The present invention generally relates to luminaires for illuminating a space, and more particularly to luminaires that produce both direct lighting and indirect lighting from the same luminaire.
Conventional direct-indirect luminaires provide a distribution of light both above and below the fixtures, sometimes referred to as up-light and down-light. Generally, these distributions are based on the design of the luminaire and the optical systems used. Each luminaire will have an up and down light distribution that is characteristic of that luminaire. Light designers will typically select a luminaire based the fixture's light distribution characteristics as well as aesthetic considerations, that is, how well the physical luminous characteristics work in an architectural space.
The present invention provides a direct-indirect luminaire having a unique aesthetic appeal and the flexibility to create different up and down light distribution patterns. The luminaire can easily be reconfigured to change the up light distribution produced from the luminaire relative to its down light distribution.
The invention is directed to a luminaire that produces both direct and indirect lighting. The luminaire is comprised of a support frame for supporting multiple substantially identical planar light sources that emit light from both their top and bottom planar surfaces for producing up-tight and down-light in characteristic tight distribution patterns. The planar light sources, which are preferably edge-fed light waveguides, can be supported in the support frame in different rotational orientations that can be changed to change the light distribution characteristics of the luminaire. Thus, a luminaire capable of producing different light distributions can be provided with a minimum of component parts.
In one aspect of the invention, each of the multiple planar light sources of the luminaire has a rotationally asymmetric distribution pattern, such as a bilateral bat-wing up-light distribution pattern, and a down-light distribution pattern that is substantially rotationally symmetric, such as a cosine distribution pattern or a compressed cosine distribution pattern. By changing the rotational orientation of the planar light sources in the mounting frame, the up-light distribution pattern can be changed, such as from a composite bilateral bat-wing distribution pattern in either the x or the y axis, or a quadralaterally symmetric composite bat-wing distribution pattern.
In another aspect of the invention, a new mounting frame is provided for supporting multiple planar light sources that produce both up-light and down-light. The support frame is comprised of an inner support ring and outer support ring, and include means, such as rim support trays secured between the inner and outer support rings, for supporting the planar light sources between these support rings in desired orientations. The light panels are removable from their support means, and their support means allow the light panels to be placed therein in selected orientations.
Referring now to the drawings, a luminaire 11 in accordance with the invention is shown suspended by suspension cables 12a, 12b from an overhead ceiling structure, denoted by dashed lines 13, for illuminating a space by both direct and indirect lighting. The direct and indirect light from the luminaire is emitted from a series of planar light sources in the form of light panels 15a, 15b, 15c, 15d (collectively light panels 15), each having a top planar tight emitting surface 17a, 17b, 17c, 17d (collectively top planar surfaces 17), and a bottom planar emitting surface 19a, 19b, 19c, 19d (collectively bottom planar surfaces 19). Indirect light, or up-light, is emitted from the top planar surfaces of the light panels to produce an up-light distribution pattern, and direct light, or down-light, is emitted from the bottom planar surfaces of the light panels to produce a down-light distribution pattern. As later described, the distribution pattern of the up-light is different from the distribution patter of the down-light, providing the capability of reconfiguring the light panels to create a different distribution of light from the luminaire.
The light panels 15 are held in a support frame 21, which permits the top and bottom planar surfaces 17, 19 of panels 15 to emit up- and down-light from the luminaire which is substantially unobstructed by the frame. The support frame can be comprised of inner support ring 23, outer support ring 25, and panel support means such as hereinafter described for removably holding the light panels between the rings. The light panels are configured so that they can be placed in the support frame in different orientations. Thus, where one or more, and preferably all of the light panels have an asymmetric light distribution pattern, the light panels can be advantageously rotated within the support frame to alter the light distribution pattern of the luminaire. As hereinafter described, in one aspect of the invention, it is contemplated that the distribution pattern of the light emitted from the top planar surfaces of the light panels will be an asymmetric distribution pattern and that the distribution pattern of the light emitted from the bottom of the panels will be a symmetric distribution pattern. Rotation of the light panels within the support frame thus change the up-light distribution pattern, but not the down-tight distribution pattern.
