly connected to the lubricator.
  • 12. The DDU positioner assembly of claim 11, wherein the one or more lift openings comprise a plurality of lift openings for access by the lifting mechanism, the plurality of lift openings being offset from a centerline of the gearbox when the platform is connected to the enclosure base, wherein the lift openings comprise a first lift opening and a second lift opening, the first lift opening being spaced apart from the centerline of the gearbox by a first distance, the second lift opening being spaced apart from the centerline of the gearbox by a second distance, the second distance being greater than the first distance, and wherein the second lift opening is positioned closer to the turbine engine than the first lift opening.
  • 13. The DDU positioner assembly of claim 12, further comprising one or more drive fasteners in contact with the platform, the one or more drive fasteners being operable to initiate sliding movement of the platform along the enclosure base to position the one or more lift openings for access by the lifting mechanism, and wherein are operable to initiate sliding movement of the platform in the longitudinal direction.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. Non-Provisional application Ser. No. 17/122,433, filed Dec. 15, 2020, titled “DIRECT DRIVE UNIT REMOVAL SYSTEM AND ASSOCIATED METHODS,” which is a divisional of U.S. Non-Provisional application Ser. No. 15/929,924, filed May 29, 2020, titled “DIRECT DRIVE UNIT REMOVAL SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 10,895,202, issued Jan. 19, 2021, which claims the benefit of and priority to U.S. Provisional Application No. 62/899,975, filed Sep. 13, 2019, titled “TURBINE REMOVAL SYSTEM,” the entire disclosures of each of which are incorporated herein by reference.

US Referenced Citations (408)
Number Name Date Kind
2498229 Adler Feb 1950 A
3191517 Solzman Jun 1965 A
3257031 Dietz Jun 1966 A
3378074 Kiel Apr 1968 A
3739872 McNair Jun 1973 A
3773438 Hall et al. Nov 1973 A
3791682 Mitchell Feb 1974 A
3796045 Foster Mar 1974 A
3820922 Buse et al. Jun 1974 A
4010613 McInerney Mar 1977 A
4031407 Reed Jun 1977 A
4086976 Holm et al. May 1978 A
4222229 Uram Sep 1980 A
4269569 Hoover May 1981 A
4311395 Douthitt et al. Jan 1982 A
4357027 Zeitlow Nov 1982 A
4402504 Christian Sep 1983 A
4457325 Green Jul 1984 A
4470771 Hall et al. Sep 1984 A
4574880 Handke Mar 1986 A
4754607 Mackay Jul 1988 A
4782244 Wakimoto Nov 1988 A
4796777 Keller Jan 1989 A
4913625 Gerlowski Apr 1990 A
4983259 Duncan Jan 1991 A
4990058 Eslinger Feb 1991 A
5537813 Davis et al. Jul 1996 A
5553514 Walkowc Sep 1996 A
5560195 Anderson et al. Oct 1996 A
5622245 Reik Apr 1997 A
5651400 Corts et al. Jul 1997 A
5678460 Walkowc Oct 1997 A
5717172 Griffin, Jr. et al. Feb 1998 A
5983962 Gerardot Nov 1999 A
6041856 Thrasher et al. Mar 2000 A
6050080 Horner Apr 2000 A
6071188 O'Neill et al. Jun 2000 A
6123751 Nelson et al. Sep 2000 A
6129335 Yokogi Oct 2000 A
6145318 Kaplan et al. Nov 2000 A
6279309 Lawlor, II et al. Aug 2001 B1
6321860 Reddoch Nov 2001 B1
6334746 Nguyen et al. Jan 2002 B1
6530224 Conchieri Mar 2003 B1
6543395 Green Apr 2003 B2
6655922 Flek Dec 2003 B1
6765304 Baten et al. Jul 2004 B2
6786051 Kristich et al. Sep 2004 B2
6851514 Han et al. Feb 2005 B2
6859740 Stephenson et al. Feb 2005 B2
6901735 Lohn Jun 2005 B2
7065953 Kopko Jun 2006 B1
7222015 Davis et al. May 2007 B2
7388303 Seiver Jun 2008 B2
7545130 Latham Jun 2009 B2
7552903 Dunn et al. Jun 2009 B2
7563076 Brunet et al. Jul 2009 B2
7627416 Batenburg et al. Dec 2009 B2
7677316 Butler et al. Mar 2010 B2
7721521 Kunkle et al. May 2010 B2
7730711 Kunkle et al. Jun 2010 B2
7845413 Shampine et al. Dec 2010 B2
7900724 Promersberger et al. Mar 2011 B2
7921914 Bruins et al. Apr 2011 B2
7938151 Höckner May 2011 B2
7980357 Edwards Jul 2011 B2
8083504 Williams et al. Dec 2011 B2
8186334 Ooyama May 2012 B2
8196555 Ikeda et al. Jun 2012 B2
8292216 Rumberger, Jr. Oct 2012 B1
8316936 Roddy et al. Nov 2012 B2
8414673 Raje et al. Apr 2013 B2
8506267 Gambier et al. Aug 2013 B2
8575873 Peterson et al. Nov 2013 B2
