The technology disclosed generally relates to illumination with a light source (or support therefore) and modifier of the shutter type.
The “INESA Lighting Handbook” published by the Illuminating Engineering Society of North America, is incorporated by reference here in its entirety. As discussed in chapter seven of that handbook, a “luminaire” is a device for producing, controlling, and distributing light. It is typically a complete lighting unit consisting of one or more lamps, sockets for positioning and protecting the lamps and for connecting the lamps to a supply of electric power, optical devices for distributing the light, and mechanical components for supporting or attaching the luminaire. Luminaires are also sometimes referred to as “light fixtures.”
“Diffused lighting” luminaires generally provide light on a work plane or an object that is not incident predominantly from any particular direction. “Direct-Indirect lighting” is a variant of general diffused lighting in which luminaires emit little or no light at angles near the horizontal. For example, Cooper Lighting of Peachtree City, Ga. offers a variety of suspended direct-indirect fluorescent luminaires under its Corelite brand which are well suited for open offices, private offices, conference rooms, trading floors, reception area, and educational facilities. Specification sheets and installation instructions for those luminaires are available at www.cooperlighting.com and are incorporated by reference here.
Shutters have also been used to control light eminating from a luminaire and are typically moveable covers or screens that alternately prevent or permit the passage of light. For example, U.S. Pat. No. 5,293,306 is incorporated by reference here and discloses a lantern with a shutter that can be closed in order to prevent light from shining through one side of the lantern. U.S. Pat. No. 4,530,041 is also incorporated by reference here and discloses a signal lamp with a slit-plate that is slidably positioned across the opening of a lamp housing in order to control light from the lamp. A variety of other lighting control techniques are also disclosed in U.S. Pat. Nos. 5,313,380, 4,468,720, 4,499,529, 6,206,581, 4,323,955, and 5,733,036, each of which is incorporated by reference here in its entirety.
The technology disclosed here generally relates to direct-indirect luminaires including a pair of sockets for receiving at least one tubular fluorescent lamp; a louver, arranged on one side of the lamp socket, for controlling downlight from the lamp; and a shutter, arranged on an opposite side of the lamp socket, for controlling uplight from the lamp. For example, the shutter may include a plurality of adjustably sizeable apertures which may be formed by adjacent members that are slidable relative to each other, with matching patterns of overlapping openings. The adjacent members may further include nested concave surfaces facing the lamp, such as channel-shaped members with openings that are arranged on at least two walls of the channel. A positioner may also be provided for designating a size of the apertures. For example, the positioner may include a protuberance on one of the adjacent members for engaging a hole in the other of the adjacent members.
In another embodiment, the technology disclosed here relates to a direct-indirect lighting system including a lamp; a baffle, such as a louver grid, arranged on one side of the lamp; and a shutter arranged on another side of the lamp. For example, the shutter may include a plurality of adjustably sizeable apertures which may be formed by adjacent members that are slidable relative to each other, with matching patterns of overlapping openings. The adjacent members may further include nested concave surfaces facing the lamp, such as channel-shaped members with openings that are arranged on at least two walls of the channel. A positioner may also be provided for designating a size of the apertures. For example, the positioner may include a protuberance on one of the adjacent members for engaging a hole in the other of the adjacent members.
In yet another embodiment, the technology disclosed here relates to a direct-indirect luminaire including means for receiving at least one tubular fluorescent lamp; means, arranged on one side of the lamp socket, for controlling downlight from the lamp; and means, arranged on an opposite side of the lamp socket, for controlling uplight from the lamp. For example, the means for controlling uplight may include a plurality of adjustably sizeable apertures which may be formed by adjacent members that are slidable relative to each other, with matching patterns of overlapping openings. The adjacent members may further include nested concave surfaces facing the lamp, such as channel-shaped members with openings that are arranged on at least two walls of the channel. Means for designating a size of the apertures may also be provided and may include a protuberance on one of the adjacent members for engaging a hole in the other of the adjacent members.
Various aspects of this technology will now be described with reference to the following figures (“FIGS.”) in which the same reference numerals are used to designate corresponding parts throughout each of the several views.
The shutter assembly 140 includes one or more adjustably sized apertures 160. These apertures 160 allow the amount of uplight to be controlled. For example, as illustrated in
Each of the C-shaped channel members 170 and 180 includes one or more openings 190 which may be arranged on one, two, and/or three sides of the member. The openings 190 are preferably arranged in matching and/or overlapping patterns so that when the first member 170 is nested over the second member 180, and the members are slid length-wise relative to each other, the openings 190 will overlap in order to shrink the size of the apertures 160 as shown in
In order to keep the first member 170 nested with the second member 180, the members may be provided with a guide slot 200 for engaging a guide post 210. These configuration helps the first and second members 170, 180 from being slid entirely apart. Although the drawings illustrate the guide slot 200 formed in the first member 170 and the guide post 210 formed in the second member 180, the positions of the slot and cam may be reversed. In addition, the guide post 210 may be arranged to extend inward, rather than outward as shown in the drawings.
As best shown in
The shutter assembly 140 may therefore be sent to the customer with a specified optical setting. In order to change that setting in the field, an installer would merely depress the protuberance 230 and slide the first member 170 relative to the second member 180. In this regard, a tab 250 may be provided on one, or both, of the first and second members 170 and 180. For the embodiment illustrated in the drawings, the tab 250 is provided on the second member 180 and the first member 170 is secured to the body 110 of the luminaire 100. However, other arrangements may also be used.
As illustrated in
It should be emphasized that the embodiments described above, and particularly any “preferred” embodiments, are merely examples of various implementations that have been set forth here to provide an understanding of various aspects of the invention. One of ordinary skill will be able to alter many of these embodiments without substantially departing from scope of protection defined solely by the proper construction of the following claims.
This present application claims priority to U.S. provisional Patent Application Ser. No. 60/557,505, filed on Mar. 29, 2004 which is incorporated by reference here in its entirety.
Number | Date | Country | |
---|---|---|---|
60557505 | Mar 2004 | US |