Direct Expansion Evaporator with Vapor Ejector Capacity Boost

Information

  • Patent Application
  • 20240426531
  • Publication Number
    20240426531
  • Date Filed
    July 11, 2023
    a year ago
  • Date Published
    December 26, 2024
    2 months ago
  • Inventors
    • Derosier; Greg (Eldersburg, MD, US)
    • Gopalan; Shri (Westminster, MD, US)
  • Original Assignees
Abstract
A system and method for increasing the refrigeration capacity of a direct expansion refrigeration system having a vapor separator and a vapor ejector. After the throttling process at the expansion device, the mixture of liquid and vapor enters the inlet separator. The vapor separator generates vapor to power the ejector through flashing of warm refrigerant liquid from a higher temperature and pressure to a lower pressure. The cooler refrigerant liquid then goes to the evaporator coil inlet. Furthermore, the system stabilizes the superheat of the outlet vapor and reduces fluctuations in outlet superheat caused by excess unevaporated liquid flowing from the outlets of the tubes due to maldistribution at the inlet.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

This invention relates to direct expansion refrigeration systems.


SUMMARY OF THE INVENTION

One of the drawbacks of direct expansion (DX) refrigeration technology when compared to pump overfeed systems is the reduction in cooling capacity due to the reduction in liquid refrigerant flow through the evaporator to achieve the superheat at the evaporator outlet.


The present invention is an improvement on current technology DX evaporators such that heat absorbing capacity is increased by increasing localized refrigerant flow. The liquid refrigerant flow is increased through local recirculation of liquid from evaporator outlet to evaporator inlet through a vapor ejector which pumps/entrains liquid refrigerant from a lower pressure to a higher pressure. This ejector is powered by the flash gas generated in the expansion device before the evaporator inlet.


The invention features a vapor ejector and separator combination that utilizes the flash gas generated from throttling to recycle additional refrigerant liquid from the evaporator outlet to the evaporator inlet. The flash gas generated in DX systems can vary from 5 to 15% or more of the total mass flow rate entering the evaporator. The flash gas is considered mostly a parasitic loss since it does not play a role in the evaporation process (the liquid refrigerant is the key player). This invention enables employing the above flash gas to increase the capacity of the evaporator by recirculating additional liquid through the evaporator. The increased liquid improves heat transfer through higher internal surface contact with boiling liquid. The technique is a regenerative method which utilizes flash gas to boost capacity.


The invention includes a vapor-liquid separator and a vapor ejector. After the throttling process, as in a standard refrigeration cycle, the mixture of liquid and vapor enters the vapor-liquid separator (hereinafter “inlet separator”). The inlet separator provides vapor to power the ejector through flashing of warm refrigerant liquid from a higher temperature and pressure to a lower pressure. The cooler refrigerant liquid goes to the evaporator inlet as in a normal DX system. The refrigerant vaporized in the throttling process is delivered to the vapor ejector as the motive flow. The vapor ejector pulls cold refrigerant liquid from the outlet of the evaporator into the side port of the ejector. The cold refrigerant liquid and motive vapor flow may be separated at an outlet separator or they may be both sent from the ejector to the evaporator. An expansion valve responsive to refrigerant vapor superheat, after the point where cold refrigerant liquid is collected, would typically be used to adjust inlet liquid flows to the evaporator.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a representation of a standard direct expansion refrigeration system.



FIG. 2 is a representation of a direct expansion evaporator with vapor ejector capacity boost according to an embodiment of the invention.



FIG. 3 is a representation of a direct expansion evaporator with vapor ejector capacity boost according to another embodiment of the invention.



FIG. 4 is a representation of a direct expansion evaporator with vapor ejector capacity boost according to another embodiment of the invention.



FIG. 5 is a representation of a direct expansion evaporator with vapor ejector capacity boost according to another embodiment of the invention.



FIG. 6 is a representation of a direct expansion evaporator with vapor ejector capacity boost according to a further embodiment of the invention.





Features in the attached drawings are numbered with the following reference numerals:















3
expansion device.


