This disclosure relates generally to the technical field of communications and in one example embodiment, to a method and system of direct mailing in a geo-spatial environment.
People use real mail and physical mail (e.g., postal mail, courier service) to contact others. Real mail may be difficult to use, however, if an intended recipient's email address is not easily ascertainable. For example, the intended recipient may not be a member of a social network providing member email addresses or the intended recipient's email address may be private.
Physical mail may also be difficult to use. A sender may produce the physical item to be mailed, locate an address for the intended recipient, buy and affix postage to the item, and find a mailbox or other depository to dispatch the item.
Bulk mail to multiple intended recipients may present additional issues. The sender may not know the addresses of multiple intended recipients. The sender may purchase address list(s) of the multiple intended recipients. The sender may expend time and effort producing multiple copies of the items to be mailed. The sender may expend time and effort to address and post each of the items to each of the multiple recipients. Alternatively, the sender may incur costs hiring a company to procure address lists, produce the items, and deliver the items.
A method and system of direct mailing in a geo-spatial environment are disclosed. In one aspect, a method includes generating a community network of user profiles, each user profile of the user profiles associated with a verified geographic location and a contact address. The method includes associating a first user with a first user profile of the user profiles, selecting a mail mode, and selecting a communication. The method further includes generating a first display view to include a map view embodied by the community network, at least a portion of the user profiles represented at a location in the map view associated with the verified geographic location of the first user profile of the user profiles. The method includes selecting a second user profile from the at least a portion of the user profiles, and generating a mailing of the communication, in a format associated with the mail mode, between the first user profile of the user profiles and the contact address associated with the second user profile of the user profiles, wherein the contact address is based on the mail mode.
The selecting the mail mode may include selecting a physical mail mode, a facsimile mode, an email mode, and/or an instant message mode. The contact address may be selected from a group including: a physical mailing address associated with the verified geographic location of the user profile, a facsimile number, an email address, and/or an instant message user identifier. A physical mail mode may be selected.
The mailing of the communication may be generated in a physical format associated with the physical mail mode, between the first user profile of the user profiles and the contact address associated with the second user profile of the user profiles. The contact address may be based on a physical address associated with the second user profile of the user profiles. A facsimile mode may be selected. The mailing of the communication may be generated in a facsimile format associated with the facsimile mode, between the first user profile of the user profiles and the contact address associated with the second user profile of the user profiles. The contact address may be based on the facsimile number associated with the second user profile of the user profiles.
An email mode may be selected. The mailing of the communication may be generated in an email format associated with the email mode, between the first user profile of the user profiles and the contact address associated with the second user profile of the user profiles. The contact address may be based on the email address associated with the second user profile of the user profiles. An instant message mode may be selected. The mailing of the communication may be generated in an instant message format associated with the instant message mode, between the first user profile of the user profiles and the contact address associated with the second user profile of the user profiles. The contact address may be based on the instant message user identifier associated with the second user profile of the user profiles.
The location may be selected in the map view from a group including: a street address, a city, a county, a state, and/or a country. A radius associated with the location in the map view may be selected. User profiles of the at least a portion of the user profiles having verified geographic locations included in the radius may be selected. Demographics associated with the community network may be provided. The demographics may be associated with each user profile of the user profiles. At least one demographic of the demographics may be selected. The user profiles of the at least a portion of the user profiles having verified geographic locations included in the radius and having the at least one demographic of the demographics may be selected.
The demographics may include an age, an age range, a gender, an occupation, an ethnicity, a location of a residence, a location of a business, a marital status, an ownership status, a language, mobility, income, a life cycle, a socioeconomic status, and/or a lifestyle. An online commerce transaction associated with the mailing of the communication may be generated. The generating the online commerce transaction may include generating an online transaction associated with payment of postage, and/or generating an online transaction associated with payment of services related to the mailing of the communication.
The mailing of the communication may be scheduled. The scheduling the mailing of the communication may include determining a number of mailings, determining a time period, and/or generating the number of mailings within the time period. The communication may be created. The method may be in a form of a machine-readable medium embodying a set of instructions that, when executed by a machine, causes the machine to perform the method.
In another aspect, a system includes a geo-spatial environment, a community network algorithm of the geo-spatial environment, to include user profiles, using a processor and a memory, each user profile of the user profiles to include a verified geographic location and a contact address.
The system includes a map algorithm of the geo-spatial environment to include map data which serves as a basis to render a map view in the geo-spatial environment which identifies residences, businesses, and civic structures having verified geographic locations. The system further includes a mail mode algorithm of the geo-spatial environment to determine a mail mode, a communication algorithm of the geo-spatial environment to select a communication, and a display algorithm of the geo-spatial environment to generate a first display view to include a map view embodied by a community network, at least a portion of the user profiles represented at locations in the map view associated with the verified geographic locations of the at least a portion of the user profiles. The system also includes a recipient algorithm of the geo-spatial environment to select a user profile from the at least a portion of the user profiles and a mail communication algorithm of the geo-spatial environment to generate a mailing of the communication, in a format associated with the mail mode, to a contact address associated with the user profile of the user profiles.
A commerce transaction algorithm of the geo-spatial environment may generate a commerce transaction associated with elements. A postage algorithm of the geo-spatial environment may generate an online transaction associated with payment of postage and/or a service payment algorithm of the geo-spatial environment may generate an online transaction associated with payment of services related to mailing the communication. A location algorithm may select the location. The location may be selected from a group including: a street address, a city, a county, a state, and/or a country.
A radius algorithm may determine a radius based on the location and to display the at least a portion of the user profiles having verified geographic locations included in the radius. A demographic algorithm may provide demographics associated with the user profiles, select demographic of the demographics, and/or determine a group of user profiles of the at least a portion of the user profiles. The demographics may be associated with each user profiles of the group of user profiles. The demographic may be selected from a group including an age, an age range, a gender, an occupation, an ethnicity, a location of a residence, a location of a business, a marital status, an ownership status, a language, mobility, income, a life cycle, a socioeconomic status, and a lifestyle.
A scheduler algorithm may schedule the mailing. The schedule may be based on a selected number of mailings per a predetermined time period. A document creation algorithm may enable creation of a document. A letter creation algorithm may enable creation of letters and/or a marketing brochure creation algorithm may enable creation of marketing brochures. The mail mode may be selected from a group including a physical mail mode, a facsimile mode, an email mode, and/or an instant message mode. The contact address may be selected from a group including a physical mailing address associated with the verified geographic location of the user profile, a facsimile number, an email address, and/or an instant message user identifier.
In yet another aspect, a geo-spatial environment includes a first instruction set to enable, using a processor and a memory, a community network to include a map database associated with map data and a user database associated with user profiles, each user profile of the user profiles associated with a verified geographic location identifiable in the map data and a contact address. The geo-spatial environment includes a second instruction set integrated with the first instruction set to display a map view, embodied by the community network, to include representations of a portion of the user profiles. Each representation of a user profile of the portion of the user profiles is displayed at a location in the map view corresponding to the verified geographic location associated with the user profile. The geo-spatial environment also includes a third instruction set integrated with the first instruction set and the second instruction set to determine a second user profile of the portion of the user profiles, a communication, and a mail mode. The geo-spatial environment further includes a fourth instruction set integrated with the first instruction set and the second instruction set and the third instruction set to generate a mailing of the communication, in a format associated with the mail mode, to the contact address associated with the second user profile of the user profiles, wherein the contact address is based on the mail mode.
A fifth instruction set may generate a commerce transaction associated with the mailing of the communication. A sixth instruction set may schedule the mailing of the communication. A seventh instruction set may enable creation of the communication.
