This disclosure relates to embodiments of systems and methods for the removal and/or positioning of a direct drive unit housed in an enclosure, such as a direct drive turbine (DDT) when connected to a gearbox for driving a driveshaft, which, in turn, may be connected to a pump such as for use in a hydraulic fracturing system.
Traditional fracturing pumping fleets have had fuel supplied from a single fuel source. In such units, when a unit runs low on fuel (for example diesel), that unit is shutdown while another stand by unit is brought in, refueled, and then put into service. Some inefficiencies included in this process are that the unit once low on primary fuel must be stopped, refueled while another unit is simultaneously being introduced into its place to make up for the loss of the pumping power that the unit provides. This may affect the pumping performance during a section as well as requiring human intervention to perform the refueling, lining up suction and discharge valves. This may require multiple personnel to relay back the information so the process is performed in the correct series of steps. Using a single fuel source also limits the ability for the fracturing fleet to make it continuously through a section when low on fuel which results in delays in pumping completion.
In addition, in cases where the unit needs to be taken offline for maintenance or replacement, significant disassembly is required to remove the unit from its enclosure and to install a replacement unit, potentially resulting in excessive downtime. In some cases, the entire trailer and enclosure need to be removed from the site so a new, fully equipped trailer may be moved into place.
Accordingly, it may be seen that a need exists for more efficient ways of accessing the drive units for maintenance purposes and/or replacement with minimum disruption to the system operations and the surrounding equipment. The present disclosure addresses these and other related and unrelated problems in the art.
According to one embodiment of the disclosure, a method of removing a direct drive unit (DDU) housed in an enclosure. The DDU includes a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power hydraulic fracturing operations. The method may include accessing the enclosure. The enclosure contains air inlet ducting connected to the turbine engine and air exhaust ducting connected to the turbine engine. The method may further include disconnecting the turbine engine from the air inlet ducting, disconnecting the turbine engine from at least one fuel line, disconnecting the gearbox from the driveshaft, disconnecting the turbine engine from at least one exhaust flange connected to the air exhaust ducting, and operating a DDU positioner assembly to position the DDU for withdrawal from the enclosure, and removing the DDU from the enclosure.
According to another embodiment of the disclosure, a direct drive unit (DDU) positioner assembly is disclosed for positioning a DDU housed in an enclosure for removal from the enclosure. The DDU includes a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power hydraulic fracturing operations. The DDU positioner assembly may include a plurality of longitudinal rails extending in a longitudinal direction along the central axis of the DDU and a plurality of lateral rails extending in a lateral direction transverse to the longitudinal direction. The DDU positioner assembly may further include a platform slidably connected to the plurality of lateral rails. The plurality of longitudinal rails may be mounted on the platform and the DDU may be slidably connected to the longitudinal rails. The DDU may be movable in the longitudinal direction along the longitudinal rails and the platform may be movable in the lateral direction along the lateral rails.
According to yet another embodiment of the disclosure, a direct drive unit (DDU) positioner assembly is disclosed for positioning a DDU housed in an enclosure for removal from the enclosure. The DDU includes a gearbox and a turbine engine connected to the gearbox for driving a driveshaft connected to a pump for use in high-pressure, high-power, hydraulic fracturing operations. The DDU positioner assembly may include a platform connected to a support of the gearbox and mounted on an enclosure base of the enclosure. The enclosure base may have a plurality of lubrication grooves for facilitating sliding movement of the platform relative to the enclosure base. The DDU positioner assembly may include a lubricator to convey lubricant to the lubrication grooves. The platform may be fixedly attached to the enclosure base by one or more fasteners during operation of the DDU and in slidable engagement with the enclosure base upon removal of the one or more fasteners.
Those skilled in the art will appreciate the benefits of various additional embodiments reading the following detailed description of the embodiments with reference to the below-listed drawing figures. It is within the scope of the present disclosure that the above-discussed aspects be provided both individually and in various combinations.
According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings may be expanded or reduced to more clearly illustrate the embodiments of the disclosure.
Corresponding parts are designated by corresponding reference numbers throughout the drawings.
Generally, this disclosure is directed to a direct drive unit (DDU) positioner assembly, positioning system, removal system, and/or associated mechanisms that will allow a DDU including a gearbox and a turbine engine connected to the gearbox to be detached from surrounding equipment and removed through the side of an enclosure housing the direct drive unit. The system will allow for inspections, maintenance, or even a complete exchange of the direct drive unit with another if necessary.
In the illustrated embodiment, the gas turbine engine 25 is a Vericor Model TF50F bi-fuel turbine; however, the direct drive unit 23 may include other gas turbines or suitable drive units, systems, and/or mechanisms suitable for use as a hydraulic fracturing pump drive without departing from the disclosure. The gas turbine engine 25 is cantilever mounted to the gearbox 27 with the gearbox supported by the floor 41 of the enclosure 21. The gearbox 27 may be a reduction helical gearbox that has a constant running power rating of 5500 SHP and intermittent power output of 5850 SHP, or other suitable gearbox. It should also be noted that, while the disclosure primarily describes the systems and mechanisms for use with direct drive units 23 to operate fracturing pumping units 33, the disclosed systems and mechanisms may also be directed to other equipment within the well stimulation industry such as, for example, blenders, cementing units, power generators and related equipment, without departing from the scope of the disclosure.
As shown in
Exemplary loading calculations for sizing the guide rails 105, 107, 109, 111 are shown below and are based on the Vericor TF50F turbine parameters as follows: approximate turbine weight, 1475 lbs.; approximate fuel system weight, 85 lbs.; approximate gearbox weight, 4000 lbs.; for a total approximate weight of 5559 lbs. Various other parameters may be applicable based on the make, model, and size of the gas turbine engine 25.
Because of the arrangement the direct drive unit 23 including the gas turbine engine 25 cantilever mounted onto the gearbox 27 and extending in the longitudinal direction L1 from the gearbox, there is added load put onto the rear lateral guide rollers 115 and the rear longitudinal guide rollers 121, 123 (the guide rollers mounted closest to the gas turbine engine). Accordingly, an increased load rating may be applied to the rear guide rollers 115, 121, 123 if required. The calculation of the cantilever load and the reaction forces may be calculated with the formulas shown below, which may also be used for further design and implementation of the disclosed removal mechanisms.
Maximum Reaction at the fixed end may be expressed as: RA=qL.
where: RA=reaction force in A (N, lb), q=uniform distributed load (N/m, N/mm, lb/in), and
L=length of cantilever beam (m, mm, in).
Maximum Moment at the fixed end may be expressed as MA=−q L2/2
Maximum Deflection at the end may be expressed as δB=q L4/(8 E I).
where: δB=maximum deflection in B (m, mm, in).
In one embodiment, the longitudinal guide rollers 121, 123 connected to the support structure 127 of the gearbox 27 are positioned between each pair of the lateral guide rollers 115, 117 to ensure equal weight distribution over the platform 103 and to avoid cantilever loading the platform. Different configurations of platforms, sliders, rails and mounts are contemplated and considered within the scope of the disclosure. The configurations of the DDU positioner assembly 101 may vary to suit a particular DDU 23 with various alternative combinations of makes, model, and sizes of the gas turbine engine 25 and the gearbox 27.
In one embodiment, the guide rails 105, 107, 109, 111 are made from a steel composition that has been mill finished and shot blasted to protect the rail from the high heat environment within the turbine enclosure 21 and ensure strength retention under the exposed temperatures. In one embodiment, the platform 103 is constructed out of a composite material; however, other materials are contemplated and considered within the scope of the disclosure, such as but not limited to, steel or stainless steel. The guide rails 105, 107, 109, 111, platform 103, and/or other components of the DDU positioner assembly 101 may be made of various other suitable materials without departing from the scope of the disclosure.
Once the gas turbine engine 25 is disconnected from the respective connections and the gearbox 27 is disconnected from the driveshaft 31, the DDU positioner assembly 101 is operated to position the direct drive unit 23 for withdrawal from the enclosure 21. As shown in
In one embodiment, the DDU positioner assembly 201 includes a platform 203 that supports the gearbox 27 and has a top surface 205, a bottom surface 207, two sides 208, and two ends 210. The gearbox 27 is fixedly mounted to the top surface 205 of the platform 203. The platform 203 is slidably mounted on the base 41 of the enclosure 21 with the bottom surface 207 of the platform being in slidable engagement with the floor of the enclosure. In a first or operating position (
In one embodiment, the DDU positioner assembly 201 includes a lubricator or lubrication system 221 (
In one embodiment, the DDU positioner assembly 201 includes drive fasteners 241 mounted at one end 210 of the platform 203. In the illustrated embodiment, the drive fasteners 241 include a bracket 245 mounted to the floor 41 of the enclosure 21 and an impact screw 247 operatively connected to the bracket and the platform 203. The drive fasteners 241 may have other components and be otherwise arranged without departing from the disclosure. Further, more or less than two drive fasteners 241 may be provided without departing from the disclosure.
As shown in
The lifting mechanism 261 may move the DDU 23 to the third position (
Having now described some illustrative embodiments of the disclosure, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modifications and other embodiments are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the disclosure. In particular, although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Those skilled in the art should appreciate that the parameters and configurations described herein are exemplary and that actual parameters and/or configurations will depend on the specific application in which the systems and techniques are used. Those skilled in the art should also recognize or be able to ascertain, using no more than routine experimentation, equivalents to the specific embodiments of the disclosure. It is, therefore, to be understood that the embodiments described herein are presented by way of example only and that, within the scope of any appended claims and equivalents thereto; the embodiments of the disclosure may be practiced other than as specifically described.