Light panels 15 are most suitably square panels, and each panel can include a light waveguide 29 secured within a square perimeter frame 31. The perimeter frame holds rows of LEDs 33 along opposed edges 35 of waveguide 29 such that the LEDs are positioned to feed light into the waveguide edges. In a manner well known in the art, light fed into the waveguide at the waveguide edges travels down the waveguide by internal reflections and is extracted through the surface or surfaces of the waveguides by suitable light extraction means. (Light waveguides and means for extracting light from light waveguides are described in U.S. Patent Application Publication No. 2010-0220497, which is incorporated herein by reference.) The top surface of the light waveguide provides the top planar light emitting surface 17 of light panels 15, and the bottom surface of the light waveguide provides the panel's bottom planer light emitting surface, and each surface can be provided with light extraction means for producing a desired light distribution from the surfaces. Light extraction through the top surface of the waveguide can, for example, be provided by micro-prisms on the waveguide's top surface, which are formed to produce an asymmetric up-light distribution pattern. On the other hand, a diffuse layer or layers applied to the bottom surface can extract light through this surface in a symmetric cosine down-light distribution. An additional microprismatic layer can be added to the bottom surface to provide some focusing of the symmetric down-tight distribution pattern in order to reduce glare at high viewing angles.
For the LED light sources 33, strips of LEDs contained within the perimeter frame can be connected in series with a positive lead wire 37 exiting from one corner region 39 of the perimeter frame and a negative lead wire 41 exiting an adjacent corner region 43. By having the lead wires exit the light panels at the corners of the panels, wire connections in the support frame can be made with a minimal amount of wire and wire travel.
It can be seen that the illustrated inner and outer support rings 23, 25 of the support frame support the light panels in one of two 90 degree orientations. The illustrated inner support ring 23 is an elongated ring having a long dimension and short dimension, and is comprised of a substantially vertically extending support wall 45 that provides a substantially vertical inner wall surface 47 and a substantially vertical outer wall surface 49. The inner support ring includes two outer corner regions 51, 53 in the long dimension, two inner corner regions 55, 57 in the short dimension, and straight wall sections 59a, 59h, 59c, 59d extending between the corner regions. As hereinafter described, the corner regions of the inner ring will provide suspension points for suspending the luminaire from an overhead ceiling. They will also provide points where the luminaire can be wired to an external power source.
The illustrated outer ring 25, which is a larger ring sized and shaped to provide a surround about the inner ring, is comprised of substantially vertically extending support wall 61 having a substantially vertical inner wall surface 62, and includes straight wail sections 63a, 63b, 63c, 63d positioned in opposition to the straight wall sections 59a, 59b, 59c, 59d of the inner ring. It is seen that the inner and outer rings can be in different planes. In the illustrated embodiment, the outer ring is slightly elevated relative to the inner ring. This will provide flexibility in the design of the luminaire both in terms of visual interest and lighting performance.
Light panel support means associated with the inner and outer support rings allow the light panels 15 to be held in place and supported by the rings. In the illustrated embodiment, the light panel support means is comprised of rim support trays 65 secured to and extending between the straight wail sections 59a, 59b, 59c, 59d of the inner ring 23 and the opposed straight wall sections 63a, 63b, 63c, 63d of the outer support ring 25. Each rim support tray is formed by L-shaped rails 67 configured in a square and suitably sized for receiving and holding one of the light panels 15. The in-turned leg 69 of the L-shaped rail frames an opening 71 sized to expose the bottom planar surface 17 of the light panel held in the tray. Attachment of the rim trays between the inner and outer support rings 23, 25 of the support frame can be accomplished by suitable fasteners 72, 73 that fasten vertical walls 74, 76 of the rails to opposed vertical walls 45, 61 of the support rings.
In addition to supporting light panels 15, the rim support trays will also provide a structural connection between the inner and outer support rings 23, 25. As best seen in
As mentioned above, the corner regions 51, 53, 55, 57 of the inner support ring of the support frame provide both suspension points and points where the luminaire can be wired to an external power source. Preferably they will be powered by a low voltage source, for example 36 volts, such that electrical power is delivered to the luminaire through the suspension cables 12a and 12b.
In
It is noted that the different orientations of the light panels shown in
While one embodiment of the invention has been described in considerable detail in the foregoing specification, it shall be understood that it is not intended that the invention be limited to such detail, and that variations of the described embodiment are possible which are within the scope of the invention. For example, light panels other than square light panels, such as rotationally symmetric polygonal panels, could be used. Also, consideration can be given to the use of planar light sources other than edge-fed tight waveguides.
This application claims the benefit of U.S. Provisional Application No. 61/799,690 filed Mar. 15, 2013, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61799690 | Mar 2013 | US |