The methods, systems, and apparatuses disclosed herein may be implemented in any means for achieving various aspects, and may be executed in a form of a machine-readable medium embodying a set of instructions that, when executed by a machine, cause the machine to perform any of the operations disclosed herein. Other features will be apparent from the accompanying drawings and from the detailed description that follows.
Example embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.
A method and system of direct mailing in a geo-spatial environment are disclosed. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. It will be evident, however to one skilled in the art that the various embodiments may be practiced without these specific details.
In one embodiment, a method includes generating a community network (e.g., the community network 200 of
The method also includes generating a first display view to include a map view (e.g., the map view 406 of
In another embodiment, a system includes a geo-spatial environment (e.g., the geo-spatial environment 100 of
The system also includes a display algorithm (e.g., the display algorithm 114 of
In yet another embodiment, a geo-spatial environment 100 includes a first instruction set to enable a community network (e.g., the community network 200 of
The geo-spatial environment 100 also includes a third instruction set integrated with the first instruction set and the second instruction set to determine a second user profile 204A of the portion of the user profiles 204, a communication (e.g., the communication 404 of
The geo-spatial environment 100 may enable the users 102 to directly mail and communicate with each other. The users 102 may be registered and/or unregistered users associated with user profiles 204 communicating through a mail mode 402 (e.g., a physical mail mode, facsimile mail mode, an email mode and/or instant message mode, etc.) in the geo-spatial environment 100. The network 104 may facilitate communication between the users 102 and the geo-spatial environment 100. The community network algorithm 106 may generate a community network (e.g., the community network 200 of
The map algorithm 108 may generate a map view (e.g., the map view 406 of
The communication algorithm 110 may enable selection and/or generation of the communication 404 associated with a user profile 204 having specific geographic locations 206. The mail mode algorithm 112 may determine a mail mode (e.g., a physical mail mode, a facsimile mode, an email mode, an instant message mode, etc.) for mailing of the communication 404 in a format associated with the mail mode 402. The display algorithm 114 may generate a first display view which includes the map view 406 embodied by the community network 200 in the geo-spatial environment 100. The recipient algorithm 116 may enable selection of a user profile 204 associated with the contact address 210 for mailing of the communication 404 through a particular mail mode in the geo-spatial environment 100.
The mail communication algorithm 118 may generate the mailing of the communication 404 between the first user profile 204 and the contact address 210 associated with the second user profile 204A, in a format associated with the mail mode 402 (e.g., the physical mail mode, the facsimile mode, the email mode, the instant message mode, etc.). The additional algorithms 120 may generate additional processes to enable the communication 404 through a mail mode 402. The map data 122 may include details of maps of any region, area and/or neighborhood in the geo-spatial environment 100 which serves as a basis to identify residences, businesses, and/or civic structures having verified geographic locations 206 in the map view 406.
In the example embodiment illustrated in
The community network algorithm 106 of the geo-spatial environment 100 may include the user profiles 204, each user profile 204 to include a specific geographic location 206 and a contact address 210. The map algorithm 108 of the geo-spatial environment 100 may include map data 122 which serves as a basis to render the map view 406 in the geo-spatial environment 100 which identifies the residences, the businesses, and/or the civic structures having specific geographic locations 206. The mail mode algorithm 112 of the geo-spatial environment 100 may determine a mail mode (e.g., the mail mode 402 of
The display algorithm 114 of the geo-spatial environment 100 may generate the first display view to include the map view 406 embodied by the community network 200, a portion of the user profiles 204 represented at locations in the map view 406 associated with the verified geographic locations 206 of the portion of the user profiles 204. The recipient algorithm 116 of the geo-spatial environment 100 may select the user profile 204 from the portion of the user profiles 204. The mail communication algorithm 118 of the geo-spatial environment 100 may generate the mailing of the communication 404, in a format associated with the mail mode 402, to a contact address (e.g., the contact address 210 of
The community network 200 may be a network of people, places and/or businesses in the geo-spatial environment 100 associated with the user profiles 204, each user profile 204 having a verified geographic location (e.g., the specific geographic location 206 of
The verified geographic location 206 may refer to the specific location of the users 102 associated with the user profile 204. The map database 208 may include the map data 122 of any area, region and/or neighborhood of the users 102 associated with the user profiles 204. The contact address 210 may be a physical mailing address (e.g., associated with a verified geographic location 206 of a user profile 204), a facsimile number, an email address, and/or an instant message user identifier used for the communication 404 based on the mail mode 402.
In the example embodiment illustrated in
The community network 200 of the user profiles 204 may be generated, each user profile 204 associated with the verified geographic location 206 and the contact address 210. The contact address 210 may be selected from a group including a physical mailing address associated with the verified geographic location 206 of the user profile 204, a facsimile number, an email address, and/or an instant message user identifier, etc. The first user 102 may be associated with a first user profile 204. The communication 404 may be created.
The geo-spatial environment 100 may include a first instruction set to enable the community network 200 that includes the map database 208 associated with the map data 122 and the user database 202 associated with user profiles 204. Each user profile 204 may be associated with the verified geographic location 206 identifiable in the map data 122 and the contact address 210.
The commerce transaction algorithm 302 may generate a commerce transaction (e.g., the commerce transaction 408 of
The radius algorithm 306 may determine a radius based on the location and/or display a portion the user profiles 204 having verified geographic locations 206 within a threshold radius. The demographic algorithm 308 may provide demographics (e.g., an age, an age range, a gender, an occupation, an ethnicity, a location of a residence, a location of a business, a martial status, an ownership status, a language, mobility, income, a life cycle, a socioeconomic status, a lifestyle, etc.) associated with the user profiles 204, select a demographic (e.g., the demographic may be associated with each user profile 204 of the group of user profiles 204), and/or determine a group of user profiles 204 of the portion of the user profiles 204. The scheduler algorithm 310 may schedule the mailing of the communication 404 between the first user profile 204 and the contact address 210 associated with the second user profile 204A.
The document creation algorithm 312 may generate the document associated with the communication 404 between the first user profile 204 and contact address 210 of the second user profile 204A. The letter creation algorithm 312A may enable the users 102 to create letters for communication 404 between the first user profile 204 and the contact address 210 associated with the second user profile 204A. The marketing brochure creation algorithm 312B may enable creation of marketing brochures (e.g., the brochures 704 of
In the example embodiment illustrated in
The commerce transaction algorithm 302 of the geo-spatial environment 100 may generate the commerce transaction 408 associated with the elements. The postage algorithm 302A of the geo-spatial environment 100 may generate an online transaction associated with payment of postage. The service payment algorithm 302B of the geospatial environment 100 may generate an online transaction associated with payment of services related to mailing the communication 404. The location algorithm 304 may select the location (e.g., a street address, a city, a county, a state and/or a country, etc.) associated with the user profile 204.