This application is a continuation of U.S. Non-Provisional application Ser. No. 17/154,601, filed Jan. 21, 2021, titled “DIRECT DRIVE UNIT REMOVAL SYSTEM AND ASSOCIATED METHODS,” which is a divisional of U.S. Non-Provisional application Ser. No. 17/122,433, filed Dec. 15, 2020, titled “DIRECT DRIVE UNIT REMOVAL SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 10,961,912, issued Mar. 30, 2021, which is a divisional of U.S. Non-Provisional application Ser. No. 15/929,924, filed May 29, 2020, titled “DIRECT DRIVE UNIT REMOVAL SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 10,895,202, issued Jan. 19, 2021, which claims the benefit of and priority to U.S. Provisional Application No. 62/899,975, filed Sep. 13, 2019, titled “TURBINE REMOVAL SYSTEM,” the entire disclosures of each of which are incorporated herein by reference.
Furthermore, the scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., above and to the above-described embodiments, which shall be considered to be within the scope of this disclosure. Accordingly, various features and characteristics as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiment, and numerous variations, modifications, and additions further may be made thereto without departing from the spirit and scope of the present disclosure as set forth in the appended claims.
This application is a continuation of U.S. Non-Provisional application Ser. No. 17/154,601, filed Jan. 21, 2021, titled “DIRECT DRIVE UNIT REMOVAL SYSTEM AND ASSOCIATED METHODS,” which is a divisional of U.S. Non-Provisional application Ser. No. 17/122,433, filed Dec. 15, 2020, titled “DIRECT DRIVE UNIT REMOVAL SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 10,961,912, issued Mar. 30, 2021, which is a divisional of U.S. Non-Provisional application Ser. No. 15/929,924, filed May 29, 2020, titled “DIRECT DRIVE UNIT REMOVAL SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 10,895,202, issued Jan. 19, 2021, which claims the benefit of and priority to U.S. Provisional Application No. 62/899,975, filed Sep. 13, 2019, titled “TURBINE REMOVAL SYSTEM,” the entire disclosures of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2498229 | Adler | Feb 1950 | A |
2535703 | Smith et al. | Dec 1950 | A |
2868004 | Runde | Jan 1959 | A |
2940377 | Darnell et al. | Jun 1960 | A |
2947141 | Russ | Aug 1960 | A |
3068796 | Pfluger et al. | Dec 1962 | A |
3191517 | Solzman | Jun 1965 | A |
3257031 | Dietz | Jun 1966 | A |
3378074 | Kiel | Apr 1968 | A |
3463612 | Whitsel | Aug 1969 | A |
3550696 | Kenneday | Dec 1970 | A |
3656582 | Alcock | Apr 1972 | A |
3739872 | McNair | Jun 1973 | A |
3759063 | Bendall | Sep 1973 | A |
3765173 | Harris | Oct 1973 | A |
3773438 | Hall et al. | Nov 1973 | A |
3786835 | Finger | Jan 1974 | A |
3791682 | Mitchell | Feb 1974 | A |
3796045 | Foster | Mar 1974 | A |
3820922 | Buse et al. | Jun 1974 | A |
4010613 | McInerney | Mar 1977 | A |
4031407 | Reed | Jun 1977 | A |
4059045 | McClain | Nov 1977 | A |
4086976 | Holm et al. | May 1978 | A |
4117342 | Melley, Jr. | Sep 1978 | A |
4204808 | Reese et al. | May 1980 | A |
4209079 | Marchal et al. | Jun 1980 | A |
4222229 | Uram | Sep 1980 | A |
4269569 | Hoover | May 1981 | A |
4311395 | Douthitt et al. | Jan 1982 | A |
4330237 | Battah | May 1982 | A |
4341508 | Rambin, Jr. | Jul 1982 | A |
4357027 | Zeitlow | Nov 1982 | A |
4383478 | Jones | May 1983 | A |
4402504 | Christian | Sep 1983 | A |
4457325 | Green | Jul 1984 | A |
4470771 | Hall et al. | Sep 1984 | A |
4483684 | Black | Nov 1984 | A |
4505650 | Hannett et al. | Mar 1985 | A |
4574880 | Handke | Mar 1986 | A |
4584654 | Crane | Apr 1986 | A |
4672813 | David | Jun 1987 | A |
4754607 | Mackay | Jul 1988 | A |
4782244 | Wakimoto | Nov 1988 | A |
4796777 | Keller | Jan 1989 | A |
4869209 | Young | Sep 1989 | A |
4913625 | Gerlowski | Apr 1990 | A |
4983259 | Duncan | Jan 1991 | A |
4990058 | Eslinger | Feb 1991 | A |
5135361 | Dion | Aug 1992 | A |
5245970 | Iwaszkiewicz et al. | Sep 1993 | A |
5291842 | Sallstrom et al. | Mar 1994 | A |
5362219 | Paul et al. | Nov 1994 | A |
5537813 | Davis et al. | Jul 1996 | A |
5553514 | Walkowc | Sep 1996 | A |
5560195 | Anderson et al. | Oct 1996 | A |
5586444 | Fung | Dec 1996 | A |
5622245 | Reik | Apr 1997 | A |
5626103 | Haws et al. | May 1997 | A |
5651400 | Corts et al. | Jul 1997 | A |
5678460 | Walkowc | Oct 1997 | A |
5717172 | Griffin, Jr. et al. | Feb 1998 | A |
5720598 | de Chizzelle | Feb 1998 | A |
5839888 | Harrison | Nov 1998 | A |
5846062 | Yanagisawa et al. | Dec 1998 | A |
5983962 | Gerardot | Nov 1999 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6050080 | Horner | Apr 2000 | A |
6067962 | Bartley et al. | May 2000 | A |
6071188 | O'Neill et al. | Jun 2000 | A |
6074170 | Bert et al. | Jun 2000 | A |
6123751 | Nelson et al. | Sep 2000 | A |
6129335 | Yokogi | Oct 2000 | A |
6145318 | Kaplan et al. | Nov 2000 | A |
6230481 | Jahr | May 2001 | B1 |
6279309 | Lawlor, II et al. | Aug 2001 | B1 |
6321860 | Reddoch | Nov 2001 | B1 |
6334746 | Nguyen et al. | Jan 2002 | B1 |
6530224 | Conchieri | Mar 2003 | B1 |
6543395 | Green | Apr 2003 | B2 |
6655922 | Flek | Dec 2003 | B1 |
6765304 | Baten et al. | Jul 2004 | B2 |
6786051 | Kristich et al. | Sep 2004 | B2 |
6851514 | Han et al. | Feb 2005 | B2 |
6859740 | Stephenson et al. | Feb 2005 | B2 |
6901735 | Lohn | Jun 2005 | B2 |
7007966 | Campion | Mar 2006 | B2 |
7065953 | Kopko | Jun 2006 | B1 |
7143016 | Discenzo et al. | Nov 2006 | B1 |
7222015 | Davis et al. | May 2007 | B2 |
7388303 | Seiver | Jun 2008 | B2 |
7545130 | Latham | Jun 2009 | B2 |
7552903 | Dunn et al. | Jun 2009 | B2 |
7563076 | Brunet et al. | Jul 2009 | B2 |
7563413 | Naets et al. | Jul 2009 | B2 |
7594424 | Fazekas | Sep 2009 | B2 |
7627416 | Batenburg et al. | Dec 2009 | B2 |
7677316 | Butler et al. | Mar 2010 | B2 |
7721521 | Kunkle et al. | May 2010 | B2 |
7730711 | Kunkle et al. | Jun 2010 | B2 |
7779961 | Matte | Aug 2010 | B2 |
7789452 | Dempsey et al. | Sep 2010 | B2 |
7845413 | Shampine et al. | Dec 2010 | B2 |
7886702 | Jerrell et al. | Feb 2011 | B2 |
7900724 | Promersberger et al. | Mar 2011 | B2 |
7921914 | Bruins et al. | Apr 2011 | B2 |
7938151 | Hockner | May 2011 | B2 |
7980357 | Edwards | Jul 2011 | B2 |
8083504 | Williams et al. | Dec 2011 | B2 |
8186334 | Ooyama | May 2012 | B2 |
8196555 | Ikeda et al. | Jun 2012 | B2 |
8202354 | Iijima | Jun 2012 | B2 |
8316936 | Roddy et al. | Nov 2012 | B2 |
8414673 | Raje et al. | Apr 2013 | B2 |
8506267 | Gambier et al. | Aug 2013 | B2 |
8575873 | Peterson et al. | Nov 2013 | B2 |
8616005 | Cousino, Sr. et al. | Dec 2013 | B1 |
8621873 | Robertson et al. | Jan 2014 | B2 |
8672606 | Glynn et al. | Mar 2014 | B2 |
8707853 | Dille et al. | Apr 2014 | B1 |
8714253 | Sherwood et al. | May 2014 | B2 |
8757918 | Ramnarain et al. | Jun 2014 | B2 |
8770329 | Spitler | Jul 2014 | B2 |
8784081 | Blume | Jul 2014 | B1 |
8789601 | Broussard et al. | Jul 2014 | B2 |
8794307 | Coquilleau et al. | Aug 2014 | B2 |
8801394 | Anderson | Aug 2014 | B2 |
8851441 | Acuna et al. | Oct 2014 | B2 |
8905056 | Kendrick | Dec 2014 | B2 |
8951019 | Hains et al. | Feb 2015 | B2 |
8973560 | Krug | Mar 2015 | B2 |
8997904 | Cryer et al. | Apr 2015 | B2 |
9032620 | Frassinelli et al. | May 2015 | B2 |
9057247 | Kumar et al. | Jun 2015 | B2 |
9103193 | Coli et al. | Aug 2015 | B2 |
9121257 | Coli et al. | Sep 2015 | B2 |
9140110 | Coli et al. | Sep 2015 | B2 |
9187982 | Dehring et al. | Nov 2015 | B2 |
9206667 | Khvoshchev et al. | Dec 2015 | B2 |
9212643 | Deliyski | Dec 2015 | B2 |
9222346 | Walls | Dec 2015 | B1 |
9341055 | Weightman et al. | May 2016 | B2 |
9346662 | Van Vliet et al. | May 2016 | B2 |
9366114 | Coli et al. | Jun 2016 | B2 |