8616005 Cousino, Sr. et al. Dec 2013 B1
8621873 Robertson et al. Jan 2014 B2
8672606 Glynn et al. Mar 2014 B2
8714253 Sherwood et al. May 2014 B2
8770329 Spitler Jul 2014 B2
8789601 Broussard et al. Jul 2014 B2
8794307 Coquilleau et al. Aug 2014 B2
8801394 Anderson Aug 2014 B2
8851441 Acuna et al. Oct 2014 B2
8905056 Kendrick Dec 2014 B2
8973560 Krug Mar 2015 B2
8997904 Cryer et al. Apr 2015 B2
9032620 Frassinelli et al. May 2015 B2
9057247 Kumar et al. Jun 2015 B2
9103193 Coli et al. Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9187982 Dehring et al. Nov 2015 B2
9212643 Deliyski Dec 2015 B2
9341055 Weightman et al. May 2016 B2
9346662 Van Vliet et al. May 2016 B2
9366114 Coli et al. Jun 2016 B2
9376786 Numasawa Jun 2016 B2
9394829 Cabeen et al. Jul 2016 B2
9395049 Vicknair et al. Jul 2016 B2
9401670 Minato et al. Jul 2016 B2
9410410 Broussard et al. Aug 2016 B2
9410546 Jaeger et al. Aug 2016 B2
9429078 Crowe et al. Aug 2016 B1
9493997 Liu et al. Nov 2016 B2
9512783 Veilleux et al. Dec 2016 B2
9534473 Morris et al. Jan 2017 B2
9546652 Yin Jan 2017 B2
9550501 Ledbetter Jan 2017 B2
9556721 Jang et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9570945 Fischer Feb 2017 B2
9579980 Cryer et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9617808 Liu et al. Apr 2017 B2
9638101 Crowe et al. May 2017 B1
9638194 Wiegman et al. May 2017 B2
9650871 Oehring et al. May 2017 B2
9656762 Kamath et al. May 2017 B2
9689316 Crom Jun 2017 B1
9739130 Young Aug 2017 B2
9764266 Carter Sep 2017 B1
9777748 Lu et al. Oct 2017 B2
9803467 Tang et al. Oct 2017 B2
9803793 Davi et al. Oct 2017 B2
9809308 Aguilar et al. Nov 2017 B2
9829002 Crom Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oehring et al. Dec 2017 B2
9850422 Lestz et al. Dec 2017 B2
9856131 Moffitt Jan 2018 B1
9863279 Laing et al. Jan 2018 B2
9869305 Crowe et al. Jan 2018 B1
9879609 Crowe et al. Jan 2018 B1
9893500 Oehring et al. Feb 2018 B2
9893660 Peterson et al. Feb 2018 B2
9920615 Zhang et al. Mar 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9964052 Millican et al. May 2018 B2
9970278 Broussard et al. May 2018 B2
9981840 Shock May 2018 B2
9995102 Dillie et al. Jun 2018 B2
9995218 Oehring et al. Jun 2018 B2
10008880 Vicknair et al. Jun 2018 B2
10018096 Wallimann et al. Jul 2018 B2
10020711 Oehring et al. Jul 2018 B2
10029289 Wendorski et al. Jul 2018 B2
10030579 Austin et al. Jul 2018 B2
10036238 Oehring Jul 2018 B2
10040541 Wilson et al. Aug 2018 B2
10060349 Álvarez et al. Aug 2018 B2
10082137 Graham Sep 2018 B2
10100827 Devan et al. Oct 2018 B2
10107084 Coli et al. Oct 2018 B2
10107085 Coli et al. Oct 2018 B2
10114061 Frampton et al. Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10134257 Zhang et al. Nov 2018 B2
10151244 Giancotti et al. Dec 2018 B2
10174599 Shampine et al. Jan 2019 B2
10184397 Austin et al. Jan 2019 B2
10196258 Kalala et al. Feb 2019 B2
10221856 Hernandez et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10227855 Coli et al. Mar 2019 B2
10246984 Payne Apr 2019 B2
10247182 Zhang et al. Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10267439 Pryce et al. Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287943 Schiltz May 2019 B1
10303190 Shock May 2019 B2
10316832 Byrne Jun 2019 B2
10317875 Pandurangan Jun 2019 B2
10337402 Austin et al. Jul 2019 B2
10358035 Cryer Jul 2019 B2
10371012 Davis et al. Aug 2019 B2
10374485 Morris et al. Aug 2019 B2
10378326 Morris et al. Aug 2019 B2
10393108 Chong et al. Aug 2019 B2
10407990 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415348 Zhang et al. Sep 2019 B2
10415557 Crowe et al. Sep 2019 B1
10415562 Kajita et al. Sep 2019 B2
RE47695 Case et al. Nov 2019 E
10465689 Crom Nov 2019 B2
10526882 Oehring et al. Jan 2020 B2
10563649 Zhang et al. Feb 2020 B2
10577910 Stephenson Mar 2020 B2
10598258 Oehring et al. Mar 2020 B2
10610842 Chong Apr 2020 B2
10711787 Darley Jul 2020 B1
10738580 Fischer et al. Aug 2020 B1
10753153 Fischer et al. Aug 2020 B1
10753165 Fischer et al. Aug 2020 B1
10794165 Fischer et al. Oct 2020 B2
10794166 Reckels et al. Oct 2020 B2
10801311 Cui et al. Oct 2020 B1