5
expansion device outlet


7
refrigerant line


9
inlet to inlet separator


11
inlet separator


13
inlet separator vapor outlet


15
inlet separator liquid outlet


16
refrigerant line


17
distributor inlet


18
refrigerant line


19
distributor


20
distributor side port


21
distributor outlet


23
evaporator inlets


25
evaporator


26
refrigerant line


27
evaporator outlet


29
refrigerant line


30
refrigerant line


31
ejector vapor inlet


33
ejector


35
ejector liquid inlet


37
ejector outlet


39
refrigerant line


41
outlet separator inlet


43
outlet separator


45
outlet separator liquid outlet


46
refrigerant line


47
outlet separator vapor outlet


49
refrigerant line


50
liquid header inlet


51
liquid header


53
liquid header first outlet


55
liquid header second outlet


57
refrigerant line


59
outlet separator second inlet


100
superheat sensor


102
controller


103
refrigerant line









DETAILED DESCRIPTION


FIG. 1 shows a typical or standard direct expansion (DX) refrigeration system. High pressure, cooled refrigerant from high pressure receiver enters the evaporator through a thermostatic expansion valve and a distributor. The thermostatic expansion valve regulates (opens or closes) based on the superheat of the outlet vapor with the goal of generating superheated vapor (superheat ≥6° F.) to ensure dry suction for the compressor. However, this is not the case in practice, as unevaporated liquid tends to escape the evaporator resulting in reduction in superheat and closing of the thermostatic expansion valve to reduce the refrigerant flow rate. This reduces refrigeration capacity. Furthermore, there is also a need for a suction trap as shown in FIG. 1 to trap any liquid and ensure dry suction to the compressor.


A DX system as described above, which uses a distributor to distribute liquid to all circuits of the evaporator is also sensitive to mal-distributions. Non-uniform distribution results in excess liquid flowing out of some circuit outlets, which will reduce superheat below target. This causes the thermostatic expansion valve to increase superheat back to target at the cost of reduced capacity.



FIG. 2 shows the portion of a DX refrigeration system of the invention which replaces the portion of a prior art DX refrigeration system that is enclosed in dashed lines in FIG. 1. Referring to the embodiment of FIG. 2, high pressure, cooled refrigerant is delivered to expansion device 3. The outlet 5 of the expansion device 3 is connected via refrigerant line 7 to the inlet 9 of a vapor-liquid separator 11 (referred to herein as inlet separator), which sends vapor flash gas received from the expansion device to inlet 31 of an ejector 33, while liquid refrigerant is sent to the inlet 17 of distributor 19 via refrigerant line 16. Distributor outlets 21 are connected to the evaporator coil 25 via refrigerant lines 26 for delivery of refrigerant liquid to the evaporator coil 25. While an evaporator coil is used as an example herein, any type of evaporator may be used in connection with the invention. Outlet 27 of the evaporator coil 25 produces both superheated vapor and unevaporated liquid. The superheated vapor is sent to the suction trap and/or compressor via refrigerant line 29, and the unevaporated liquid is sent to the liquid inlet 35 of the ejector 33 via refrigerant line 30. Sensor 100 measures the temperature and pressure of the superheated vapor and sends it to controller 102 to determine whether superheat has been achieved. Controller 102 causes the expansion device to open or close depending on the superheat determination.


Meanwhile, ejector 33 uses the flash gas received from the outlet 13 of inlet separator 11 to entrain or “pump” the unevaporated liquid, and the outlet 37 of the ejector 33 delivers the entrained refrigerant liquid and excess flash gas to the inlet 41 of a vapor-liquid separator 43 (referred to herein as outlet separator) via refrigerant line 39. The outlet separator 43 separates the vapor from the liquid and sends the liquid back to the evaporator coil 25 via a liquid outlet 45 and corresponding refrigerant line 46. Vapor leaves outlet 47 and joins the vapor leaving the outlet 27 of the evaporator coil 25 via refrigerant line 49. According to this arrangement, the DX system of the invention may provide excess liquid to the evaporator coil in order to maximize refrigeration capacity, but excess liquid leaving the evaporator coil is captured, redirected and reheated before being re-delivered to the evaporator coil, thereby preventing damage to the compressor.



FIG. 3 shows a variation of the embodiment shown in FIG. 2, in which the liquid outlet 45 from the outlet separator 43 connected to a side port 20 of the distributor 19 via refrigerant line 46.



FIG. 4 shows an alternate embodiment in which the distributor 19 of the embodiment shown in FIG. 2 is replaced with a liquid header 51. According to this embodiment, inlet separator 11 sends liquid refrigerant to the inlet 50 of liquid header 51 via refrigerant line 16. Liquid header has first outlets 53 and a second outlet 55. First outlets 53 are connected directly or indirectly to the evaporator coil 25, and second outlet 55 is connected to a second inlet 59 of the outlet separator 43 via refrigerant line 57 for providing additional excess liquid to the outlet separator 43. As with the embodiment of FIG. 2, the outlet 45 of outlet separator 43 is connected to the inlet 23 of evaporator coil 25 via refrigerant line 46.