9376786 | Numasawa | Jun 2016 | B2 |
9394829 | Cabeen et al. | Jul 2016 | B2 |
9395049 | Vicknair et al. | Jul 2016 | B2 |
9401670 | Minato et al. | Jul 2016 | B2 |
9410410 | Broussard et al. | Aug 2016 | B2 |
9410546 | Jaeger et al. | Aug 2016 | B2 |
9429078 | Crowe et al. | Aug 2016 | B1 |
9488169 | Cochran et al. | Nov 2016 | B2 |
9493997 | Liu et al. | Nov 2016 | B2 |
9512783 | Veilleux et al. | Dec 2016 | B2 |
9534473 | Morris et al. | Jan 2017 | B2 |
9546652 | Yin | Jan 2017 | B2 |
9550501 | Ledbetter | Jan 2017 | B2 |
9556721 | Jang et al. | Jan 2017 | B2 |
9562420 | Morris et al. | Feb 2017 | B2 |
9570945 | Fischer | Feb 2017 | B2 |
9579980 | Cryer et al. | Feb 2017 | B2 |
9587649 | Oehring | Mar 2017 | B2 |
9611728 | Oehring | Apr 2017 | B2 |
9617808 | Liu et al. | Apr 2017 | B2 |
9638101 | Crowe et al. | May 2017 | B1 |
9638194 | Wiegman et al. | May 2017 | B2 |
9650871 | Oehring et al. | May 2017 | B2 |
9656762 | Kamath et al. | May 2017 | B2 |
9689316 | Crom | Jun 2017 | B1 |
9739130 | Young | Aug 2017 | B2 |
9764266 | Carter | Sep 2017 | B1 |
9777748 | Lu et al. | Oct 2017 | B2 |
9803467 | Tang et al. | Oct 2017 | B2 |
9803793 | Davi et al. | Oct 2017 | B2 |
9809308 | Aguilar et al. | Nov 2017 | B2 |
9829002 | Crom | Nov 2017 | B2 |
9840897 | Larson | Dec 2017 | B2 |
9840901 | Oering et al. | Dec 2017 | B2 |
9850422 | Lestz et al. | Dec 2017 | B2 |
9856131 | Moffitt | Jan 2018 | B1 |
9863279 | Laing et al. | Jan 2018 | B2 |
9869305 | Crowe et al. | Jan 2018 | B1 |
9879609 | Crowe et al. | Jan 2018 | B1 |
9893500 | Oehring et al. | Feb 2018 | B2 |
9893660 | Peterson et al. | Feb 2018 | B2 |
9920615 | Zhang et al. | Mar 2018 | B2 |
9945365 | Hernandez et al. | Apr 2018 | B2 |
9964052 | Millican et al. | May 2018 | B2 |
9970278 | Broussard et al. | May 2018 | B2 |
9981840 | Shock | May 2018 | B2 |
9995102 | Dillie et al. | Jun 2018 | B2 |
9995218 | Oehring et al. | Jun 2018 | B2 |
10008880 | Vicknair et al. | Jun 2018 | B2 |
10008912 | Davey et al. | Jun 2018 | B2 |
10018096 | Wallimann et al. | Jul 2018 | B2 |
10020711 | Oehring et al. | Jul 2018 | B2 |
10024123 | Steffenhagen et al. | Jul 2018 | B2 |
10029289 | Wendorski et al. | Jul 2018 | B2 |
10030579 | Austin et al. | Jul 2018 | B2 |
10036238 | Oehring | Jul 2018 | B2 |
10040541 | Wilson et al. | Aug 2018 | B2 |
10060293 | Del Bono | Aug 2018 | B2 |
10060349 | Álvarez et al. | Aug 2018 | B2 |
10077933 | Nelson et al. | Sep 2018 | B2 |
10082137 | Graham et al. | Sep 2018 | B2 |
10094366 | Marica | Oct 2018 | B2 |
10100827 | Devan et al. | Oct 2018 | B2 |
10107084 | Coli et al. | Oct 2018 | B2 |
10107085 | Coli et al. | Oct 2018 | B2 |
10114061 | Frampton et al. | Oct 2018 | B2 |
10119381 | Oehring et al. | Nov 2018 | B2 |
10134257 | Zhang et al. | Nov 2018 | B2 |
10138098 | Sorensen et al. | Nov 2018 | B2 |
10151244 | Giancotti et al. | Dec 2018 | B2 |
10174599 | Shampine et al. | Jan 2019 | B2 |
10184397 | Austin et al. | Jan 2019 | B2 |
10196258 | Kalala et al. | Feb 2019 | B2 |
10221856 | Hernandez et al. | Mar 2019 | B2 |
10227854 | Glass | Mar 2019 | B2 |
10227855 | Coli et al. | Mar 2019 | B2 |
10246984 | Payne et al. | Apr 2019 | B2 |
10247182 | Zhang et al. | Apr 2019 | B2 |
10254732 | Oehring et al. | Apr 2019 | B2 |
10267439 | Pryce et al. | Apr 2019 | B2 |
10280724 | Hinderliter | May 2019 | B2 |
10287943 | Schiltz | May 2019 | B1 |
10288519 | De La Cruz | May 2019 | B2 |
10303190 | Shock | May 2019 | B2 |
10316832 | Byrne | Jun 2019 | B2 |
10317875 | Pandurangan et al. | Jun 2019 | B2 |
10337402 | Austin et al. | Jul 2019 | B2 |
10358035 | Cryer | Jul 2019 | B2 |
10371012 | Davis et al. | Aug 2019 | B2 |
10374485 | Morris et al. | Aug 2019 | B2 |
10378326 | Morris et al. | Aug 2019 | B2 |
10393108 | Chong et al. | Aug 2019 | B2 |
10407990 | Oehring et al. | Sep 2019 | B2 |
10408031 | Oehring et al. | Sep 2019 | B2 |
10415348 | Zhang et al. | Sep 2019 | B2 |
10415557 | Crowe et al. | Sep 2019 | B1 |
10415562 | Kajita et al. | Sep 2019 | B2 |
RE47695 | Case et al. | Nov 2019 | E |
10465689 | Cram | Nov 2019 | B2 |
10478753 | Elms et al. | Nov 2019 | B1 |
10526882 | Oehring et al. | Jan 2020 | B2 |
10563649 | Zhang et al. | Feb 2020 | B2 |
10577910 | Stephenson | Mar 2020 | B2 |
10584645 | Nakagawa et al. | Mar 2020 | B2 |
10598258 | Oehring et al. | Mar 2020 | B2 |
10610842 | Chong | Apr 2020 | B2 |
10711787 | Darley | Jul 2020 | B1 |
10738580 | Fischer et al. | Aug 2020 | B1 |
10753153 | Fischer et al. | Aug 2020 | B1 |
10753165 | Fischer et al. | Aug 2020 | B1 |
10794165 | Fischer et al. | Oct 2020 | B2 |
10794166 | Reckels et al. | Oct 2020 | B2 |
10801311 | Cui et al. | Oct 2020 | B1 |
10815764 | Yeung et al. | Oct 2020 | B1 |
10815978 | Glass | Oct 2020 | B2 |
10830032 | Zhang et al. | Nov 2020 | B1 |
10859203 | Cui et al. | Dec 2020 | B1 |
10864487 | Han et al. | Dec 2020 | B1 |
10865624 | Cui et al. | Dec 2020 | B1 |
10865631 | Zhang et al. | Dec 2020 | B1 |
10870093 | Zhong et al. | Dec 2020 | B1 |
10895202 | Yeung et al. | Jan 2021 | B1 |
10907459 | Yeung et al. | Feb 2021 | B1 |
10927774 | Cai et al. | Feb 2021 | B2 |
10954770 | Yeung et al. | Mar 2021 | B1 |
10954855 | Ji et al. | Mar 2021 | B1 |
10961908 | Yeung et al. | Mar 2021 | B1 |
10961912 | Yeung et al. | Mar 2021 | B1 |
10961914 | Yeung et al. | Mar 2021 | B1 |
10961993 | Ji et al. | Mar 2021 | B1 |
10982523 | Hill et al. | Apr 2021 | B1 |
10989019 | Cai et al. | Apr 2021 | B2 |
10995564 | Miller et al. | May 2021 | B2 |
11002189 | Yeung et al. | May 2021 | B2 |
11015423 | Yeung et al. | May 2021 | B1 |
11035214 | Cui et al. | Jun 2021 | B2 |
11047379 | Li et al. | Jun 2021 | B1 |
11053853 | Li et al. | Jul 2021 | B2 |
11060455 | Yeung et al. | Jul 2021 | B1 |
11085281 | Yeung et al. | Aug 2021 | B1 |
11105250 | Zhang et al. | Aug 2021 | B1 |
11105266 | Zhou et al. | Aug 2021 | B2 |
11125156 | Zhang et al. | Sep 2021 | B2 |
11143000 | Li et al. | Oct 2021 | B2 |
11143006 | Zhang et al. | Oct 2021 | B1 |
11236739 | Yeung et al. | Feb 2022 | B2 |
11242737 | Zhang et al. | Feb 2022 | B2 |
11243509 | Cai et al. | Feb 2022 | B2 |
11251650 | Liu et al. | Feb 2022 | B1 |
20040016245 | Pierson | Jan 2004 | A1 |
20040074238 | Wantanabe et al. | Apr 2004 | A1 |
20040076526 | Fukano et al. | Apr 2004 | A1 |
20040187950 | Cohen et al. | Sep 2004 | A1 |
20040219040 | Kugelev et al. | Nov 2004 | A1 |
20050051322 | Speer | Mar 2005 | A1 |
20050139286 | Poulter | Jun 2005 | A1 |
20050196298 | Manning | Sep 2005 | A1 |
20050226754 | Orr et al. | Oct 2005 | A1 |
20050274134 | Ryu et al. | Dec 2005 | A1 |
20060061091 | Osterloh | Mar 2006 | A1 |
20060062914 | Garg et al. | Mar 2006 | A1 |
20060196251 | Richey | Sep 2006 | A1 |
20060211356 | Grassman | Sep 2006 | A1 |
20060260331 | Andreychuk | Nov 2006 | A1 |
20070029090 | Andreychuk et al. | Feb 2007 | A1 |
20070066406 | Keller et al. | Mar 2007 | A1 |
20070107981 | Sicotte | May 2007 | A1 |
20070125544 | Robinson et al. | Jun 2007 | A1 |
20070181212 | Fell | Aug 2007 | A1 |
20070277982 | Shampine et al. | Dec 2007 | A1 |
20070295569 | Manzoor et al. | Dec 2007 | A1 |
20080006089 | Adnan et al. | Jan 2008 | A1 |
20080098891 | Feher | May 2008 | A1 |
20080161974 | Alston | Jul 2008 | A1 |
20080264625 | Ochoa | Oct 2008 | A1 |
20080264649 | Crawford | Oct 2008 | A1 |
20090064685 | Busekros et al. | Mar 2009 | A1 |
20090068031 | Gambier et al. | Mar 2009 | A1 |
20090092510 | Williams et al. | Apr 2009 | A1 |
20090124191 | Van Becelaere et al. | May 2009 | A1 |
20100019626 | Stout et al. | Jan 2010 | A1 |
20100071899 | Coquilleau et al. | Mar 2010 | A1 |
20100218508 | Brown et al. | Sep 2010 | A1 |
20100300683 | Looper et al. | Dec 2010 | A1 |
20100310384 | Stephenson et al. | Dec 2010 | A1 |
20110052423 | Gambier et al. | Mar 2011 | A1 |