The radius algorithm 306 may determine a radius based on the location and/or display a portion of the user profiles 204 having verified geographic locations 206 of
The mail mode 402 may enable mailing of the communication 404 between the first user 102 associated with the first user profile 204 and the contact address 210 of the second user 102 associated with the second user profile 204A of the user profiles 204 through the mail mode 402 (e.g., a physical mode, a facsimile mode, an email mode, and/or an instant message mode, etc.). The communication 404 may be in the form of an online document, a text, a note, a memo, a pamphlet and/or a letter, etc. The map view 406 may enable the users 102 to view neighbor's profiles and their contact addresses (e.g., the contact address 210 of
In the example embodiment illustrated in
The mail mode 402 may be selected by the mail mode algorithm 112 and/or the communication 404 may be selected by the communication algorithm 110. A first display view may be generated (e.g., using the display algorithm 114 of
The physical mail mode (e.g., the mail mode 402 of
The email mode may be selected and the mailing of the communication 404 may be generated, in an email format associated with the email mode, between the first user profile 204 and the contact address 210 (e.g., the contact address 210 may be based on an email address) associated with the second user profile 204A. The instant message mode may be selected (e.g., using the mail mode algorithm 112 of
The location in the map view 406 may be selected from a group including a street address, a city, a county, a state, and/or a country, etc. The online commerce transaction 408 (e.g., payment of postage, payment of services, etc.) associated with the mailing of the communication 404 may be generated. The geo-spatial environment (e.g., the geo-spatial environment 100 of
The geo-spatial environment (e.g., the geo-spatial environment 100 of
The profile menu option 502 may enable a user (e.g., the users 102 of
In the example embodiment illustrated in
In the example embodiment illustrated in
In the example embodiment illustrated in
The select recipients menu option 802 may enable the users 102 to communicate by selecting recipients having verified geographic locations 206 within a radius. The location field 804 may enable the users 102 to select the locations associated with the recipient(s) from a group including a street address, a city, a county, a state and a country. The radius field 806 may enable the users 102 to select the recipients located a threshold radius away from the user 102. The demographics option 808 may enable the users 102 to determine a group of user profiles 204 based on age, age range, gender, occupation, ethnicity, location of a residence, location of a business, martial status, ownership status, language, mobility, income, life cycle, socioeconomic status, and/or lifestyle, etc. associated with the recipient(s).
In the example embodiment illustrated in
A get menu link displayed in the select recipients menu option 802 facilitates the users 102 to find matching recipients by selecting the demographics (e.g., age >12, own residence) from the demographics option 808. The user interface view 800 may enable the users 102 to select the desired recipients involved in the mailing of the communication 404 through selecting the locations of the recipients displayed in the map view 406. In addition, the user interface view 800 also displays in the map view 406, the editable profiles 504 and/or the representations of user profiles 508.
The radius 806 associated with a location in the map view 406 may be selected (e.g., using the radius algorithm 306 of
The geo-spatial environment (e.g., the geo-spatial environment 100 of
In the example embodiment illustrated in
In addition, the user interface view 900 may enable the user 102 (e.g., Pizza Heaven) to select all the matching recipients for mailing of the communication 404 using a select all matching recipients for mailing link of the matching recipients menu option 902. (The user interface view 900 displays in the map view 406, the editable profiles 504, the content 506 associated with the editable profiles 504 and the representations of user profiles 508 adjacent to the profiles 204 associated with the matching recipients.
In the example embodiment illustrated in
In addition, a pay using online payment system link of the schedule, pay, and send menu option 1002 may enable the user 102 to make online transactions associated with the payment of postages and/or services. The users 102 may make online payment of postages (e.g., @ $0.30 per recipient for a total of 26 matching recipients) and/or payment of services (e.g., @ $50.00) related to the mailing of the communication 404 to the recipients. The users 102 may send any number of mailings per a predetermined time period (e.g., per day, week, month and/or year).
The user 102 (e.g., Pizza Heaven) may send mails to the recipients upon receiving a transaction confirmation number (e.g., 23923235) associated with confirmation of payment. The user interface view 1000 also displays delivery status of the mailings to the recipients in the schedule, pay, and send menu option 1002. A return to profile option may enable the users 102 to revisit the profile 204 associated with the user 102. The mailing of the communication 404 may be scheduled (e.g., by determining a number of mailings, a time period and/or generating the number of mailings within the time period). The geo-spatial environment (e.g., the geo-spatial environment 100 of
The users field 1102 may display the names of users (e.g., the users 102 of
In the example embodiment illustrated in
The diagrammatic system view 1200 may indicate a personal computer and/or a data processing system in which one or more operations disclosed herein may be performed. The processor 1202 may be a microprocessor, a state machine, an application-specific integrated circuit, a field programmable gate array, etc. (e.g., Intel@ Pentium® processor). The main memory 1204 may be a dynamic random access memory and/or a primary memory of a computer system. The static memory 1206 may be a hard drive, a flash drive, and/or other memory information associated with the data processing system.
The bus 1208 may be an interconnection between various circuits and/or structures of the data processing system. The video display 1210 may provide graphical representation of information on the data processing system. The alpha-numeric input device 1212 may be a keypad, a keyboard and/or any other input device of text (e.g., a special device to aid the physically challenged). The cursor control device 1214 may be a pointing device such as a mouse.
The drive unit 1216 may be the hard drive, a storage system, and/or other longer term storage subsystem. The signal generation device 1218 may be a bios and/or a functional operating system of the data processing system. The network interface device 1220 may be a device that may perform interface functions such as code conversion, protocol conversion and/or buffering required for communication to and from the network 1226. The machine readable medium 1222 may provide instructions on which any of the methods disclosed herein may be performed. The instructions 1224 may provide source code and/or data code to the processor 1202 to enable any one/or more operations disclosed herein.
In operation 1310, a first display view may be generated (e.g., through the display algorithm 114 of
In operation 1320, a facsimile mode may be selected (e.g., through the mail mode algorithm 112 of
In operation 1334, a radius (e.g., the radius 806 of
Although the present embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices, algorithms, analyzers, generators, etc. described herein may be enabled and operated using hardware circuitry (e.g., CMOS based logic circuitry), firmware, software and/or any combination of hardware, firmware, and/or software (e.g., embodied in a machine readable medium).
For example, the various electrical structure and methods may be embodied using transistors, logic gates, and electrical circuits (e.g., Application Specific Integrated Circuitry (ASIC) and/or in Digital Signal Processor (DSP) circuitry). For example, the community network algorithm 106, the map algorithm 108, the communication algorithm 110, the mail mode algorithm 112, the display algorithm 114, the recipient algorithm 116, the mail communication algorithm 118, the additional algorithms 120, the commerce transaction algorithm 302, the postage algorithm 302A, the service payment algorithm 302B, the location algorithm 304, the radius algorithm 306, the demographic algorithm 308, the scheduler algorithm 310, the document creation algorithm 312, the letter creation algorithm 312A, the marketing brochure creation algorithm 312B, and other algorithms of
In addition, it will be appreciated that the various operations, processes, and methods disclosed herein may be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system (e.g., a computer system), and may be performed in any order. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
In the example embodiment illustrated in
The verified registered user 4110 may be verified registered user of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
For example, a social community algorithm (e.g., a social community algorithm 2906 of
In operation 1700 the search for the user profile (e.g., the user profile 29200 of
For example, a no-match algorithm (e.g., a no-match algorithm 3112 of
The GUI display 1802 and GUI display 1804 may display particular case of user interface for interacting with a device capable of representing data (e.g., computer, cellular telephones, television sets etc.) which employs graphical images and widgets in addition to text to represent the information and actions available to the user (e.g., the user 2916 of
The router 1812 may forward packets between networks and/or information packets between the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The application server #2 1822 may be server computer on a computer network dedicated to running certain software applications of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The image server 1832 may store and provide digital images of the registered user of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The database 1900 be may include descriptive data, preference data, relationship data, and/or other data items regarding the registered user of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The user data 1902 may be a descriptive data referring to information that may describe a user (e.g., the user 2916 of
The locations data 1904 may clarify the location details in formatted approach. For example Zip code may be formatted as integer, City may be in text and/or State may be in text. The zip codes data 1906 may provide information of a user location in formatted manner. For example Zip code may be formatted as text, Latitude may be in integer and/or Longitude may be in integer. The profile data 1908 may clutch personnel descriptive data that may be formatted.
For examples ID may be formatted as integer, Interests may be in text, Favoritemusic may be in text, Favaoritebooks may be in text, Favoritetv may be in text, Favoritemovies may be in text, Aboutme may be in text, Wanttommet may be in text, Ethnicity may be in integer, Hair may be in integer, Eyes may be in integer, Height may be in integer, Body may be in integer, Education may be in integer, Income may be in integer, Religion may be in integer, Politics may be in integer Smoking may be in integer, Drinking may be in integer and/or Kids may be in integer.