FIG. 5 shows a variation of the embodiment shown in FIG. 4 in which outlet 45 of outlet separator 43 is connected directly to the liquid header 51 via refrigerant line 46.



FIG. 6 shows an embodiment in which an outlet separator is not employed, and both the liquid and vapor leaving the ejector is sent to the evaporator. Referring to the embodiment of FIG. 6, high pressure, cooled refrigerant is delivered to expansion device 3. The outlet 5 of the expansion device 3 is connected via refrigerant line 7 to the inlet 9 of an inlet separator 11, which sends vapor flash gas received from the expansion device to inlet 31 of an ejector 33, while liquid refrigerant is sent to the inlet 17 of distributor 19 via refrigerant line 16. Distributor outlets 21 are connected to the evaporator coil 25 via refrigerant lines 26 for delivery of refrigerant liquid to the evaporator coil 25. While an evaporator coil is used as an example herein, any type of evaporator may be used in connection with the invention. Outlet 27 of the evaporator coil 25 produces both superheated vapor and unevaporated liquid. The superheated vapor is sent to the suction trap and/or compressor via refrigerant line 29, and the unevaporated liquid is sent to the liquid inlet 35 of the ejector 33 via refrigerant line 30. Sensor 100 measures the temperature and pressure of the superheated vapor and sends it to controller 102 to determine whether superheat has been achieved. Controller 102 causes the expansion device to open or close depending on the superheat determination.


Meanwhile, ejector 33 uses the flash gas received from the outlet 13 of inlet separator 11 to pump/entrain the unevaporated liquid, and the outlet 37 of the ejector 33 delivers the entrained refrigerant liquid and excess flash gas to the distributor 19.


While the inlet separator, the ejector, and, in the case of the embodiments of FIGS. 2-5, the outlet separator, are shown in the exemplary figures and description as constituting separate structure elements, two or more of them may be optionally combined into an integrated refrigerant recycling device which carries out the functions of all three devices.

Claims
  • 1. An apparatus for improving the performance of a direct expansion refrigeration system, the apparatus comprising: an inlet separator adapted to be connected to an expansion device outlet of said direct expansion refrigeration system,an evaporator connected to a liquid outlet of said inlet separator,an ejector connected to a vapor outlet of said inlet separator,a first refrigeration line connecting an outlet of said evaporator to a liquid inlet of said ejector,a second refrigeration line connecting said outlet of said evaporator to a compressor,said inlet separator configured to simultaneously and continuously deliver refrigerant vapor to said ejector and refrigerant liquid to said evaporator,said ejector configured to deliver refrigerant vapor and refrigerant liquid to said evaporator.
  • 2. A direct expansion refrigeration system comprising: a refrigerant line connecting the following, in order: an expansion device,an inlet separator,an evaporator, anda compressor,said refrigeration system further comprising an ejector connected to an outlet of said inlet separator and to an outlet of said evaporator, andan ejector outlet connected to said evaporator,said inlet separator configured to simultaneously and continuously deliver refrigerant vapor to said ejector and refrigerant liquid to said evaporator,said ejector configured to deliver refrigerant vapor and refrigerant liquid to said evaporator.
  • 3. A direct expansion refrigeration system according to claim 1, wherein said inlet separator and said ejector are combined in an integrated refrigerant recycling device.
  • 4. A direct expansion refrigeration system according to claim 2, further comprising a heat exchanger connected to said expansion device by said refrigerant line for cooling refrigerant in said refrigerant line.
  • 5. A direct expansion refrigeration system according to claim 4, wherein said heat exchanger is a condenser or gas cooler.
  • 6. A method for increasing the refrigeration capacity of a direct expansion refrigeration system without risking liquid refrigerant damage to a compressor comprising the following steps, simultaneously: taking liquid from an outlet of an evaporator and delivering it to an ejector, taking refrigerant vapor from an inlet separator located upstream of an evaporator and delivering it to said ejector,using said ejector to warm said refrigerant liquid received from said evaporator with said vapor received from said inlet separator, andtaking all liquid and vapor from said ejector and delivering it to said evaporator.
  • 7. A direct expansion refrigeration system according to claim 2, wherein said inlet separator and said ejector are combined in an integrated refrigerant recycling device.
  • 8. A method according to claim 4, further comprising taking refrigerant liquid from said inlet separator and delivering it directly to a distributor for said evaporator.
  • 9. A method according to claim 4, further comprising taking refrigerant liquid from said inlet separator and delivering it to an evaporator liquid header.
Continuation in Parts (1)
Number Date Country
Parent 18211878 Jun 2023 US
Child 18350739 US