20110054704 | Karpman et al. | Mar 2011 | A1 |
20110085924 | Shampine et al. | Apr 2011 | A1 |
20110146244 | Farman et al. | Jun 2011 | A1 |
20110146246 | Farman et al. | Jun 2011 | A1 |
20110197988 | Van Vliet et al. | Aug 2011 | A1 |
20110241888 | Lu et al. | Oct 2011 | A1 |
20110265443 | Ansari | Nov 2011 | A1 |
20110272158 | Neal | Nov 2011 | A1 |
20120048242 | Sumilla et al. | Mar 2012 | A1 |
20120137699 | Montagne et al. | Jun 2012 | A1 |
20120179444 | Ganguly et al. | Jul 2012 | A1 |
20120192542 | Chillar et al. | Aug 2012 | A1 |
20120199001 | Chillar et al. | Aug 2012 | A1 |
20120204627 | Anderl et al. | Aug 2012 | A1 |
20120255734 | Coli et al. | Oct 2012 | A1 |
20120310509 | Pardo et al. | Dec 2012 | A1 |
20130068307 | Hains et al. | Mar 2013 | A1 |
20130087045 | Sullivan et al. | Apr 2013 | A1 |
20130087945 | Kusters et al. | Apr 2013 | A1 |
20130189915 | Hazard | Jul 2013 | A1 |
20130259707 | Yin | Oct 2013 | A1 |
20130284455 | Kajaria et al. | Oct 2013 | A1 |
20130300341 | Gillette | Nov 2013 | A1 |
20130306322 | Sanborn | Nov 2013 | A1 |
20140010671 | Cryer et al. | Jan 2014 | A1 |
20140013768 | Laing et al. | Jan 2014 | A1 |
20140032082 | Gehrke et al. | Jan 2014 | A1 |
20140044517 | Saha et al. | Feb 2014 | A1 |
20140048253 | Andreychuk | Feb 2014 | A1 |
20140090729 | Coulter et al. | Apr 2014 | A1 |
20140090742 | Coskrey et al. | Apr 2014 | A1 |
20140094105 | Lundh et al. | Apr 2014 | A1 |
20140123621 | Driessens et al. | May 2014 | A1 |
20140130422 | Laing et al. | May 2014 | A1 |
20140138079 | Broussard et al. | May 2014 | A1 |
20140144641 | Chandler | May 2014 | A1 |
20140147291 | Burnette | May 2014 | A1 |
20140158345 | Jang et al. | Jun 2014 | A1 |
20140196459 | Futa et al. | Jul 2014 | A1 |
20140216736 | Leugemors et al. | Aug 2014 | A1 |
20140219824 | Burnette | Aug 2014 | A1 |
20140251623 | Lestz et al. | Sep 2014 | A1 |
20140277772 | Lopez et al. | Sep 2014 | A1 |
20140290266 | Veilleux, Jr. et al. | Oct 2014 | A1 |
20140318638 | Harwood et al. | Oct 2014 | A1 |
20150078924 | Zhang et al. | Mar 2015 | A1 |
20150101344 | Jarrier et al. | Apr 2015 | A1 |
20150114652 | Lestz et al. | Apr 2015 | A1 |
20150129210 | Chong et al. | May 2015 | A1 |
20150135659 | Jarrier et al. | May 2015 | A1 |
20150159553 | Kippel et al. | Jun 2015 | A1 |
20150192117 | Bridges | Jul 2015 | A1 |
20150204148 | Liu et al. | Jul 2015 | A1 |
20150204322 | Iund et al. | Jul 2015 | A1 |
20150211512 | Wiegman et al. | Jul 2015 | A1 |
20150217672 | Shampine et al. | Aug 2015 | A1 |
20150226140 | Zhang et al. | Aug 2015 | A1 |
20150252661 | Glass | Sep 2015 | A1 |
20150275891 | Chong et al. | Oct 2015 | A1 |
20150340864 | Compton | Nov 2015 | A1 |
20150345385 | Santini | Dec 2015 | A1 |
20150369351 | Hermann et al. | Dec 2015 | A1 |
20160032703 | Broussard et al. | Feb 2016 | A1 |
20160102581 | Del Bono | Apr 2016 | A1 |
20160105022 | Oehring et al. | Apr 2016 | A1 |
20160108713 | Dunaeva et al. | Apr 2016 | A1 |
20160177675 | Morris et al. | Jun 2016 | A1 |
20160177945 | Byrne et al. | Jun 2016 | A1 |
20160186671 | Austin et al. | Jun 2016 | A1 |
20160195082 | Wiegman et al. | Jul 2016 | A1 |
20160215774 | Oklejas et al. | Jul 2016 | A1 |
20160230525 | Lestz et al. | Aug 2016 | A1 |
20160244314 | Van Vliet et al. | Aug 2016 | A1 |
20160248230 | Tawy et al. | Aug 2016 | A1 |
20160253634 | Thomeer et al. | Sep 2016 | A1 |
20160258267 | Payne et al. | Sep 2016 | A1 |
20160273346 | Tang et al. | Sep 2016 | A1 |
20160290114 | Oehring et al. | Oct 2016 | A1 |
20160319650 | Oehring et al. | Nov 2016 | A1 |
20160326845 | Djikpesse et al. | Nov 2016 | A1 |
20160348479 | Oehring et al. | Dec 2016 | A1 |
20160369609 | Morris et al. | Dec 2016 | A1 |
20170009905 | Arnold | Jan 2017 | A1 |
20170016433 | Chong et al. | Jan 2017 | A1 |
20170030177 | Oehring et al. | Feb 2017 | A1 |
20170038137 | Turney | Feb 2017 | A1 |
20170074076 | Joseph et al. | Mar 2017 | A1 |
20170074089 | Agarwal et al. | Mar 2017 | A1 |
20170082110 | Lammers | Mar 2017 | A1 |
20170089189 | Norris et al. | Mar 2017 | A1 |
20170114613 | Lecerf et al. | Apr 2017 | A1 |
20170114625 | Norris et al. | Apr 2017 | A1 |
20170122310 | Ladron de Guevara | May 2017 | A1 |
20170145918 | Oehring et al. | May 2017 | A1 |
20170191350 | Johns et al. | Jul 2017 | A1 |
20170218727 | Oehring et al. | Aug 2017 | A1 |
20170226839 | Broussard et al. | Aug 2017 | A1 |
20170226998 | Zhang et al. | Aug 2017 | A1 |
20170227002 | Mikulski et al. | Aug 2017 | A1 |
20170233103 | Teicholz et al. | Aug 2017 | A1 |
20170234165 | Kersey et al. | Aug 2017 | A1 |
20170234308 | Buckley | Aug 2017 | A1 |
20170248034 | Dzieciol et al. | Aug 2017 | A1 |
20170275149 | Schmidt | Sep 2017 | A1 |
20170288400 | Williams | Oct 2017 | A1 |
20170292409 | Aguilar et al. | Oct 2017 | A1 |
20170302135 | Cory | Oct 2017 | A1 |
20170305736 | Haile et al. | Oct 2017 | A1 |
20170306847 | Suciu et al. | Oct 2017 | A1 |
20170322086 | Luharuka | Nov 2017 | A1 |
20170334448 | Schwunk | Nov 2017 | A1 |
20170335842 | Robinson et al. | Nov 2017 | A1 |
20170350471 | Steidl et al. | Dec 2017 | A1 |
20170370199 | Witkowski et al. | Dec 2017 | A1 |
20170370480 | Witkowski et al. | Dec 2017 | A1 |
20180034280 | Pedersen | Feb 2018 | A1 |
20180038328 | Louven et al. | Feb 2018 | A1 |
20180041093 | Miranda | Feb 2018 | A1 |
20180045202 | Crom | Feb 2018 | A1 |
20180038216 | Zhang et al. | Mar 2018 | A1 |
20180058171 | Roesner et al. | Mar 2018 | A1 |
20180156210 | Oehring et al. | Jun 2018 | A1 |
20180172294 | Owen | Jun 2018 | A1 |
20180183219 | Oehring et al. | Jun 2018 | A1 |
20180186442 | Maier | Jul 2018 | A1 |
20180187662 | Hill et al. | Jul 2018 | A1 |
20180209415 | Zhang et al. | Jul 2018 | A1 |
20180223640 | Keihany et al. | Aug 2018 | A1 |
20180224044 | Penney | Aug 2018 | A1 |
20180229998 | Shock | Aug 2018 | A1 |
20180258746 | Broussard et al. | Sep 2018 | A1 |
20180266412 | Stokkevag et al. | Sep 2018 | A1 |
20180278124 | Oehring et al. | Sep 2018 | A1 |
20180283102 | Cook | Oct 2018 | A1 |
20180283618 | Cook | Oct 2018 | A1 |
20180284817 | Cook et al. | Oct 2018 | A1 |
20180290877 | Shock | Oct 2018 | A1 |
20180291781 | Pedrini | Oct 2018 | A1 |
20180298731 | Bishop | Oct 2018 | A1 |
20180298735 | Conrad | Oct 2018 | A1 |
20180307255 | Bishop | Oct 2018 | A1 |
20180328157 | Bishop | Nov 2018 | A1 |
20180334893 | Oehring | Nov 2018 | A1 |
20180363435 | Coli et al. | Dec 2018 | A1 |
20180363436 | Coli et al. | Dec 2018 | A1 |
20180363437 | Coli et al. | Dec 2018 | A1 |
20180363438 | Coli et al. | Dec 2018 | A1 |
20190003272 | Morris et al. | Jan 2019 | A1 |
20190003329 | Morris et al. | Jan 2019 | A1 |
20190010793 | Hinderliter | Jan 2019 | A1 |
20190011051 | Yeung | Jan 2019 | A1 |
20190048993 | Akiyama et al. | Feb 2019 | A1 |
20190063263 | Davis et al. | Feb 2019 | A1 |
20190063341 | Davis | Feb 2019 | A1 |
20190067991 | Davis et al. | Feb 2019 | A1 |
20190071992 | Feng | Mar 2019 | A1 |
20190072005 | Fisher et al. | Mar 2019 | A1 |
20190078471 | Braglia et al. | Mar 2019 | A1 |
20190091619 | Huang | Mar 2019 | A1 |
20190106316 | Van Vliet et al. | Apr 2019 | A1 |
20190106970 | Oehring | Apr 2019 | A1 |
20190112908 | Coli et al. | Apr 2019 | A1 |
20190112910 | Oehring et al. | Apr 2019 | A1 |
20190119096 | Haile et al. | Apr 2019 | A1 |
20190120024 | Oehring et al. | Apr 2019 | A1 |
20190120031 | Gilje | Apr 2019 | A1 |
20190120134 | Goleczka et al. | Apr 2019 | A1 |
20190128247 | Douglas, III | May 2019 | A1 |
20190128288 | Konada et al. | May 2019 | A1 |
20190131607 | Gillette | May 2019 | A1 |
20190136677 | Shampine et al. | May 2019 | A1 |
20190153843 | Headrick | May 2019 | A1 |
20190154020 | Glass | May 2019 | A1 |
20190264667 | Byrne | May 2019 | A1 |
20190178234 | Beisel | Jun 2019 | A1 |