The photos data 1910 may represent a digital image and/or a photograph of the user formatted in certain approach. For example Id may be formatted as integer, User may be in integer, Fileid may be in integer and/or Moderation may be in integer. The testimonials data 1912 may allow users to write “testimonials” 1912, or comments, about each other and in these testimonials, users may describe their relationship to an individual and their comments about that individual. For example the user might write a testimonial that states “Rohan has been a friend of mine since graduation days. He is smart, intelligent, and a talented person.” The elements of testimonials data 1912 may be formatted as Id may be in integer, User may be in integer, Sender may be integer, Approved may be in y/n, Date may be in date and/or Body may be formatted in text.
The search parameters data 1914 may be preference data referring to the data that may describe preferences one user has with respect to another (For example, the user may indicate that he is looking for a female who is seeking a male for a serious relationship). The elements of the search parameters data 1914 may be formatted as User 1902 may be in integer, Photosonly may be in y/n, Justphotos may be in y/n, Male may be in y/n, Female may be in y/n, Men may be in y/n, Women may be in y/n, Helptohelp may be in y/n, Friends may be in y/n, Dating may be in y/n, Serious may be in y/n, Activity may be in y/n, Minage may be in integer, Maxage may be in integer, Distance may be in integer, Single may be in y/n, Relationship may be in y/n, Married may be in y/n and/or Openmarriage may be in y/n.
The neighbor's data 1916 may generally refer to relationships among registered users of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The elements of the invites data 1920 may be formatted as Id may be in integer, Key may be in integer, Sender may be in integer, Email may be in text, Date may be in date format, Clicked may be in y/n, Joined may be in y/n and/or Joineduser may be in integer. The bookmarks data 1922 may be provide the data for a process allowed wherein a registered user of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The message data 1924 may be formatted as Id may be in integer, User may be in integer, Sender may be in integer, New may be in y/n, Folder may be in text, Date may be in date format, Subject may be in text and/or Body may be in text format. The bulletin board data 1926 may supports the function of a bulletin board that users may use to conduct online discussions, conversation and/or debate. The claimable data 1928 may share the user profiles (e.g., the user profile 29200 of
The “From” section may include the senders email id (e.g., user@domain.com). The “To” section may be provided to add the email id of the person to whom the sender may want to join the neighborhood (e.g., the neighborhood 2902A-N of
In operation 2310, response from the user (e.g., the user 2916 of
In operation 2316, if the invitee accepts the invitation sent by the registered user then system may notify the registered user that the invitee has accepted the invitation. In operation 2318, the input from the present invitee(s) that may contain the descriptive data about the friend (e.g., registered user) may be processed and stored in the database.
For example, each registered user associated e-mail addresses of individuals who are not registered users may be stored and identified by each registered user as neighbors. An invitation to become a new user (e.g., the user 2916 of
The neighbor (e.g., the neighbor 2920 of
If it is determined that depth is more than maximum allowable degrees of separation then it may repeat the operation 2406. In operation 2414, if may be determined that the depth of the geographical location (e.g., the geographical location 4004 of
In operation 2418, if all the neighbors (e.g., the neighbor 2920 of
If it is determined that the neighbor (e.g., the neighbor 2920 of
For example, a first user ID with the verified registered user (e.g., the verified registered user 4110 of
Furthermore, the user ID of the different registered user may be searched (e.g., the method limits the searching of the different registered user in the sets of user IDs that may be stored as registered users who are less than Nmax degrees of separation away from the verified registered user (e.g., the verified registered user 4110 of
Moreover, the sets of user IDs that may be stored of registered users may be searched initially who are directly connected to the verified registered user (e.g., the verified registered user 4110 of
In addition, the connection path between the verified registered user (e.g., the verified registered user 4110 of
For example, the brief profiles of registered users, including a brief profile of the different registered user, to the verified registered user (e.g., the verified registered user 4110 of
Furthermore, the hyperlink selection from the verified registered user (e.g., the verified registered user 4110 of
In operation 2806, a map (e.g., a map 4002 of
In operation 2810, a query of at least one of the user profile (e.g., the user profile 29200 of
In operation 2814, a certain claimable profile (e.g., the claimable profile 4006 of
In operation 2816, the certain claimable profile (e.g., the claimable profile 4006 of
In operation 2822, a commercial user (e.g., a commercial user 4100 of
In operation 2826, a payment of the commercial user (e.g., the commercial user 4100 of
In operation 2830, a claimant of any claimable profile (e.g., the claimable profile 4006 of
In operation 2838, a maximum degree of separation (Nmax) of at least two may be set that is allowed for connecting any two registered users, wherein two registered users who are directly connected may be deemed to be separated by one degree of separation and two registered users who are connected through no less than one other registered user may be deemed to be separated by two degrees of separation and two registered users who may be connected through no less than N other registered users are deemed to be separated by N+1 degrees of separation. In operation 2840, the user ID of the different registered user may be searched in a set of user IDs that are stored of registered users who are less than Nmax degrees of separation away from the verified registered user (e.g., the verified registered user 4110 of
In operation 2842, the verified registered user (e.g., the verified registered user 4110 of
In operation 2848, a connection path between the verified registered user (e.g., the verified registered user 4110 of
In operation 2850, the connection path between the verified registered user (e.g., the verified registered user 4110 of
In operation 2852, a hyperlink in the connection path of each of the at least one registered users may be embedded through whom the connection path between the verified registered user (e.g., the verified registered user 4110 of
In operation 2856, an invitation may be communicated to become a new user (e.g., a user 2916 of
In operation 2864, inputs from the neighbor (e.g., the neighbor 2920 of
In operation 2868, the hyperlink selection from the verified registered user (e.g., the verified registered user 4110 of
In operation 2870, brief profiles of those registered users who may be more than Nmax degrees of separation away from the verified registered user (e.g., the verified registered user 4110 of
In one embodiment, a neighborhood communication system 2950 is described. This embodiment includes a privacy server 2900 to apply an address verification algorithm (e.g., using verify algorithm 3006 of
A network 2904, and a mapping server 2926 (e.g., providing global map data) communicatively coupled with the privacy server 2900 through the network 2904 generate a latitudinal data and a longitudinal data associated with each claimable residential address (e.g., using sub-algorithms of the claimable algorithm 2910 as described in
It will be appreciated that the neighborhood communication system 2950 may operate the various multi-copters 100 of
The privacy server 2900 automatically determines a set of access privileges in the online community (e.g., as shown in the social community view 3650 of
The privacy server 2900 (e.g., a hardware device of a global neighborhood environment 1800) may transform the claimable residential address (e.g., using sub-algorithms of the claimable algorithm 2910 as described in
The privacy server 2900 may constrain the threshold radial distance to be less than a distance of the neighborhood boundary using the Bezier curve algorithm 3040. The privacy server 2900 may permit the neighborhood boundary to take on a variety of shapes based on an associated geographic connotation, a historical connotation, a political connotation, and/or a cultural connotation of neighborhood boundaries. The privacy server 2900 may apply a database of constraints (e.g., the databases of
The privacy server 2900 may generate a user-generated boundary in a form of a polygon describing geo spatial boundaries defining the particular neighborhood when a first user of a particular neighborhood that verifies a first residential address of the particular neighborhood using the privacy server 2900 prior to other users in that particular neighborhood verifying their addresses in that particular neighborhood places a set of points defining the particular neighborhood using a set of drawing tools in the map view of the online community (e.g., as shown in the social community view 3650 of
The separate login may permit the police department, the municipal agency, the neighborhood association, and/or the neighborhood leader to: (1) invite residents of the particular neighborhood themselves (e.g., see the user interface view of
The privacy server 2900 may permit each of the restricted group of users verified in the particular neighborhood using the privacy server 2900 to: (1) share information about a suspicious activity that is likely to affect several neighborhoods, (2) explain about a lost pet that might have wandered into an adjoining neighborhood, (3) rally support from neighbors 2920 (e.g., such as the neighbor 2920 of
The privacy server 2900 may flag a neighborhood feed from the particular neighborhood and/or optionally from the adjacent neighborhood as being inappropriate. The privacy server 2900 may suspend users that repeatedly communicate self-promotional messages that are inappropriate as voted based on a sensibility of any one of the verified users (e.g., the verified user 4110 of
The privacy server 2900 may filter feeds to only display messages from the particular neighborhood associated with each verified user. The privacy server 2900 may restrict posts only in the particular neighborhood to verified users (e.g., the verified user 4110 of
The privacy server 2900 may initially set the particular neighborhood to a pilot phase status in which the online community (e.g., as shown in the social community view 3650 of
In another embodiment a method of a neighborhood communication system 2950 is described. The method includes applying an address verification algorithm (e.g., using verify algorithm 3006 of
The method may transform the claimable residential address (e.g., using sub-algorithms of the claimable algorithm 2910 as described in
The method may constrain the particular user 2916 to communicate through the online community (e.g., as shown in the social community view 3650 of
The method may constrain the threshold radial distance to be less than a distance of the neighborhood boundary using the Bezier curve algorithm 3040.