10815764 Yeung et al. Oct 2020 B1
10815978 Glass Oct 2020 B2
10830032 Zhang et al. Nov 2020 B1
10865624 Cui et al. Dec 2020 B1
10865631 Zhang et al. Dec 2020 B1
10907459 Yeung et al. Feb 2021 B1
20040016245 Pierson Jan 2004 A1
20040187950 Cohen et al. Sep 2004 A1
20050139286 Poulter Jun 2005 A1
20050226754 Orr et al. Oct 2005 A1
20060260331 Andreychuk Nov 2006 A1
20070029090 Andreychuk et al. Feb 2007 A1
20070066406 Keller et al. Mar 2007 A1
20070107981 Sicotte May 2007 A1
20070181212 Fell Aug 2007 A1
20070277982 Shampine et al. Dec 2007 A1
20070295569 Manzoor et al. Dec 2007 A1
20080098891 Feher May 2008 A1
20080161974 Alston Jul 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20090064685 Busekros et al. Mar 2009 A1
20090124191 Van Becelaere et al. May 2009 A1
20100071899 Coquilleau et al. Mar 2010 A1
20100218508 Brown et al. Sep 2010 A1
20100300683 Looper et al. Dec 2010 A1
20100310384 Stephenson et al. Dec 2010 A1
20110054704 Karpman et al. Mar 2011 A1
20110085924 Shampine et al. Apr 2011 A1
20110197988 Van Vliet et al. Aug 2011 A1
20110241888 Lu et al. Oct 2011 A1
20110265443 Ansari Nov 2011 A1
20110272158 Neal Nov 2011 A1
20120048242 Surnilla et al. Mar 2012 A1
20120199001 Chillar et al. Aug 2012 A1
20120310509 Pardo et al. Dec 2012 A1
20130068307 Hains et al. Mar 2013 A1
20130087945 Kusters et al. Apr 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130300341 Gillette Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20140013768 Laing et al. Jan 2014 A1
20140044517 Saha et al. Feb 2014 A1
20140048253 Andreychuk Feb 2014 A1
20140090742 Coskrey et al. Apr 2014 A1
20140130422 Laing et al. May 2014 A1
20140147291 Burnette May 2014 A1
20140277772 Lopez et al. Sep 2014 A1
20140290266 Veilleux, Jr. et al. Oct 2014 A1
20140318638 Harwood et al. Oct 2014 A1
20150078924 Zhang et al. Mar 2015 A1
20150101344 Jarrier et al. Apr 2015 A1
20150114652 Lestz et al. Apr 2015 A1
20150135659 Jarrier et al. May 2015 A1
20150159553 Kippel et al. Jun 2015 A1
20150192117 Bridges Jul 2015 A1
20150204148 Liu et al. Jul 2015 A1
20150204322 Iund et al. Jul 2015 A1
20150211512 Wiegman et al. Jul 2015 A1
20150217672 Shampine et al. Aug 2015 A1
20150275891 Chong et al. Oct 2015 A1
20150369351 Hermann et al. Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160102581 Del Bono Apr 2016 A1
20160105022 Oehring et al. Apr 2016 A1
20160108713 Dunaeva et al. Apr 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160186671 Austin et al. Jun 2016 A1
20160215774 Oklejas et al. Jul 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160244314 Van Vliet et al. Aug 2016 A1
20160248230 Tawy et al. Aug 2016 A1
20160253634 Thomeer et al. Sep 2016 A1
20160273346 Tang et al. Sep 2016 A1
20160290114 Oehring et al. Oct 2016 A1
20160319650 Oehring et al. Nov 2016 A1
20160348479 Oehring et al. Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170009905 Arnold Jan 2017 A1
20170016433 Chong et al. Jan 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170038137 Turney Feb 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170082110 Lammers Mar 2017 A1
20170089189 Norris et al. Mar 2017 A1
20170145918 Oehring et al. May 2017 A1
20170218727 Oehring et al. Aug 2017 A1
20170226839 Broussard et al. Aug 2017 A1
20170227002 Mikulski et al. Aug 2017 A1
20170234165 Kersey et al. Aug 2017 A1
20170234308 Buckley Aug 2017 A1
20170248034 Dzieciol et al. Aug 2017 A1
20170275149 Schmidt Sep 2017 A1
20170292409 Aguilar et al. Oct 2017 A1
20170302135 Cory Oct 2017 A1
20170305736 Haile et al. Oct 2017 A1
20170334448 Schwunk Nov 2017 A1
20170350471 Steidl et al. Dec 2017 A1
20170370199 Witkowski et al. Dec 2017 A1
20180034280 Pedersen Feb 2018 A1
20180038328 Louven et al. Feb 2018 A1
20180041093 Miranda Feb 2018 A1
20180045202 Crom Feb 2018 A1
20180038216 Zhang et al. Mar 2018 A1
20180058171 Roesner et al. Mar 2018 A1
20180156210 Oehring et al. Jun 2018 A1
20180172294 Owen Jun 2018 A1
20180183219 Oehring et al. Jun 2018 A1
20180186442 Maier Jul 2018 A1
20180187662 Hill et al. Jul 2018 A1
20180223640 Keihany et al. Aug 2018 A1
20180224044 Penney Aug 2018 A1
20180229998 Shock Aug 2018 A1