20190178235 | Coskrey et al. | Jun 2019 | A1 |
20190185312 | Bush et al. | Jun 2019 | A1 |
20190203572 | Morris et al. | Jul 2019 | A1 |
20190204021 | Morris et al. | Jul 2019 | A1 |
20190211661 | Reckies et al. | Jul 2019 | A1 |
20190211814 | Weightman et al. | Jul 2019 | A1 |
20190217258 | Bishop | Jul 2019 | A1 |
20190226317 | Payne et al. | Jul 2019 | A1 |
20190245348 | Hinderliter et al. | Aug 2019 | A1 |
20190249652 | Stephenson et al. | Aug 2019 | A1 |
20190249754 | Oehring et al. | Aug 2019 | A1 |
20190257297 | Botting et al. | Aug 2019 | A1 |
20190277279 | Byrne et al. | Sep 2019 | A1 |
20190277295 | Clybum et al. | Sep 2019 | A1 |
20190309585 | Miller et al. | Oct 2019 | A1 |
20190316447 | Oehring et al. | Oct 2019 | A1 |
20190316456 | Beisel et al. | Oct 2019 | A1 |
20190323337 | Glass et al. | Oct 2019 | A1 |
20190330923 | Gable et al. | Oct 2019 | A1 |
20190331117 | Gable et al. | Oct 2019 | A1 |
20190338762 | Curry et al. | Nov 2019 | A1 |
20190345920 | Surjaatmadja et al. | Nov 2019 | A1 |
20190353103 | Roberge | Nov 2019 | A1 |
20190356199 | Morris et al. | Nov 2019 | A1 |
20190376449 | Carrell | Dec 2019 | A1 |
20200003205 | Stokkevåg et al. | Jan 2020 | A1 |
20200011165 | George et al. | Jan 2020 | A1 |
20200040878 | Morris | Feb 2020 | A1 |
20200049136 | Stephenson | Feb 2020 | A1 |
20200049153 | Headrick et al. | Feb 2020 | A1 |
20200071998 | Oehring et al. | Mar 2020 | A1 |
20200072201 | Marica | Mar 2020 | A1 |
20200088202 | Sigmar et al. | Mar 2020 | A1 |
20200095854 | Hinderliter | Mar 2020 | A1 |
20200132058 | Mollatt | Apr 2020 | A1 |
20200141219 | Oehring et al. | May 2020 | A1 |
20200141907 | Meek et al. | May 2020 | A1 |
20200166026 | Marica | May 2020 | A1 |
20200206704 | Chong | Jul 2020 | A1 |
20200208733 | Kim | Jul 2020 | A1 |
20200223648 | Herman et al. | Jul 2020 | A1 |
20200224645 | Buckley | Jul 2020 | A1 |
20200256333 | Surjaatmadja | Aug 2020 | A1 |
20200263498 | Fischer et al. | Aug 2020 | A1 |
20200263525 | Reid | Aug 2020 | A1 |
20200263526 | Fischer et al. | Aug 2020 | A1 |
20200263527 | Fischer et al. | Aug 2020 | A1 |
20200263528 | Fischer et al. | Aug 2020 | A1 |
20200267888 | Putz | Aug 2020 | A1 |
20200291731 | Haiderer et al. | Sep 2020 | A1 |
20200309113 | Hunter et al. | Oct 2020 | A1 |
20200325752 | Clark et al. | Oct 2020 | A1 |
20200325760 | Markham | Oct 2020 | A1 |
20200325761 | Williams | Oct 2020 | A1 |
20200325893 | Kraige et al. | Oct 2020 | A1 |
20200332784 | Zhang et al. | Oct 2020 | A1 |
20200332788 | Cui et al. | Oct 2020 | A1 |
20200340313 | Fischer et al. | Oct 2020 | A1 |
20200340340 | Oehring et al. | Oct 2020 | A1 |
20200340344 | Reckels et al. | Oct 2020 | A1 |
20200340404 | Stockstill | Oct 2020 | A1 |
20200347725 | Morris et al. | Nov 2020 | A1 |
20200362760 | Morenko et al. | Nov 2020 | A1 |
20200362764 | Saintignan et al. | Nov 2020 | A1 |
20200370394 | Cai et al. | Nov 2020 | A1 |
20200370408 | Cai et al. | Nov 2020 | A1 |
20200370429 | Cai et al. | Nov 2020 | A1 |
20200371490 | Cai et al. | Nov 2020 | A1 |
20200340322 | Sizemore et al. | Dec 2020 | A1 |
20200392826 | Cui et al. | Dec 2020 | A1 |
20200392827 | George et al. | Dec 2020 | A1 |
20200393088 | Sizemore et al. | Dec 2020 | A1 |
20200398238 | Zhong et al. | Dec 2020 | A1 |
20200400000 | Ghasripoor et al. | Dec 2020 | A1 |
20200400005 | Han et al. | Dec 2020 | A1 |
20200407625 | Stephenson | Dec 2020 | A1 |
20200408071 | Li et al. | Dec 2020 | A1 |
20200408144 | Feng et al. | Dec 2020 | A1 |
20200408147 | Zhang et al. | Dec 2020 | A1 |
20200408149 | Li et al. | Dec 2020 | A1 |
20210025324 | Morris et al. | Jan 2021 | A1 |
20210025383 | Bodishbaugh et al. | Jan 2021 | A1 |
20210054727 | Floyd | Feb 2021 | A1 |
20210071574 | Feng et al. | Mar 2021 | A1 |
20210071579 | Li et al. | Mar 2021 | A1 |
20210071654 | Brunson | Mar 2021 | A1 |
20210071752 | Cui et al. | Mar 2021 | A1 |
20210079758 | Yeung et al. | Mar 2021 | A1 |
20210079851 | Yeung et al. | Mar 2021 | A1 |
20210086851 | Zhang et al. | Mar 2021 | A1 |
20210087883 | Zhang et al. | Mar 2021 | A1 |
20210087916 | Zhang et al. | Mar 2021 | A1 |
20210087925 | Heidari et al. | Mar 2021 | A1 |
20210087943 | Cui et al. | Mar 2021 | A1 |
20210088042 | Zhang et al. | Mar 2021 | A1 |
20210123425 | Cui et al. | Apr 2021 | A1 |
20210123434 | Cui et al. | Apr 2021 | A1 |
20210123435 | Cui et al. | Apr 2021 | A1 |
20210131409 | Cui et al. | May 2021 | A1 |
20210156240 | Cicci et al. | May 2021 | A1 |
20210156241 | Cook | May 2021 | A1 |
20210172282 | Wang et al. | Jun 2021 | A1 |
20210180517 | Zhou et al. | Jun 2021 | A1 |
20210199110 | Albert et al. | Jul 2021 | A1 |
20210222690 | Beisel | Jul 2021 | A1 |
20210246774 | Cui et al. | Aug 2021 | A1 |
20210285311 | Ji et al. | Sep 2021 | A1 |
20210285432 | Ji et al. | Sep 2021 | A1 |
20210301807 | Cui et al. | Sep 2021 | A1 |
20210306720 | Sandoval et al. | Sep 2021 | A1 |
20210308638 | Zhong et al. | Oct 2021 | A1 |
20210348475 | Yeung et al. | Nov 2021 | A1 |
20210348476 | Yeung et al. | Nov 2021 | A1 |
20210348477 | Yeung et al. | Nov 2021 | A1 |
20210355927 | Jian et al. | Nov 2021 | A1 |
20210372395 | Li et al. | Dec 2021 | A1 |
20210388760 | Feng et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
9609498 | Jul 1999 | AU |
737970 | Sep 2001 | AU |
2043184 | Aug 1994 | CA |
2829762 | Sep 2012 | CA |
2876687 | May 2014 | CA |
2693567 | Sep 2014 | CA |
2876687 | Apr 2019 | CA |
2919175 | Mar 2021 | CA |
2622404 | Jun 2004 | CN |
2779054 | May 2006 | CN |
2890325 | Apr 2007 | CN |
200964929 | Oct 2007 | CN |
101323151 | Dec 2008 | CN |
201190660 | Feb 2009 | CN |
201190892 | Feb 2009 | CN |
201190893 | Feb 2009 | CN |
101414171 | Apr 2009 | CN |
201215073 | Apr 2009 | CN |
201236650 | May 2009 | CN |
201275542 | Jul 2009 | CN |
201275801 | Jul 2009 | CN |
201333385 | Oct 2009 | CN |
201443300 | Apr 2010 | CN |
201496415 | Jun 2010 | CN |
201501365 | Jun 2010 | CN |
201507271 | Jun 2010 | CN |
101323151 | Jul 2010 | CN |
201560210 | Aug 2010 | CN |
201581862 | Sep 2010 | CN |
201610728 | Oct 2010 | CN |
201610751 | Oct 2010 | CN |
201618530 | Nov 2010 | CN |
201661255 | Dec 2010 | CN |
101949382 | Jan 2011 | CN |
201756927 | Mar 2011 | CN |
101414171 | May 2011 | CN |
102128011 | Jul 2011 | CN |
102140898 | Aug 2011 | CN |
102155172 | Aug 2011 | CN |
102182904 | Sep 2011 | CN |
202000930 | Oct 2011 | CN |
202055781 | Nov 2011 | CN |
202082265 | Dec 2011 | CN |
202100216 | Jan 2012 | CN |
202100217 | Jan 2012 | CN |
202100815 | Jan 2012 | CN |
202124340 | Jan 2012 | CN |
202140051 | Feb 2012 | CN |
202140080 | Feb 2012 | CN |
202144789 | Feb 2012 | CN |
202144943 | Feb 2012 | CN |
202149354 | Feb 2012 | CN |
102383748 | Mar 2012 | CN |
202156297 | Mar 2012 | CN |
202158355 | Mar 2012 | CN |
202163504 | Mar 2012 | CN |
202165236 | Mar 2012 | CN |
202180866 | Apr 2012 | CN |
202181875 | Apr 2012 | CN |
202187744 | Apr 2012 | CN |
202191854 | Apr 2012 | CN |
202250008 | May 2012 | CN |
101885307 | Jul 2012 | CN |
102562020 | Jul 2012 | CN |
202326156 | Jul 2012 | CN |
202370773 | Aug 2012 | CN |
202417397 | Sep 2012 | CN |
202417461 | Sep 2012 | CN |
102729335 | Oct 2012 | CN |
202463955 | Oct 2012 | CN |
202463957 | Oct 2012 | CN |
202467739 | Oct 2012 | CN |
202467801 | Oct 2012 | CN |
202531016 | Nov 2012 | CN |
202544794 | Nov 2012 | CN |
102825039 | Dec 2012 | CN |
202578592 | Dec 2012 | CN |
202579164 | Dec 2012 | CN |
202594808 | Dec 2012 | CN |
202594928 | Dec 2012 | CN |
202596615 | Dec 2012 | CN |
202596616 | Dec 2012 | CN |
102849880 | Jan 2013 | CN |
102889191 | Jan 2013 | CN |
202641535 | Jan 2013 | CN |
202645475 | Jan 2013 | CN |
202666716 | Jan 2013 | CN |
202669645 | Jan 2013 | CN |
202669944 | Jan 2013 | CN |
202671336 | Jan 2013 | CN |