In addition, the method may define a neighborhood boundary to take on a variety of shapes based on an associated geographic connotation, a historical connotation, a political connotation, and/or a cultural connotation of neighborhood boundaries. The method may apply a database of constraints (e.g., the databases of
The method may generate a user-generated boundary in a form of a polygon describing geospatial boundaries defining the particular neighborhood when a first user of a particular neighborhood that verifies a first residential address of the particular neighborhood using the privacy server 2900 prior to other users in that particular neighborhood verifying their addresses in that particular neighborhood places a set of points defining the particular neighborhood using a set of drawing tools in the map view of the online community (e.g., as shown in the social community view 3650 of
The method may generate a separate login to the online community (e.g., as shown in the social community view 3650 of
The method may permit the police department, the municipal agency, the neighborhood association, and/or the neighborhood leader to: (1) invite residents of the particular neighborhood themselves (e.g., see the user interface view of
The method may permit each of the restricted group of users verified in the particular neighborhood using the privacy server 2900 to: (1) share information about a suspicious activity that is likely to affect several neighborhoods, (2) explain about a lost pet that might have wandered into an adjoining neighborhood, (3) rally support from neighbors 2920 (e.g., such as the neighbor 2920 of
The method may flag a neighborhood feed from the particular neighborhood and/or optionally from the adjacent neighborhood as being inappropriate. The method may suspend users that repeatedly communicate self-promotional messages that are inappropriate as voted based on a sensibility of any one of the verified users (e.g., the verified user 4110 of
The method may filter feeds to only display messages from the particular neighborhood associated with each verified user. The method may restrict posts only in the particular neighborhood to verified users (e.g., the verified user 4110 of
The method may initially set the particular neighborhood to a pilot phase status in which the online community (e.g., as shown in the social community view 3650 of
In yet another embodiment, another neighborhood communication system 2950 is described. This embodiment includes a privacy server 2900 to apply an address verification algorithm (e.g., using verify algorithm 3006 of
In addition, in this yet another embodiment the privacy server 2900 transforms the claimable residential address (e.g., using sub-algorithms of the claimable algorithm 2910 as described in
The privacy server 2900 may include any number of neighborhoods having registered users and/or unregistered users. The neighborhood(s) 2902 may be a geographically localized community in a larger city, town, and/or suburb. The network 2904 (e.g., the network 104 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
Furthermore, the social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The Bezier curve algorithm 3040 may operate as follows, according to one embodiment. The radial algorithm (e.g., the Bezier curve algorithm 3040 of
g(r)
In the neighborhood communication system 2950. The radial distribution function may describe how density varies as a function of distance from a user 2916, according to one embodiment.
If a given user 2916 is taken to be at the origin O (e.g., the epicenter), and if
ρ=N/V
is the average number density of recipients (e.g., other users of the neighborhood communication system 2950 such as neighbors 2920 of
ρg(r)
according to one embodiment. This simplified definition may hold for a homogeneous and isotropic type of recipients (e.g., other users of the neighborhood communication system 2950 such as neighbors 2920 of
A more anisotropic distribution (e.g., exhibiting properties with different values when measured in different directions) of the recipients (e.g., other users of the neighborhood communication system 2950 such as neighbors 2920 of
The histogram may then be normalized with respect to an ideal user at the origin o, where user histograms are completely uncorrelated, according to one embodiment. For three dimensions (e.g., such as a building representation in the privacy server 2900 in which there are multiple residents in each floor), this normalization may be the number density of the system multiplied by the volume of the spherical shell, which mathematically can be expressed as
g(r)I=4πr2ρdr,
where ρ may be the user density, according to one embodiment of the Bezier curve algorithm 3040.
The radial distribution function of the Bezier curve algorithm 3040 can be computed either via computer simulation methods like the Monte Carlo method, or via the Ornstein-Zernike equation, using approximative closure relations like the Percus-Yevick approximation or the Hypernetted Chain Theory, according to one embodiment.
This may be important because by confining the broadcast reach of a verified user in the neighborhood communication system 2950 to a specified range, the social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
In effect, the radial algorithm (e.g., the Bezier curve algorithm 3040 of
The various embodiments described herein of the privacy server 2900 using the social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The radial algorithm (e.g., the Bezier curve algorithm 3040 of
A Bezier curve algorithm 3040 may be a method of calculating a sequence of operations, and in this case a sequence of radio operations, according to one embodiment. Starting from an initial state and initial input, the Bezier curve algorithm 3040 describes a computation that, when executed, proceeds through a finite number of well-defined successive states, eventually producing radial patterned distribution (e.g., simulating a local radio station), according to one embodiment.
The privacy server 2900 may solve technical challenges through the social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
By using the social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
In order to implement the social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The Bezier curve algorithm 3040 may be used to calculate relative distances between each one of millions of records as associated with each placed geo-spatial coordinate in the privacy server 2900 (e.g., a neighborhood social network such as Fatdoor.com, Nextdoor.com). Calculations of relative distance between each geospatial coordinate can be a large computational challenge because of the high number of reads, writes, modify, and creates associated with each geospatial coordinate added to the privacy server 2900 and subsequent recalculations of surrounding geospatial coordinates associated with other users and/or other profile pages based a relative distance away from a newly added set of geospatial coordinates (e.g., associated with the neighborhood broadcast data and/or with other pushpin types). To overcome this computational challenge, the radial algorithm (e.g., the Bezier curve algorithm 3040 of
In order to achieve the utilization of the massively parallel computing architecture in a context of a radial distribution function of a privacy server 2900, a number of technical challenges have been overcome in at least one embodiment. Particularly, the social community algorithm 2906 constructs a series of tables based on an ordered geospatial ranking based on frequency of interaction through a set of ‘n’ number of users simultaneously interacting with the privacy server 2900, in one preferred embodiment. In this manner, sessions of access between the privacy server 2900 and users of the privacy server 2900 (e.g., the user 2916) may be monitored based on geospatial claimed areas of the user (e.g., a claimed work and/or home location of the user), and/or a present geospatial location of the user. In this manner, tables associated with data related to claimed geospatial areas of the user and/or the present geospatial location of the user may be anticipatorily cached in the memory 2924 to ensure that a response time of the privacy server 2900 may be not constrained by delays caused by extraction, retrieval, and transformation of tables that are not likely to be required for a current and/or anticipated set of sessions between users and the privacy server 2900.