20180258746 Broussard et al. Sep 2018 A1
20180266412 Stokkevag et al. Sep 2018 A1
20180278124 Oehring et al. Sep 2018 A1
20180283102 Cook Oct 2018 A1
20180283618 Cook Oct 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180291781 Pedrini Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180298735 Conrad Oct 2018 A1
20180307255 Bishop Oct 2018 A1
20180328157 Bishop Nov 2018 A1
20180334893 Oehring Nov 2018 A1
20180363435 Coli et al. Dec 2018 A1
20180363436 Coli et al. Dec 2018 A1
20180363437 Coli et al. Dec 2018 A1
20180363438 Coli et al. Dec 2018 A1
20190003272 Morris et al. Jan 2019 A1
20190003329 Morris et al. Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190063341 Davis Feb 2019 A1
20190067991 Davis et al. Feb 2019 A1
20190071992 Feng Mar 2019 A1
20190072005 Fisher et al. Mar 2019 A1
20190078471 Braglia et al. Mar 2019 A1
20190091619 Huang Mar 2019 A1
20190106316 Van Vliet et al. Apr 2019 A1
20190106970 Oehring Apr 2019 A1
20190112908 Coli et al. Apr 2019 A1
20190112910 Oehring et al. Apr 2019 A1
20190119096 Haile et al. Apr 2019 A1
20190120024 Oehring et al. Apr 2019 A1
20190120031 Gilje Apr 2019 A1
20190120134 Goleczka et al. Apr 2019 A1
20190128247 Douglas, III May 2019 A1
20190131607 Gillette May 2019 A1
20190136677 Shampine et al. May 2019 A1
20190153843 Headrick et al. May 2019 A1
20190154020 Glass May 2019 A1
20190264667 Byrne May 2019 A1
20190178234 Beisel Jun 2019 A1
20190178235 Coskrey et al. Jun 2019 A1
20190185312 Bush et al. Jun 2019 A1
20190203572 Morris et al. Jul 2019 A1
20190204021 Morris et al. Jul 2019 A1
20190217258 Bishop Jul 2019 A1
20190226317 Payne et al. Jul 2019 A1
20190245348 Hinderliter et al. Aug 2019 A1
20190249652 Stephenson et al. Aug 2019 A1
20190249754 Oehring et al. Aug 2019 A1
20190257297 Botting et al. Aug 2019 A1
20190277295 Clyburn et al. Sep 2019 A1
20190316447 Oehring et al. Oct 2019 A1
20190316456 Beisel et al. Oct 2019 A1
20190323337 Glass et al. Oct 2019 A1
20190330923 Gable et al. Oct 2019 A1
20190331117 Gable et al. Oct 2019 A1
20190338762 Curry et al. Nov 2019 A1
20190345920 Surjaatmadja et al. Nov 2019 A1
20190356199 Morris et al. Nov 2019 A1
20200003205 Stokkevåg et al. Jan 2020 A1
20200040878 Morris Feb 2020 A1
20200049136 Stephenson Feb 2020 A1
20200049153 Headrick et al. Feb 2020 A1
20200071998 Oehring et al. Mar 2020 A1
20200088202 Sigmar et al. Mar 2020 A1
20200095854 Hinderliter Mar 2020 A1
20200132058 Mollatt Apr 2020 A1
20200141219 Oehring et al. May 2020 A1
20200141907 Meck et al. May 2020 A1
20200166026 Marica May 2020 A1
20200206704 Chong Jul 2020 A1
20200224645 Buckley Jul 2020 A1
20200256333 Surjaatmadja Aug 2020 A1
20200263498 Fischer et al. Aug 2020 A1
20200263525 Reid Aug 2020 A1
20200263526 Fischer et al. Aug 2020 A1
20200263527 Fischer et al. Aug 2020 A1
20200263528 Fischer et al. Aug 2020 A1
20200309113 Hunter et al. Oct 2020 A1
20200325752 Clark et al. Oct 2020 A1
20200325760 Markham Oct 2020 A1
20200325761 Williams Oct 2020 A1
20200332784 Zhang et al. Oct 2020 A1
20200332788 Cui et al. Oct 2020 A1
20200340313 Fischer et al. Oct 2020 A1
20200340340 Oehring et al. Oct 2020 A1
20200340344 Reckels et al. Oct 2020 A1
20200340404 Stockstill Oct 2020 A1
20200347725 Morris et al. Nov 2020 A1
20200392826 Cui et al. Dec 2020 A1
20200398238 Zhong et al. Dec 2020 A1
20200400000 Ghasripoor et al. Dec 2020 A1
20200400005 Han et al. Dec 2020 A1
20200408071 Li et al. Dec 2020 A1
20200408144 Feng et al. Dec 2020 A1
20200408147 Zhang et al. Dec 2020 A1
Foreign Referenced Citations (585)
Number Date Country
2876687 May 2014 CA
2693567 Sep 2014 CA
2876687 Apr 2019 CA
2779054 May 2006 CN
2890325 Apr 2007 CN
200964929 Oct 2007 CN
101323151 Dec 2008 CN
201190660 Feb 2009 CN
201190892 Feb 2009 CN
201190893 Feb 2009 CN
101414171 Apr 2009 CN
201215073 Apr 2009 CN
201236650 May 2009 CN
201275542 Jul 2009 CN
201275801 Jul 2009 CN
201333385 Oct 2009 CN
201443300 Apr 2010 CN
201496415 Jun 2010 CN
201501365 Jun 2010 CN
201507271 Jun 2010 CN
101323151 Jul 2010 CN
201560210 Aug 2010 CN
201581862 Sep 2010 CN
201610728 Oct 2010 CN
201610751 Oct 2010 CN
201618530 Nov 2010 CN