202673269 | Jan 2013 | CN |
202751982 | Feb 2013 | CN |
102963629 | Mar 2013 | CN |
202767964 | Mar 2013 | CN |
202789791 | Mar 2013 | CN |
202789792 | Mar 2013 | CN |
202810717 | Mar 2013 | CN |
202827276 | Mar 2013 | CN |
202833093 | Mar 2013 | CN |
202833370 | Mar 2013 | CN |
102140898 | Apr 2013 | CN |
202895467 | Apr 2013 | CN |
202926404 | May 2013 | CN |
202935798 | May 2013 | CN |
202935816 | May 2013 | CN |
202970631 | Jun 2013 | CN |
103223315 | Jul 2013 | CN |
203050598 | Jul 2013 | CN |
103233714 | Aug 2013 | CN |
103233715 | Aug 2013 | CN |
103245523 | Aug 2013 | CN |
103247220 | Aug 2013 | CN |
103253839 | Aug 2013 | CN |
103277290 | Sep 2013 | CN |
103321782 | Sep 2013 | CN |
203170270 | Sep 2013 | CN |
203172509 | Sep 2013 | CN |
203175778 | Sep 2013 | CN |
203175787 | Sep 2013 | CN |
102849880 | Oct 2013 | CN |
203241231 | Oct 2013 | CN |
203244941 | Oct 2013 | CN |
203244942 | Oct 2013 | CN |
203303798 | Nov 2013 | CN |
PCTCN2012074945 | Nov 2013 | CN |
102155172 | Dec 2013 | CN |
102729335 | Dec 2013 | CN |
103420532 | Dec 2013 | CN |
203321792 | Dec 2013 | CN |
203412658 | Jan 2014 | CN |
203420697 | Feb 2014 | CN |
203480755 | Mar 2014 | CN |
103711437 | Apr 2014 | CN |
203531815 | Apr 2014 | CN |
203531871 | Apr 2014 | CN |
203531883 | Apr 2014 | CN |
203556164 | Apr 2014 | CN |
203558809 | Apr 2014 | CN |
203559861 | Apr 2014 | CN |
203559893 | Apr 2014 | CN |
203560189 | Apr 2014 | CN |
102704870 | May 2014 | CN |
203611843 | May 2014 | CN |
203612531 | May 2014 | CN |
203612843 | May 2014 | CN |
203614062 | May 2014 | CN |
203614388 | May 2014 | CN |
203621045 | Jun 2014 | CN |
203621046 | Jun 2014 | CN |
203621051 | Jun 2014 | CN |
203640993 | Jun 2014 | CN |
203655221 | Jun 2014 | CN |
103899280 | Jul 2014 | CN |
103923670 | Jul 2014 | CN |
203685052 | Jul 2014 | CN |
203716936 | Jul 2014 | CN |
103990410 | Aug 2014 | CN |
103993869 | Aug 2014 | CN |
203754009 | Aug 2014 | CN |
203754025 | Aug 2014 | CN |
203754341 | Aug 2014 | CN |
203756614 | Aug 2014 | CN |
203770264 | Aug 2014 | CN |
203784519 | Aug 2014 | CN |
203784520 | Aug 2014 | CN |
104057864 | Sep 2014 | CN |
203819819 | Sep 2014 | CN |
203823431 | Sep 2014 | CN |
203835337 | Sep 2014 | CN |
104074500 | Oct 2014 | CN |
203876633 | Oct 2014 | CN |
203876636 | Oct 2014 | CN |
203877364 | Oct 2014 | CN |
203877365 | Oct 2014 | CN |
203877375 | Oct 2014 | CN |
203877424 | Oct 2014 | CN |
203879476 | Oct 2014 | CN |
203879479 | Oct 2014 | CN |
203890292 | Oct 2014 | CN |
203899476 | Oct 2014 | CN |
203906206 | Oct 2014 | CN |
104150728 | Nov 2014 | CN |
104176522 | Dec 2014 | CN |
104196464 | Dec 2014 | CN |
104234651 | Dec 2014 | CN |
203971841 | Dec 2014 | CN |
203975450 | Dec 2014 | CN |
204020788 | Dec 2014 | CN |
204021980 | Dec 2014 | CN |
204024625 | Dec 2014 | CN |
204051401 | Dec 2014 | CN |
204060661 | Dec 2014 | CN |
104260672 | Jan 2015 | CN |
104314512 | Jan 2015 | CN |
204077478 | Jan 2015 | CN |
204077526 | Jan 2015 | CN |
204078307 | Jan 2015 | CN |
204083051 | Jan 2015 | CN |
204113168 | Jan 2015 | CN |
104340682 | Feb 2015 | CN |
104358536 | Feb 2015 | CN |
104369687 | Feb 2015 | CN |
104402178 | Mar 2015 | CN |
104402185 | Mar 2015 | CN |
104402186 | Mar 2015 | CN |
204209819 | Mar 2015 | CN |
204224560 | Mar 2015 | CN |
204225813 | Mar 2015 | CN |
204225839 | Mar 2015 | CN |
104533392 | Apr 2015 | CN |
104563938 | Apr 2015 | CN |
104563994 | Apr 2015 | CN |
104563995 | Apr 2015 | CN |
104563998 | Apr 2015 | CN |
104564033 | Apr 2015 | CN |
204257122 | Apr 2015 | CN |
204283610 | Apr 2015 | CN |
204283782 | Apr 2015 | CN |
204297682 | Apr 2015 | CN |
204299810 | Apr 2015 | CN |
103223315 | May 2015 | CN |
104594857 | May 2015 | CN |
104595493 | May 2015 | CN |
104612647 | May 2015 | CN |
104612928 | May 2015 | CN |
104632126 | May 2015 | CN |
204325094 | May 2015 | CN |
204325098 | May 2015 | CN |
204326983 | May 2015 | CN |
204326985 | May 2015 | CN |
204344040 | May 2015 | CN |
204344095 | May 2015 | CN |
104727797 | Jun 2015 | CN |
204402414 | Jun 2015 | CN |
204402423 | Jun 2015 | CN |
204402450 | Jun 2015 | CN |
103247220 | Jul 2015 | CN |
104803568 | Jul 2015 | CN |
204436360 | Jul 2015 | CN |
204457524 | Jul 2015 | CN |
204472485 | Jul 2015 | CN |
204473625 | Jul 2015 | CN |
204477303 | Jul 2015 | CN |
204493095 | Jul 2015 | CN |
204493309 | Jul 2015 | CN |
103253839 | Aug 2015 | CN |
104820372 | Aug 2015 | CN |
104832093 | Aug 2015 | CN |
104863523 | Aug 2015 | CN |
204552723 | Aug 2015 | CN |
204553866 | Aug 2015 | CN |
204571831 | Aug 2015 | CN |
204703814 | Oct 2015 | CN |
204703833 | Oct 2015 | CN |
204703834 | Oct 2015 | CN |
105092401 | Nov 2015 | CN |
103233715 | Dec 2015 | CN |
103790927 | Dec 2015 | CN |
105207097 | Dec 2015 | CN |
204831952 | Dec 2015 | CN |
204899777 | Dec 2015 | CN |
102602323 | Jan 2016 | CN |
105240064 | Jan 2016 | CN |
204944834 | Jan 2016 | CN |
205042127 | Feb 2016 | CN |
205172478 | Apr 2016 | CN |
103993869 | May 2016 | CN |
105536299 | May 2016 | CN |
105545207 | May 2016 | CN |
103233714 | Jun 2016 | CN |
104340682 | Jun 2016 | CN |
205297518 | Jun 2016 | CN |
205298447 | Jun 2016 | CN |
205391821 | Jul 2016 | CN |
205400701 | Jul 2016 | CN |
103277290 | Aug 2016 | CN |
104260672 | Aug 2016 | CN |
205477370 | Aug 2016 | CN |
205479153 | Aug 2016 | CN |
205503058 | Aug 2016 | CN |
205503068 | Aug 2016 | CN |
205503089 | Aug 2016 | CN |
105958098 | Sep 2016 | CN |
205599180 | Sep 2016 | CN |
205599180 | Sep 2016 | CN |
1061215 | Nov 2016 | CN |
205709587 | Nov 2016 | CN |
104612928 | Dec 2016 | CN |
106246120 | Dec 2016 | CN |
205805471 | Dec 2016 | CN |
106321045 | Jan 2017 | CN |
205858306 | Jan 2017 | CN |
106438310 | Feb 2017 | CN |
205937833 | Feb 2017 | CN |
104563994 | Mar 2017 | CN |
206129196 | Apr 2017 | CN |
104369687 | May 2017 | CN |
106715165 | May 2017 | CN |
106761561 | May 2017 | CN |
105240064 | Jun 2017 | CN |
206237147 | Jun 2017 | CN |
206287832 | Jun 2017 | CN |
206346711 | Jul 2017 | CN |
104563995 | Sep 2017 | CN |
107120822 | Sep 2017 | CN |
107143298 | Sep 2017 | CN |
107159046 | Sep 2017 | CN |
107188018 | Sep 2017 | CN |
206496016 | Sep 2017 | CN |
104564033 | Oct 2017 | CN |
107234358 | Oct 2017 | CN |
107261975 | Oct 2017 | CN |
206581929 | Oct 2017 | CN |
104820372 | Dec 2017 | CN |
105092401 | Dec 2017 | CN |
107476769 | Dec 2017 | CN |
107520526 | Dec 2017 | CN |
206754664 | Dec 2017 | CN |
107605427 | Jan 2018 | CN |
106438310 | Feb 2018 | CN |
107654196 | Feb 2018 | CN |
107656499 | Feb 2018 | CN |
107728657 | Feb 2018 | CN |
206985503 | Feb 2018 | CN |
207017968 | Feb 2018 | CN |
107859053 | Mar 2018 | CN |
207057867 | Mar 2018 | CN |
207085817 | Mar 2018 | CN |
105545207 | Apr 2018 | CN |
107883091 | Apr 2018 | CN |
107902427 | Apr 2018 | CN |
107939290 | Apr 2018 | CN |
107956708 | Apr 2018 | CN |
207169595 | Apr 2018 | CN |
207194873 | Apr 2018 | CN |
207245674 | Apr 2018 | CN |
108034466 | May 2018 | CN |
108036071 | May 2018 | CN |
108087050 | May 2018 | CN |
207380566 | May 2018 | CN |
108103483 | Jun 2018 | CN |
108179046 | Jun 2018 | CN |
108254276 | Jul 2018 | CN |
108311535 | Jul 2018 | CN |
207583576 | Jul 2018 | CN |
207634064 | Jul 2018 | CN |
207648054 | Jul 2018 | CN |
207650621 | Jul 2018 | CN |
108371894 | Aug 2018 | CN |
207777153 | Aug 2018 | CN |
108547601 | Sep 2018 | CN |
108547766 | Sep 2018 | CN |
108555826 | Sep 2018 | CN |
108561098 | Sep 2018 | CN |
108561750 | Sep 2018 | CN |
108590617 | Sep 2018 | CN |
207813495 | Sep 2018 | CN |
207814698 | Sep 2018 | CN |
207862275 | Sep 2018 | CN |
108687954 | Oct 2018 | CN |
207935270 | Oct 2018 | CN |
207961582 | Oct 2018 | CN |
207964530 | Oct 2018 | CN |
108789848 | Nov 2018 | CN |
108799473 | Nov 2018 | CN |
108868675 | Nov 2018 | CN |