In a preferred embodiment, an elastic computing environment may be used by the social community algorithm 2906 to provide for increase/decreases of capacity within minutes of a database function requirement. In this manner, the social community algorithm 2906 can adapt to workload changes based on number of requests of processing simultaneous and/or concurrent requests associated with neighborhood broadcast data by provisioning and de-provisioning resources in an autonomic manner, such that at each point in time the available resources match the current demand as closely as possible.
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
In one or more embodiments, the social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
Another advantage of this broadcast via the social community algorithm 2906 (e.g., that applies the Bezier curve algorithm 3040 of
The claimable algorithm 2910 may enable the registered users to create and/or update their information. A ‘claimable’ (e.g., may be enabled through the claimable algorithm 2910) can be defined as a perpetual collective work of many authors. Similar to a blog in structure and logic, a claimable allows anyone to edit, delete or modify content that has been placed on the Web site using a browser interface, including the work of previous authors. In contrast, a blog (e.g., or a social network page), typically authored by an individual, may not allow visitors to change the original posted material, only add comments to the original content. The term claimable refers to either the web site or the software used to create the site. The term ‘claimable’ also implies fast creation, ease of creation, and community approval in many software contexts (e.g., claimable means “quick” in Hawaiian).
The commerce algorithm may provide an advertisement system to a business that may enable the users to purchase location in the neighborhood(s) 2902. The map algorithm 2914 (e.g., the map algorithm 108 of
The community center 2921 may be public locations where members of a community may gather for group activities, social support, public information, and other purposes. The business 2922 may be a customer service, finance, sales, production, communications/public relations and/or marketing organization that may be located in the neighborhood(s) 2902. The advertiser(s) 2924 may be an individual and/or a firm drawing public who may be responsible in encouraging the people attention to goods and/or services by promoting businesses, and/or may perform through a variety of media. The mapping server 2926 may contain the details/maps of any area, region and/or neighborhood. The social community algorithm 2906 of the privacy server 2900 may communicate with the neighborhood(s) 2902 through the network 2904 and/or the search algorithm 2908. The social community algorithm 2906 of the privacy server 2900 may communicate with the advertiser(s) 2924 through the commerce algorithm, the database of neighbors 2928 (e.g., occupant data) and/or mapping server 2926 through the map algorithm 2914.
For example, the neighborhoods 2902A-N may have registered users and/or unregistered users of a privacy server 2900. Also, the social community algorithm 2906 of the privacy server 2900 may generate a building creator (e.g., building builder 1602 of
In addition, the claimable algorithm 2910 of the privacy server 2900 may enable the registered users to create a social network page of themselves, and/or may edit information associated with the unregistered users identifiable through a viewing of physical properties in which, the unregistered users reside when the registered users have knowledge of characteristics associated with the unregistered users.
Furthermore, the search algorithm 2908 of the privacy server 2900 may enable a people search (e.g., the people search widget 3100 of
The commerce algorithm of the privacy server 2900 may provide an advertisement system to a business who purchase their location in the privacy server 2900 in which the advertisement may be viewable concurrently with a map indicating a location of the business, and/or in which revenue may be attributed to the privacy server 2900 when the registered users and/or the unregistered users click-in on a simultaneously displayed data of the advertisement along with the map indicating a location of the business.
Moreover, a map algorithm 2914 (e.g., the map algorithm 108 of
In addition, a first instruction set may enable a social network to reside above a map data, in which the social network may be associated with specific geographical locations identifiable in the map data. Also, a second instruction set integrated with the first instruction set may enable users of the social network to create profiles of other people through a forum which provides a free form of expression of the users sharing information about any entities and/or people residing in any geographical location identifiable in the satellite map data, and/or to provide a technique of each of the users to claim a geographic location (e.g., a geographic location 29024 of
Furthermore, a third instruction set integrated with the first instruction set and the second instruction set may enable searching of people in the privacy server 2900 by indexing each of the data shared by the user 2916 of any of the people and/or the entities residing in any geographic location (e.g., a geographic location 29024 of
Also, a fifth instruction set may enable an insertion of any content generated in the privacy server 2900 in other search engines through a syndication and/or advertising relationship between the privacy server 2900 and/or other internet commerce and search portals.
Moreover, a sixth instruction set may grow the social network through neighborhood groups, local politicians, block watch communities, issue activism groups, and neighbor(s) 2920 who invite other known parties and/or members to share profiles of themselves and/or learn characteristics and information about other supporters and/or residents in a geographic area of interest through the privacy server 2900.
Also, a seventh instruction set may determine quantify an effect on at least one of a desirability of a location, a popularity of a location, and a market value of a location based on an algorithm that considers a number of demographic and social characteristics of a region surrounding the location through a reviews algorithm.
The Nth degree algorithm 3002 may enable the particular registered user to communicate with an unknown registered user through a common registered user who may be a friend and/or a member of a common community. The tagging algorithm 3004 may enable the user 2916 to leave brief comments on each of the claimable profiles (e.g., the claimable profile 4006 of
The verify algorithm 3006 may validate the data, profiles and/or email addresses received from various registered user(s) before any changes may be included. The groups generator algorithm 3008 may enable the registered users to form groups may be depending on common interest, culture, style, hobbies and/or caste. The pushpin algorithm 3010 may generate customized indicators of different types of users, locations, and interests directly in the map. The profile algorithm 3012 may enable the user to create a set of profiles of the registered users and to submit media content of themselves, identifiable through a map.
The announce algorithm 3014 may distribute a message in a specified range of distance away from the registered users when a registered user purchases a message to communicate to certain ones of the registered users surrounding a geographic vicinity adjacent to the particular registered user originating the message. The people database 3016 may keep records of the visitor/users (e.g., a user 2916 of
For example, the verify algorithm 3006 of the social community algorithm 2906 of
In addition, the tagging algorithm 3004 of the social community algorithm (e.g., the social community algorithm 2906 of
Further, the announce algorithm 3014 of the social community algorithm 2906 of
In addition, the Nth degree algorithm 3002 of the social community algorithm 2906 of
Moreover, the profile algorithm 3012 of the social community algorithm 2906 of
The people search widget 3100 may help in getting the information like the address, phone number and/or e-mail id of the people of particular interest from a group and/or community. The business search algorithm 3102 may help the users (e.g., the user 2916 of
The category search widget 3104 may narrow down searches from a broader scope (e.g., if one is interested in information from a particular center, one can go to the category under the center and enter one's query there and it will return results from that particular category only). The communication algorithm 3106 may provide/facilitate multiple by which one can communicate, people to communicate with, and subjects to communicate about among different members of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The directory assistance algorithm 3108 may provide voice response assistance to users (e.g., the user 2916 of
The no-match algorithm 3112 may request additional information from a verified registered user (e.g., a verified registered user 4110 of
The chat widget 3116 may provide people to chat online, which is a way of communicating by broadcasting messages to people on the same site in real time. The group announcement widget 3118 may communicate with a group and/or community in may be by Usenet, Mailing list, calling and/or E-mail message sent to notify subscribers. The Voice over IP widget 3120 may help in routing of voice conversations over the Internet and/or through any other IP-based network. The communication algorithm 3106 may communicate directly with the people search widget 3001, the business search algorithm 3102, the category search widget 3104, the directory assistance algorithm 3108, the embedding algorithm 3110 may communicate with the no-match algorithm 3112 through the range selector algorithm 3114.
For example, a search algorithm 2908 of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
In addition, the communicate algorithm 3106 of the search algorithm 2906 may enable voice over internet, live chat, and/or group announcement functionality in the global neighborhood environment 1800 (e.g., the privacy server 2900 of
Also, the directory assistance algorithm 3108 of the search algorithm 2908 may provide voice response assistance to users (e.g., the user 2916 of
The embedding algorithm 3110 of the search algorithm 2908 may automatically extract address and/or contact info from other social networks, search engines, and content providers, and/or to enable automatic extraction of group lists from contact databases of instant messaging platforms.