201661255 Dec 2010 CN
101949382 Jan 2011 CN
201756927 Mar 2011 CN
101414171 May 2011 CN
102128011 Jul 2011 CN
102140898 Aug 2011 CN
102155172 Aug 2011 CN
202000930 Oct 2011 CN
202055781 Nov 2011 CN
202082265 Dec 2011 CN
202100216 Jan 2012 CN
202100217 Jan 2012 CN
202100815 Jan 2012 CN
202124340 Jan 2012 CN
202140051 Feb 2012 CN
202140080 Feb 2012 CN
202144789 Feb 2012 CN
202144943 Feb 2012 CN
202149354 Feb 2012 CN
102383748 Mar 2012 CN
202156297 Mar 2012 CN
202158355 Mar 2012 CN
202163504 Mar 2012 CN
202165236 Mar 2012 CN
202180866 Apr 2012 CN
202181875 Apr 2012 CN
202187744 Apr 2012 CN
202191854 Apr 2012 CN
202250008 May 2012 CN
101885307 Jul 2012 CN
102562020 Jul 2012 CN
202326156 Jul 2012 CN
202370773 Aug 2012 CN
202417397 Sep 2012 CN
202417461 Sep 2012 CN
102729335 Oct 2012 CN
202463955 Oct 2012 CN
202463957 Oct 2012 CN
202467739 Oct 2012 CN
202467801 Oct 2012 CN
202531016 Nov 2012 CN
202544794 Nov 2012 CN
102825039 Dec 2012 CN
202578592 Dec 2012 CN
202579164 Dec 2012 CN
202594808 Dec 2012 CN
202594928 Dec 2012 CN
202596615 Dec 2012 CN
202596616 Dec 2012 CN
102849880 Jan 2013 CN
102889191 Jan 2013 CN
202641535 Jan 2013 CN
202645475 Jan 2013 CN
202666716 Jan 2013 CN
202669645 Jan 2013 CN
202669944 Jan 2013 CN
202671336 Jan 2013 CN
202673269 Jan 2013 CN
202751982 Feb 2013 CN
102963629 Mar 2013 CN
202767964 Mar 2013 CN
202789791 Mar 2013 CN
202789792 Mar 2013 CN
202810717 Mar 2013 CN
202827276 Mar 2013 CN
202833093 Mar 2013 CN
202833370 Mar 2013 CN
102140898 Apr 2013 CN
202895467 Apr 2013 CN
202935798 May 2013 CN
202935816 May 2013 CN
202970631 Jun 2013 CN
103223315 Jul 2013 CN
203050598 Jul 2013 CN
103233714 Aug 2013 CN
103233715 Aug 2013 CN
103245523 Aug 2013 CN
103247220 Aug 2013 CN
103253839 Aug 2013 CN
103277290 Sep 2013 CN
103321782 Sep 2013 CN
203170270 Sep 2013 CN
203172509 Sep 2013 CN
203175778 Sep 2013 CN
203175787 Sep 2013 CN
102849880 Oct 2013 CN
203241231 Oct 2013 CN
203244941 Oct 2013 CN
203244942 Oct 2013 CN
203303798 Nov 2013 CN
102155172 Dec 2013 CN
102729335 Dec 2013 CN
103420532 Dec 2013 CN
203321792 Dec 2013 CN
203412658 Jan 2014 CN
203420697 Feb 2014 CN
203480755 Mar 2014 CN
103711437 Apr 2014 CN
203531815 Apr 2014 CN
203531871 Apr 2014 CN
203531883 Apr 2014 CN
203556164 Apr 2014 CN
203558809 Apr 2014 CN
203559861 Apr 2014 CN
203559893 Apr 2014 CN
203560189 Apr 2014 CN
102704870 May 2014 CN
203611843 May 2014 CN
203612531 May 2014 CN
203612843 May 2014 CN
203614062 May 2014 CN
203614388 May 2014 CN
203621045 Jun 2014 CN
203621046 Jun 2014 CN
203621051 Jun 2014 CN
203640993 Jun 2014 CN
203655221 Jun 2014 CN
103899280 Jul 2014 CN
103923670 Jul 2014 CN
203685052 Jul 2014 CN
203716936 Jul 2014 CN
103990410 Aug 2014 CN
103993869 Aug 2014 CN
203754009 Aug 2014 CN
203754025 Aug 2014 CN
203754341 Aug 2014 CN
203756614 Aug 2014 CN
203770264 Aug 2014 CN
203784519 Aug 2014 CN
203784520 Aug 2014 CN
104057864 Sep 2014 CN
203819819 Sep 2014 CN
203823431 Sep 2014 CN
203835337 Sep 2014 CN
104074500 Oct 2014 CN
203876633 Oct 2014 CN
203876636 Oct 2014 CN
203877364 Oct 2014 CN
203877365 Oct 2014 CN
203877375 Oct 2014 CN
203877424 Oct 2014 CN
203879476 Oct 2014 CN
203879479 Oct 2014 CN
203890292 Oct 2014 CN
203899476 Oct 2014 CN
203906206 Oct 2014 CN
104150728 Nov 2014 CN
104176522 Dec 2014 CN
104196464 Dec 2014 CN
104234651 Dec 2014 CN
203971841 Dec 2014 CN
203975450 Dec 2014 CN
204020788 Dec 2014 CN
204021980 Dec 2014 CN
204024625 Dec 2014 CN
204051401 Dec 2014 CN
204060661 Dec 2014 CN
104260672 Jan 2015 CN
104314512 Jan 2015 CN
204077478 Jan 2015 CN
204077526 Jan 2015 CN
204078307 Jan 2015 CN
204083051 Jan 2015 CN
204113168 Jan 2015 CN
104340682 Feb 2015 CN
104358536 Feb 2015 CN
104369687 Feb 2015 CN
104402178 Mar 2015 CN
104402185 Mar 2015 CN
104402186 Mar 2015 CN
204209819 Mar 2015 CN
204224560 Mar 2015 CN
204225813 Mar 2015 CN
204225839 Mar 2015 CN
104533392 Apr 2015 CN
104563938 Apr 2015 CN
104563994 Apr 2015 CN
104563995 Apr 2015 CN
104563998 Apr 2015 CN
104564033 Apr 2015 CN
204257122 Apr 2015 CN
204283610 Apr 2015 CN
204283782 Apr 2015 CN
204297682 Apr 2015 CN
204299810 Apr 2015 CN
103223315 May 2015 CN
104594857 May 2015 CN