208086829 | Nov 2018 | CN |
208089263 | Nov 2018 | CN |
208169068 | Nov 2018 | CN |
108979569 | Dec 2018 | CN |
109027662 | Dec 2018 | CN |
109058092 | Dec 2018 | CN |
208179454 | Dec 2018 | CN |
208179502 | Dec 2018 | CN |
208253147 | Dec 2018 | CN |
208260574 | Dec 2018 | CN |
109114418 | Jan 2019 | CN |
109141990 | Jan 2019 | CN |
208313120 | Jan 2019 | CN |
208330319 | Jan 2019 | CN |
208342730 | Jan 2019 | CN |
208430982 | Jan 2019 | CN |
208430986 | Jan 2019 | CN |
109404274 | Mar 2019 | CN |
109429610 | Mar 2019 | CN |
109491318 | Mar 2019 | CN |
109515177 | Mar 2019 | CN |
109526523 | Mar 2019 | CN |
109534737 | Mar 2019 | CN |
208564504 | Mar 2019 | CN |
208564516 | Mar 2019 | CN |
208564525 | Mar 2019 | CN |
208564918 | Mar 2019 | CN |
208576026 | Mar 2019 | CN |
208576042 | Mar 2019 | CN |
208650818 | Mar 2019 | CN |
208669244 | Mar 2019 | CN |
109555484 | Apr 2019 | CN |
109682881 | Apr 2019 | CN |
208730959 | Apr 2019 | CN |
208735264 | Apr 2019 | CN |
208746733 | Apr 2019 | CN |
208749529 | Apr 2019 | CN |
208750405 | Apr 2019 | CN |
208764658 | Apr 2019 | CN |
109736740 | May 2019 | CN |
109751007 | May 2019 | CN |
208868428 | May 2019 | CN |
208870761 | May 2019 | CN |
109869294 | Jun 2019 | CN |
109882144 | Jun 2019 | CN |
109882372 | Jun 2019 | CN |
209012047 | Jun 2019 | CN |
209100025 | Jul 2019 | CN |
110080707 | Aug 2019 | CN |
110118127 | Aug 2019 | CN |
110124574 | Aug 2019 | CN |
110145277 | Aug 2019 | CN |
110145399 | Aug 2019 | CN |
110152552 | Aug 2019 | CN |
110155193 | Aug 2019 | CN |
110159225 | Aug 2019 | CN |
110159432 | Aug 2019 | CN |
110159432 | Aug 2019 | CN |
110159433 | Aug 2019 | CN |
110208100 | Sep 2019 | CN |
110252191 | Sep 2019 | CN |
110284854 | Sep 2019 | CN |
110284972 | Sep 2019 | CN |
209387358 | Sep 2019 | CN |
110374745 | Oct 2019 | CN |
209534736 | Oct 2019 | CN |
110425105 | Nov 2019 | CN |
110439779 | Nov 2019 | CN |
110454285 | Nov 2019 | CN |
110454352 | Nov 2019 | CN |
110467298 | Nov 2019 | CN |
110469312 | Nov 2019 | CN |
110469314 | Nov 2019 | CN |
110469405 | Nov 2019 | CN |
110469654 | Nov 2019 | CN |
110485982 | Nov 2019 | CN |
110485983 | Nov 2019 | CN |
110485984 | Nov 2019 | CN |
110486249 | Nov 2019 | CN |
110500255 | Nov 2019 | CN |
110510771 | Nov 2019 | CN |
110513097 | Nov 2019 | CN |
209650738 | Nov 2019 | CN |
209653968 | Nov 2019 | CN |
209654004 | Nov 2019 | CN |
209654022 | Nov 2019 | CN |
209654128 | Nov 2019 | CN |
209656622 | Nov 2019 | CN |
107849130 | Dec 2019 | CN |
108087050 | Dec 2019 | CN |
110566173 | Dec 2019 | CN |
110608030 | Dec 2019 | CN |
110617187 | Dec 2019 | CN |
110617188 | Dec 2019 | CN |
110617318 | Dec 2019 | CN |
209740823 | Dec 2019 | CN |
209780827 | Dec 2019 | CN |
209798631 | Dec 2019 | CN |
209799942 | Dec 2019 | CN |
209800178 | Dec 2019 | CN |
209855723 | Dec 2019 | CN |
209855742 | Dec 2019 | CN |
209875063 | Dec 2019 | CN |
110656919 | Jan 2020 | CN |
107520526 | Feb 2020 | CN |
110787667 | Feb 2020 | CN |
110821464 | Feb 2020 | CN |
110833665 | Feb 2020 | CN |
110848028 | Feb 2020 | CN |
210049880 | Feb 2020 | CN |
210049882 | Feb 2020 | CN |
210097596 | Feb 2020 | CN |
210105817 | Feb 2020 | CN |
210105818 | Feb 2020 | CN |
210105993 | Feb 2020 | CN |
110873093 | Mar 2020 | CN |
210139911 | Mar 2020 | CN |
110947681 | Apr 2020 | CN |
111058810 | Apr 2020 | CN |
111075391 | Apr 2020 | CN |
210289931 | Apr 2020 | CN |
210289932 | Apr 2020 | CN |
210289933 | Apr 2020 | CN |
210303516 | Apr 2020 | CN |
211412945 | Apr 2020 | CN |
111089003 | May 2020 | CN |
111151186 | May 2020 | CN |
111167769 | May 2020 | CN |
111169833 | May 2020 | CN |
111173476 | May 2020 | CN |
111185460 | May 2020 | CN |
111185461 | May 2020 | CN |
111188763 | May 2020 | CN |
111206901 | May 2020 | CN |
111206992 | May 2020 | CN |
111206994 | May 2020 | CN |
210449044 | May 2020 | CN |
210460875 | May 2020 | CN |
210522432 | May 2020 | CN |
210598943 | May 2020 | CN |
210598945 | May 2020 | CN |
210598946 | May 2020 | CN |
210599194 | May 2020 | CN |
210599303 | May 2020 | CN |
210600110 | May 2020 | CN |
111219326 | Jun 2020 | CN |
111350595 | Jun 2020 | CN |
210660319 | Jun 2020 | CN |
210714569 | Jun 2020 | CN |
210769168 | Jun 2020 | CN |
210769169 | Jun 2020 | CN |
210769170 | Jun 2020 | CN |
210770133 | Jun 2020 | CN |
210825844 | Jun 2020 | CN |
210888904 | Jun 2020 | CN |
210888905 | Jun 2020 | CN |
210889242 | Jun 2020 | CN |
111397474 | Jul 2020 | CN |
111412064 | Jul 2020 | CN |
111441923 | Jul 2020 | CN |
111441925 | Jul 2020 | CN |
111503517 | Aug 2020 | CN |
111515898 | Aug 2020 | CN |
111594059 | Aug 2020 | CN |
111594062 | Aug 2020 | CN |
111594144 | Aug 2020 | CN |
211201919 | Aug 2020 | CN |
211201920 | Aug 2020 | CN |
211202218 | Aug 2020 | CN |
111608965 | Sep 2020 | CN |
111664087 | Sep 2020 | CN |
111677476 | Sep 2020 | CN |
111677647 | Sep 2020 | CN |
111692064 | Sep 2020 | CN |
111692065 | Sep 2020 | CN |
211384571 | Sep 2020 | CN |
211397553 | Sep 2020 | CN |
211397677 | Sep 2020 | CN |
211500955 | Sep 2020 | CN |
211524765 | Sep 2020 | CN |
1004854 | Aug 1991 | DE |
4241614 | Jun 1994 | DE |
102012018825 | Mar 2014 | DE |
102013111655 | Dec 2014 | DE |
102015103872 | Oct 2015 | DE |
102013114335 | Dec 2020 | DE |
03835983 | Apr 1998 | EP |
1378683 | Jan 2004 | EP |
2143916 | Jan 2010 | EP |
2613023 | Jul 2013 | EP |
3095989 | Nov 2016 | EP |
3211766 | Aug 2017 | EP |
3049642 | Apr 2018 | EP |
3354866 | Aug 2018 | EP |
3075946 | May 2019 | EP |
2795774 | Jun 1999 | FR |
474072 | Oct 1937 | GB |
1438172 | Jun 1976 | GB |
S57135212 | Feb 1984 | JP |
20020026398 | Apr 2002 | KR |
13562 | Apr 2000 | RU |
1993020328 | Oct 1993 | WO |
2006025886 | Mar 2006 | WO |
2009023042 | Feb 2009 | WO |
20110133821 | Oct 2011 | WO |
2012139380 | Oct 2012 | WO |
2013158822 | Oct 2013 | WO |
2013185399 | Dec 2013 | WO |
2015158020 | Oct 2015 | WO |
2016014476 | Jan 2016 | WO |
2016033983 | Mar 2016 | WO |
2016078181 | May 2016 | WO |
2016101374 | Jun 2016 | WO |
2016112590 | Jul 2016 | WO |
2017123656 | Jul 2017 | WO |
2017213848 | Dec 2017 | WO |
2018031029 | Feb 2018 | WO |
2018038710 | Mar 2018 | WO |
2018044293 | Mar 2018 | WO |
2018044307 | Mar 2018 | WO |
2018071738 | Apr 2018 | WO |
2018101909 | Jun 2018 | WO |
2018101912 | Jun 2018 | WO |
2018106210 | Jun 2018 | WO |
2018106225 | Jun 2018 | WO |
2018106252 | Jun 2018 | WO |
2018156131 | Aug 2018 | WO |
2018075034 | Oct 2018 | WO |
2018187346 | Oct 2018 | WO |
2018031031 | Feb 2019 | WO |
2019045691 | Mar 2019 | WO |
2019046680 | Mar 2019 | WO |
2019060922 | Mar 2019 | WO |
2019126742 | Jun 2019 | WO |
2019147601 | Aug 2019 | WO |
2019169366 | Sep 2019 | WO |
2019195651 | Oct 2019 | WO |
2019200510 | Oct 2019 | WO |
2019210417 | Nov 2019 | WO |
2020018068 | Jan 2020 | WO |
2020046866 | Mar 2020 | WO |
2020072076 | Apr 2020 | WO |
2020076569 | Apr 2020 | WO |
2020097060 | May 2020 | WO |
2020104088 | May 2020 | WO |
2020131085 | Jun 2020 | WO |
2020211083 | Oct 2020 | WO |
2020211086 | Oct 2020 | WO |
2021041783 | Mar 2021 | WO |
Entry |
---|
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004. |
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010. |
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960. |
Wikipedia,Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950. |
HCI JET Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ. |
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018. |
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference. |
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018. |
Frac Shack, Bi-Fuel FracFueller brochure, 2011. |
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191. |
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443. |
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS. |