Furthermore, the no-match algorithm 3112 of the search algorithm 2908 to request additional information from the verified registered user (e.g., the verified registered user 4110 of
The user-place claimable algorithm 3200 may manage the information of the user (e.g., the user 2916 of
The claimable-social network conversion algorithm 3212 of the claimable algorithm 2910 of
The claim algorithm 3214 may enable the unregistered users to claim the physical properties associated with their residence (e.g., the residence 2918 of
The media manage algorithm 3220 may communicate with the user-place claimable algorithm 3200, user-place claimable algorithm 3200, user-user claimable algorithm 3202, the user-neighbor claimable algorithm 3204 and the reviews algorithm 3208 through user-business claimable algorithm 3206. The user-place claimable algorithm 3200 may communicate with the dispute resolution algorithm 3218 through the claim algorithm 3214. The user-user claimable algorithm 3202 may communicate with the data segment algorithm 3216 through the claimable-social network conversion algorithm 3212. The user-neighbor claimable algorithm 3204 may communicate with the defamation prevention algorithm 3210. The user-business claimable algorithm 3206 may communicate with the reviews algorithm 3208. The claimable-social network conversion algorithm 3212 may communicate with the claim algorithm 3214.
For example, the claimable algorithm 2910 of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
Furthermore, the dispute resolution algorithm 3218 of the claimable algorithm 2910 may determine a legitimate user of different unregistered users who claim a same physical property. The defamation prevention algorithm 3210 of the claimable algorithm 2910 may enable the registered users to modify the information associated with the unregistered users identifiable through the viewing of the physical properties, and/or to enable registered user voting of an accuracy of the information associated with the unregistered users.
Moreover, the reviews algorithm of the claimable algorithm 2910 may provide comments, local reviews and/or ratings of various businesses as contributed by the registered users and/or unregistered users of the global network environment (e.g., the privacy server 2900 of
The community marketplace algorithm 3310 may contain garage sales 3316, a free stuff 3318, a block party 3320 and a services 3322, according to one embodiment. The geo-position advertisement ranking algorithm 3304 may determine an order of the advertisement in a series of other advertisements provided in the global neighborhood environment 1800 (e.g., the privacy server 2900 of
A click-in tracking algorithm 3312 may determine a number of user (e.g., the user 2916 of
The business display advertisement algorithm 3302 may impart advertisements related to business (e.g., the business 2922 of
The block party 3320 may be a large public celebration in which many members of a single neighborhood (e.g., the neighborhood 2902A-N of
The geo position advertisement ranking algorithm 3304 may communicate with the resident announce payment algorithm 3300, the business display advertisement algorithm 3302, the content syndication algorithm 3306, the text advertisement algorithm 3308, the community marketplace algorithm 3310, the click-in tracking algorithm 3312 and the click-through tracking algorithm 3314.
For example, the commerce algorithm 2908 of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
Also, the geo-position advertisement ranking algorithm 3304 of the commerce algorithm to determine an order of the advertisement in a series of other advertisements provided in the global neighborhood environment 1800 (e.g., the privacy server 2900 of
Moreover, the click-through tracking algorithm 3314 of the commerce algorithm of
The community marketplace algorithm 3310 of the commerce algorithm of
Also, the content syndication algorithm 3306 of the commerce algorithm of the
The simplified map generator algorithm 3402 may receive the data (e.g., maps) from the satellite data algorithm 3400 and/or may convert this complex map into a simplified map with fewer colors. The cartoon map converter algorithm 3404 may apply a filter to the satellite data (e.g., data generated by the satellite data algorithm 3400 of
The parcel algorithm 3408 may identify some residence, civic, and business locations in the satellite data (e.g., the satellite data algorithm 3400 of
For example, a map algorithm 2914 of the global neighborhood environment 1800 (e.g., the privacy server 2900 of
Also, the cartoon map converter algorithm 3404 in the map algorithm 2914 may apply a filter to the satellite data (e.g., data generated by the satellite data algorithm 3400 of
The verified? field 3502 may indicate the status whether the data, profiles and/or email address received from various registered user are validated or not. The range field 3504 may correspond to the distance of a particular registered user geographical location in the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The principal address field 3506 may display primary address of the registered user in the global neighborhood environment 1800 (e.g., the privacy server 2900 of
The user field 3500 displays “Joe” in the first row and “Jane” in the second row of the user field 3500 column of the table 3550 illustrated in
The contributed? field 3510 displays “858 Bette Cupertino, Calif., Farallone, Calif.” in the first row and “500 Hamilton, Palo Alto, Calif., 1905E. University” in the second row of the contributed field 3510 column of the table 3550 illustrated in
In addition, the social community view 3650 may provide a building creator (e.g., the building builder 1602 of
The diagrammatic system view 3900 may indicate a personal computer and/or a data processing system in which one or more operations disclosed herein are performed. The processor 3902 may be microprocessor, a state machine, an application specific integrated circuit, a field programmable gate array, etc. (e.g., Intel® Pentium® processor). The main memory 3904 may be a dynamic random access memory and/or a primary memory of a computer system.
The static memory 3906 may be a hard drive, a flash drive, and/or other memory information associated with the data processing system. The bus 3908 may be an interconnection between various circuits and/or structures of the data processing system. The video display 3910 may provide graphical representation of information on the data processing system. The alpha-numeric input device 3912 may be a keypad, keyboard and/or any other input device of text (e.g., a special device to aid the physically handicapped). The cursor control device 3914 may be a pointing device such as a mouse.
The drive unit 3916 may be a hard drive, a storage system, and/or other longer term storage subsystem. The signal generation device 3918 may be a bios and/or a functional operating system of the data processing system. The machine readable medium 3922 may provide instructions on which any of the methods disclosed herein may be performed. The instructions 3924 may provide source code and/or data code to the processor 3902 to enable any one/or more operations disclosed herein.
The map 4002 may indicate the global neighborhood environment 1800 (e.g., the privacy server 2900 of
For example, a verified registered user (e.g., a verified registered user 4110 of
Similarly, a tag data (e.g., the tags 4010 of
For example, a particular claimable profile (e.g., the particular claimable profile may be associated with a neighboring property to the specific property in the neighborhood) of the claimable profiles (e.g., the claimable profile 4102 of
In addition, a certain claimable profile of the claimable profiles may be delisted when a private registered user claims a certain geographic location (e.g., the geographical location 4004 of
Furthermore, a tag data (e.g., the tags 4010 of
Moreover, the verified registered user (e.g., the verified registered user 4110 of
For example, the commercial user 4100 may be permitted to purchase a customizable business profile 4104 associated with a commercial geographic location. Also, the verified registered user 4110 may be enabled to communicate a message to the global neighborhood environment 1800 (e.g., the privacy server 2900 of
A target advertisement 4106 may display the information associated with the offers and/or events of the customizable business. The display advertisement 4108 may display ads of the products of the customizable business that may be displayed to urge the verified registered user 4110 to buy the products of the customizable business. The verified registered user 4110 may be user associated with the global neighborhood environment 1800 (e.g., the privacy server 2900 of
People in suburbia and urban cities now may not even know who their neighbors are. Communities have become more insular. There may be a few active people in each neighborhood who know about their neighborhood and are willing to share what they know with others. They should be able to share this information with others through the Internet. Many people want to know who their neighbors are and express themselves and their families through the internet. People want to also know about recommendations and what kind of civic and cultural things are in the neighborhood. What is contemplated includes: A social network for people who want to get to know their neighbors and/or neighborhoods. Particularly, one in which a set of maps of neighborhoods (e.g., such as those on Zillow.com or provided through Google® or Microsoft®) are used as a basis on which a user can identify themselves with a particular address. This address may be verified through one or more of the algorithms on
The address may be verified through a credit check of the user, or a copy of the user's drivers license. Once the user is approved in a particular home/location, the user can leave their comments about their home. They can mark their home information proprietary, so that no one else can contribute to their info without their permission. They can have separate private and public sections, in which the private section is shared with only verified addresses of neighbors, and the public section is shared with anybody viewing their profile. The user can then create separate social networking pages for homes, churches, locations, etc. surrounding his verified address. As such, the user can express him/herself through their profile, and contribute information about what they're neighborhood is like and who lives there. Only verified individuals or entities might be able to view information in that neighborhood.