104595493 May 2015 CN
104612647 May 2015 CN
104612928 May 2015 CN
104632126 May 2015 CN
204325094 May 2015 CN
204325098 May 2015 CN
204326983 May 2015 CN
204326985 May 2015 CN
204344040 May 2015 CN
204344095 May 2015 CN
104727797 Jun 2015 CN
204402414 Jun 2015 CN
204402423 Jun 2015 CN
204402450 Jun 2015 CN
103247220 Jul 2015 CN
104803568 Jul 2015 CN
204436360 Jul 2015 CN
204457524 Jul 2015 CN
204472485 Jul 2015 CN
204473625 Jul 2015 CN
204477303 Jul 2015 CN
204493095 Jul 2015 CN
204493309 Jul 2015 CN
103253839 Aug 2015 CN
104820372 Aug 2015 CN
104832093 Aug 2015 CN
104863523 Aug 2015 CN
204552723 Aug 2015 CN
204553866 Aug 2015 CN
204571831 Aug 2015 CN
204703814 Oct 2015 CN
204703833 Oct 2015 CN
204703834 Oct 2015 CN
105092401 Nov 2015 CN
103233715 Dec 2015 CN
103790927 Dec 2015 CN
105207097 Dec 2015 CN
204831952 Dec 2015 CN
204899777 Dec 2015 CN
102602323 Jan 2016 CN
105240064 Jan 2016 CN
204944834 Jan 2016 CN
205042127 Feb 2016 CN
205172478 Apr 2016 CN
103993869 May 2016 CN
105536299 May 2016 CN
105545207 May 2016 CN
103233714 Jun 2016 CN
104340682 Jun 2016 CN
205297518 Jun 2016 CN
205298447 Jun 2016 CN
205391821 Jul 2016 CN
205400701 Jul 2016 CN
103277290 Aug 2016 CN
104260672 Aug 2016 CN
205477370 Aug 2016 CN
205479153 Aug 2016 CN
205503058 Aug 2016 CN
205503068 Aug 2016 CN
205503089 Aug 2016 CN
105958098 Sep 2016 CN
205599180 Sep 2016 CN
205599180 Sep 2016 CN
106121577 Nov 2016 CN
205709587 Nov 2016 CN
104612928 Dec 2016 CN
106246120 Dec 2016 CN
205805471 Dec 2016 CN
106321045 Jan 2017 CN
205858306 Jan 2017 CN
106438310 Feb 2017 CN
205937833 Feb 2017 CN
104563994 Mar 2017 CN
206129196 Apr 2017 CN
104369687 May 2017 CN
106715165 May 2017 CN
106761561 May 2017 CN
105240064 Jun 2017 CN
206237147 Jun 2017 CN
206287832 Jun 2017 CN
206346711 Jul 2017 CN
104563995 Sep 2017 CN
107120822 Sep 2017 CN
107143298 Sep 2017 CN
107159046 Sep 2017 CN
107188018 Sep 2017 CN
206496016 Sep 2017 CN
104564033 Oct 2017 CN
107234358 Oct 2017 CN
107261975 Oct 2017 CN
206581929 Oct 2017 CN
104820372 Dec 2017 CN
105092401 Dec 2017 CN
107476769 Dec 2017 CN
107520526 Dec 2017 CN
206754664 Dec 2017 CN
107605427 Jan 2018 CN
106438310 Feb 2018 CN
107654196 Feb 2018 CN
107656499 Feb 2018 CN
107728657 Feb 2018 CN
206985503 Feb 2018 CN
207017968 Feb 2018 CN
107859053 Mar 2018 CN
207057867 Mar 2018 CN
207085817 Mar 2018 CN
105545207 Apr 2018 CN
107883091 Apr 2018 CN
107902427 Apr 2018 CN
107939290 Apr 2018 CN
107956708 Apr 2018 CN
207169595 Apr 2018 CN
207194873 Apr 2018 CN
207245674 Apr 2018 CN
108034466 May 2018 CN
108036071 May 2018 CN
108087050 May 2018 CN
207380566 May 2018 CN
108103483 Jun 2018 CN
108179046 Jun 2018 CN
108254276 Jul 2018 CN
108311535 Jul 2018 CN
207583576 Jul 2018 CN
207634064 Jul 2018 CN
207648054 Jul 2018 CN
207650621 Jul 2018 CN
108371894 Aug 2018 CN
207777153 Aug 2018 CN
108547601 Sep 2018 CN
108547766 Sep 2018 CN
108555826 Sep 2018 CN
108561098 Sep 2018 CN
108561750 Sep 2018 CN
108590617 Sep 2018 CN
207813495 Sep 2018 CN
207814698 Sep 2018 CN
207862275 Sep 2018 CN
108687954 Oct 2018 CN
207935270 Oct 2018 CN
207961582 Oct 2018 CN
207964530 Oct 2018 CN
108789848 Nov 2018 CN
108868675 Nov 2018 CN
208086829 Nov 2018 CN
208089263 Nov 2018 CN
108979569 Dec 2018 CN
109027662 Dec 2018 CN
109058092 Dec 2018 CN
208179454 Dec 2018 CN
208179502 Dec 2018 CN
208260574 Dec 2018 CN
109114418 Jan 2019 CN
109141990 Jan 2019 CN
208313120 Jan 2019 CN
208330319 Jan 2019 CN
208342730 Jan 2019 CN
208430982 Jan 2019 CN
208430986 Jan 2019 CN
109404274 Mar 2019 CN
109429610 Mar 2019 CN
109491318 Mar 2019 CN
109515177 Mar 2019 CN
109526523 Mar 2019 CN
109534737 Mar 2019 CN
208564504 Mar 2019 CN
208564516 Mar 2019 CN
208564525 Mar 2019 CN
208564918 Mar 2019 CN
208576026 Mar 2019 CN
208576042 Mar 2019 CN
208650818 Mar 2019 CN
208669244 Mar 2019 CN
109555484 Apr 2019 CN
109682881 Apr 2019 CN
208730959 Apr 2019 CN
208735264 Apr 2019 CN
208746733 Apr 2019 CN
208749529 Apr 2019 CN
208750405 Apr 2019 CN
208764658 Apr 2019 CN
109736740 May 2019 CN
109751007 May 2019 CN
208868428 May 2019 CN
208870761 May 2019 CN
109869294 Jun 2019 CN
109882144 Jun 2019 CN