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-Injection Stations; American Petroleum Institute; API-63 144 (Jan. 1, 1963). |
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967). |
Porter, John A. (Solar Division International Harvester Co.), Modem Industrial Gas Turbines for the Oil Field American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967). |
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969). |
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.). |
Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian). |
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010. |
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011. |
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008. |
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf. |
The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, TX: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf. |
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html. |
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020. |
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700.pdf, 2021. |
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10/181905-94921.q700-quintuplex-pump.pdf. |
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176. |
ResearchGate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013. |
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012). |
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017. |
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking. |
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/. |
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/. |
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling. |
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx. |
PLOS ONE, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015. |
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009. |
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000. |
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762. |
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing. |
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018. |
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019. |
PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014. |
Integrated Flow, Skid-mounted Modular Process Systems, https://ifsolutions.com/. |
Dameron, A Schlumberger Company, Frac Manifold Systems, 2016. |
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html. |
JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling.asp. |
Halliburton, Vessel-based Modular Solution (VMS), 2015. |
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999. |
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992. |
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006). |
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941. |
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996. |
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019). |
B.M. Mahlalela, et al., Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea.stanford.edu (Feb. 11, 2019). |
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014). |
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015. |
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015. |
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020. |
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020. |
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018. |
Emmanuel Akita et al., Mewboume College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019. |
PowerShelter Kit II, nooutage.com, Sep. 6, 2019. |
EMPengineering.Com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia. |
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology G-- oteborg, Sweden 2015. |
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development. Applied Thermal Engineering 24 (2004) 1421-1429. |
De Gevigney et al., “Analysis of no-load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624. |
ISM, What is Cracking Pressure, 2019. |
Swagelok, The right valve for controlling flow direction? Check, 2016. |
Technology.org, Check valves how do they work and what are the main type, 2018. |
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010). |
The Application of Flexible Couplings for Turbomachinery, Jon R Mancuso et al., Proceedings of the Eighteenthturbomachinery Symposium (1989). |
Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008. |
Fracture Design and Stimulation, Mike Eberhard, P.E., Wellconstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011. |
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third Turbomachinerysymposium (1994). |
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012. |
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021. |
APl's Global Industry Services, American Petroleum Institute, © Aug. 2020. |
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021. |
About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 /http://api.org/aboutapi/, captured Apr. 22, 2011. |
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 /http://www.api.org:80/Publications/, captured Apr. 27, 2011. |
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006). |
WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/oclc/871254217&referer=brief_results, accessed Dec. 22, 2021. |
2011 Publications and Services, American Petroleum Institute (2011). |
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011. |
IHS Markit Standards Store, https://global.ihs.com/doc_ detail.cfm?document_name=API%20STD% 20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc _number=671 &input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021. |
SPM® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”). |
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”). |
Dowell B908 “Turbo-Jet” Operator's Manual. |
Jereh Debut's Super power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html. |
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html. |
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm. |
Hydraulic Fracturing: Gas turbine proves successful in shale gasfield operations, Vericor (2017), https://www.vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”). |
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://Aww.jereh.com/en/ news/press-release/news-detail-7267.htm. |
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.pmewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html. |
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PIkDbU5dE0o. |
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015). |
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q. |
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q. |
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012). |
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/. |
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012). |
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/. |
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425. |
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.co m/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_ MultiFuel_Frack_Pump. |
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/ work/gfes-turbine-frac-units/. |
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html. |
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractor.org/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278. |
Number | Date | Country | |
---|---|---|---|
20210207536 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62899975 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17122433 | Dec 2020 | US |
Child | 17154601 | US | |
Parent | 15929924 | May 2020 | US |
Child | 17122433 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17154601 | Jan 2021 | US |
Child | 17204338 | US |