109882372 Jun 2019 CN
209012047 Jun 2019 CN
209100025 Jul 2019 CN
110080707 Aug 2019 CN
110118127 Aug 2019 CN
110124574 Aug 2019 CN
110145277 Aug 2019 CN
110145399 Aug 2019 CN
110152552 Aug 2019 CN
110155193 Aug 2019 CN
110159225 Aug 2019 CN
110159432 Aug 2019 CN
110159432 Aug 2019 CN
110159433 Aug 2019 CN
110208100 Sep 2019 CN
110252191 Sep 2019 CN
110284854 Sep 2019 CN
110284972 Sep 2019 CN
209387358 Sep 2019 CN
110374745 Oct 2019 CN
209534736 Oct 2019 CN
110425105 Nov 2019 CN
110439779 Nov 2019 CN
110454285 Nov 2019 CN
110454352 Nov 2019 CN
110467298 Nov 2019 CN
110469312 Nov 2019 CN
110469314 Nov 2019 CN
110469405 Nov 2019 CN
110469654 Nov 2019 CN
110485982 Nov 2019 CN
110485983 Nov 2019 CN
110485984 Nov 2019 CN
110486249 Nov 2019 CN
110500255 Nov 2019 CN
110510771 Nov 2019 CN
110513097 Nov 2019 CN
209650738 Nov 2019 CN
209653968 Nov 2019 CN
209654004 Nov 2019 CN
209654022 Nov 2019 CN
209654128 Nov 2019 CN
209656622 Nov 2019 CN
107849130 Dec 2019 CN
108087050 Dec 2019 CN
110566173 Dec 2019 CN
110608030 Dec 2019 CN
110617187 Dec 2019 CN
110617188 Dec 2019 CN
110617318 Dec 2019 CN
209740823 Dec 2019 CN
209780827 Dec 2019 CN
209798631 Dec 2019 CN
209799942 Dec 2019 CN
209800178 Dec 2019 CN
209855723 Dec 2019 CN
209855742 Dec 2019 CN
209875063 Dec 2019 CN
110656919 Jan 2020 CN
107520526 Feb 2020 CN
110787667 Feb 2020 CN
110821464 Feb 2020 CN
110833665 Feb 2020 CN
110848028 Feb 2020 CN
210049880 Feb 2020 CN
210049882 Feb 2020 CN
210097596 Feb 2020 CN
210105817 Feb 2020 CN
210105818 Feb 2020 CN
210105993 Feb 2020 CN
110873093 Mar 2020 CN
210139911 Mar 2020 CN
110947681 Apr 2020 CN
111058810 Apr 2020 CN
111075391 Apr 2020 CN
210289931 Apr 2020 CN
210289932 Apr 2020 CN
210289933 Apr 2020 CN
210303516 Apr 2020 CN
211412945 Apr 2020 CN
111089003 May 2020 CN
111151186 May 2020 CN
111167769 May 2020 CN
111169833 May 2020 CN
111173476 May 2020 CN
111185460 May 2020 CN
111185461 May 2020 CN
111188763 May 2020 CN
111206901 May 2020 CN
111206992 May 2020 CN
111206994 May 2020 CN
210449044 May 2020 CN
210460875 May 2020 CN
210522432 May 2020 CN
210598943 May 2020 CN
210598945 May 2020 CN
210598946 May 2020 CN
210599194 May 2020 CN
210599303 May 2020 CN
210600110 May 2020 CN
111219326 Jun 2020 CN
111350595 Jun 2020 CN
210660319 Jun 2020 CN
210714569 Jun 2020 CN
210769168 Jun 2020 CN
210769169 Jun 2020 CN
210769170 Jun 2020 CN
210770133 Jun 2020 CN
210825844 Jun 2020 CN
210888904 Jun 2020 CN
210888905 Jun 2020 CN
210889242 Jun 2020 CN
111397474 Jul 2020 CN
111412064 Jul 2020 CN
111441923 Jul 2020 CN
111441925 Jul 2020 CN
111503517 Aug 2020 CN
111515898 Aug 2020 CN
111594059 Aug 2020 CN
111594062 Aug 2020 CN
111594144 Aug 2020 CN
211201919 Aug 2020 CN
211201920 Aug 2020 CN
211202218 Aug 2020 CN
111608965 Sep 2020 CN
111664087 Sep 2020 CN
111677476 Sep 2020 CN
111677647 Sep 2020 CN
111692064 Sep 2020 CN
111692065 Sep 2020 CN
211384571 Sep 2020 CN
211397553 Sep 2020 CN
211397677 Sep 2020 CN
211500955 Sep 2020 CN
211524765 Sep 2020 CN
4241614 Jun 1994 DE
102012018825 Mar 2014 DE
0835983 Apr 1998 EP
1378683 Jan 2004 EP
2143916 Jan 2010 EP
2613023 Jul 2013 EP
3095989 Nov 2016 EP
3211766 Aug 2017 EP
3354866 Aug 2018 EP
1438172 Jun 1976 GB
S57135212 Feb 1984 JP
20020026398 Apr 2002 KR
13562 Apr 2000 RU
1993020328 Oct 1993 WO
2006025886 Mar 2006 WO
2009023042 Feb 2009 WO
2012139380 Oct 2012 WO
2013185399 Dec 2013 WO
2015158020 Oct 2015 WO
2016033983 Mar 2016 WO
2016078181 May 2016 WO
2016101374 Jun 2016 WO
2016112590 Jul 2016 WO
2017213848 Dec 2017 WO
2018031029 Feb 2018 WO
2018038710 Mar 2018 WO
2018044293 Mar 2018 WO
2018044307 Mar 2018 WO
2018071738 Apr 2018 WO
2018101909 Jun 2018 WO
2018101912 Jun 2018 WO
2018106210 Jun 2018 WO
2018106225 Jun 2018 WO
2018106252 Jun 2018 WO
2018156131 Aug 2018 WO
2018075034 Oct 2018 WO
2018187346 Oct 2018 WO
2018031031 Feb 2019 WO
2019045691 Mar 2019 WO
2019060922 Mar 2019 WO
2019126742 Jun 2019 WO
2019147601 Aug 2019 WO
2019169366 Sep 2019 WO
2019200510 Oct 2019 WO
2019210417 Nov 2019 WO
2020018068 Jan 2020 WO
2020072076 Apr 2020 WO
2020104088 May 2020 WO
2020131085 Jun 2020 WO
2020211083 Oct 2020 WO
2020211086 Oct 2020 WO
Non-Patent Literature Citations (57)
Entry
ResearchGate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013.
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012).
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017.
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking.
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/.
The Leader in FRAC Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/.
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling.
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx.
PLOS ONE, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015.
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009.
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000.
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762.
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing.
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018.
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019.
PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014.
Integrated Flow, Skid-mounted Modular Process Systems, https://ifsolutions.com/.
Cameron, A Schlumberger Company, Frac Manifold Systems, 2016.
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html.
JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling.asp.
Halliburton, Vessel-based Modular Solution (VMS), 2015.
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999.
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992.
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006).
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941.
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996.
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019).
B.M. Mahlalela, et al., .Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea.stanford.edu (Feb. 11, 2019).
Department of Energy, United States of America, the Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014).
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, the Pennsylvania State University, the Graduate School, College of Engineering, 2015.
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015.
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020.
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020.
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018.
Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019.
PowerShelter Kit II, nooutage.com, Sep. 6, 2019.
EMPengineering.com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia.
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology G{umlaut over ( )}oteborg, Sweden 2015.
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429.
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004.
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010.
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en_wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960.
Wikipedia,Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950.
HCI JET Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ.
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018.
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference.
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018.
Frac Shack, Bi-Fuel FracFueller brochure, 2011.
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191.
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443.
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS.
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-injection Stations; American Petroleum Institute; API-63-144 (Jan. 1, 1963).
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967).
Porter, John A. (Solar Division International Harvester Co.), Modern Industrial Gas Turbines for the Oil Field; American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967).
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969).
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.).
Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian).
Provisional Applications (1)
Number Date Country
62899975 Sep 2019 US
Divisions (2)
Number Date Country
Parent 17122433 Dec 2020 US
Child 17154601 US
Parent 15929924 May 2020 US
Child 17122433 US