The more information the user contributes, the higher his or her status will be in the neighborhood through a marker (e.g., a number of stars), or through additional services offered to the neighbor, such as the ability to search a profiles of neighbors in a larger distance range from a verified address of the user. For example, initially, the user may only be able to search profiles within 1 mile on their principal, current home after being verified as living in there. When they create a profiles for themselves and/or contribute profiles of other people, they may widen their net of private profiles they may be allowed to search (e.g., because they become a trusted party in the neighborhood by offering civic information). Neighbors can leave feedback for each other, and arrange private block parties, etc. through their private profile. All these features may possible through one or more of the embodiments and/or algorithms illustrated in
A neighborhood expression and user contribution system is disclosed. In one aspect, the technology allows users to see the value of millions of homes across the United States and/or the world, not just those that the user themselves own or live in, because they can share information about their neighbors. People living in apartments or condos can use the apartment/condo modeler wizard (e.g., as illustrated in
Aside from giving user generated content of information of homes, the system may also provide value estimates of homes it may also offers several unique features including value changes of each home in a given time frame (e.g. 1, 5, or 10 years) and aerial views of homes as well as the price of the surrounding homes in the area. It may also provides basic data of a given home such as square footage and the number of bedrooms and bathrooms. Users may can also obtain current estimates of homes if there was a significant change made such as recently modeled kitchen.
In the example systems and methods illustrated in
Residential location: (1) name of the persons/family living in that residence (2) Their profession if any 3) Their educational background if any (4) Their recreational interests (5) About their family description box (6) Anything else people want to post about that person including their interests, hobbies, etc. (7) An ability for users to leave endorsements.
Business location or civic location (e.g., park, govt. building, church, etc.): (1) name of the business/location (2) email of the manager of the business/location (3) phone number of the business/location if known (4) anything else people want to say about the business (good or bad), for example, contributable through a claimable.
These two will be the primary types. Various features differentiate example embodiments of the social community algorithm from other social networks. These differentiators include (1) interface driven by address (2) maps that can be viewed, zoomed in on, tied to a parcel #, etc. (3) Anyone can populate anyone's social network page. (4) Anybody can post in one of the boxes. They can post anonymously or publicly (5) If someone wants to override information that already has been established, they will need to have an identity (e.g., user name), to override published posting information.
However, according to one embodiment, if an owner of an entity location wishes to mark their location private, and uneditable by the public without their permission, they will need to pay (e.g., a monthly fixed fee) through the social community algorithm. Alternatively, the owner of the entity location may not need to pay to mark the location as private and uneditable by the public without the owner's permission. Example embodiments of the social community algorithm may feature info about businesses. They may also feature info about people that live in the homes, and may/may not display information on prices, number of bedrooms, etc.
The social community algorithm (e.g., as described in
The example systems and methods illustrated in
For example, they can get a rebate, and not have to pay the monthly fee for a particular month, if they invite at least 15 people that month AND contribute information about at least 10 of their neighbors, friends, civic, or business locations in their neighborhood. People can post pics of their family, their business, their home, etc. on their profile once they ‘own’ their home and register. In another embodiment, endorsements for neighbors by others will be published automatically. People can search for other people by descriptors (e.g., name, profession, distance away from me, etc.)
Profiles of users may be created and/or generated on the fly, e.g., when one clicks on a home.
People may be able to visually see directions to their neighborhood businesses, rather than reading directions through text in a first phase. After time, directions (e.g., routes) can be offered as well. Users can leave their opinions on businesses, but the social community algorithm also enables users to leave opinions on neighbors, occupants or any entity having a profile on the map display. The social community algorithm may not attempt to restrict freedom of speech by the users, but may voluntarily delete slanderous, libelous information on the request of an owner manually at any time.
In one embodiment, the methods and systems illustrated in
In another example embodiment, the social community algorithm may enable users of the social network to populate profiles for apartments, buildings, condos, etc. People can create floors, layout, etc. of their building, and add social network pages on the fly when they click on a location that has multiple residents, tenants, or lessees.
A user interface associated with the social community algorithm 2900 may be clean, simple, and uncluttered (e.g., Simple message of “get to know your neighbors”). For example, the map interface shows neighbors. Methods and systems associated with the features described may focus on user experience, e.g., ensuring a compelling message to invite friends and/or others to join. A seed phase for implementation of the methods and systems illustrated in
For example, a user having extensive networks in a certain area (e.g., a city) may seed those communities as well. The social network may encourage user expression, user content creation, ease of use on site to get maximum users/distribution as quickly as possible. In another embodiment, the social community algorithm may ensure that infrastructure associated with operation of the social community algorithm (e.g., servers) are able to handle load (e.g., data traffic) and keep up with expected growth.
For example, the user interface view illustrated in the various figures shows an example embodiment of the social community algorithm of
Names featured on the profile wall may be links to the user profiles on the map (e.g., giving an immediate sense for the location of admirers (or detractors) relative to user location). In one embodiment, an action (e.g., mouse-over) on a comment would highlight the comment user's house on the map and names linking to user profiles. The user interface view may also utilize the mapping interface to link comments to locations.
For example, the various embodiments illustrate a comment announcing a garage sale, that is tied to a mappable location on the mapping interface. (e.g., allows people to browse references directly from people's profiles.). In the various figures, an example display of the mapping interface is illustrated. In this example display, houses are shown in green, a church is shown in white, the red house shows the selected location and/or the profile owner's house, question marks indicate locations without profile owners, blue buildings are commercial locations, and the pink building represents an apartment complex.
Houses with stars indicate people associated with (e.g., “friends”) of the current user. In one embodiment, a user action (e.g., mouse-over) on a commercial property displayed in the mapping interface may pull up a star (e.g., “***) rating based on user reviews, and/or a link to the profile for the property. A mouse-over action on the apartment complex may pull up a building schematic for the complex with floor plans, on which the user can see friends/profiles for various floors or rooms. Question marks indicated in the display may prompt users to own that profile or post comments on the wall for that space. A user action on any house displayed in the mapping interface may pull up a profile link, summary info such as status, profession, interests, etc. associated with the profile owner, a link to add the person as a friend, and/or a link to send a message to the user (e.g., the profile owner).
In another embodiment, a default profile view shown is that of the current user (e.g., logged in), and if the user clicks on any other profile, it may show their profile in that space instead (with few text changes to indicate different person). The events in your area view of the profile display in may have a default radius for notification of events (e.g., by street, by block, by neighborhood, county, etc.) Events are associated with user profiles and may link to locations displayed on the mapping interfaces. The hot picks section may be an ad/promotional zone, with default settings for radius of alerts also configurable.
For example, the “Find a Friend” section may permit users to search by name, address, interests, status, profession, favorite movies/music/food etc. Users are also able to search within a given radius of their location. In one embodiment, the user interface view may include a link for the user to invite other people to join the network (e.g., may encourage users who see a question-mark on a house or a location on the mapping interface that corresponds to a real location associated with someone they know to contact that person and encourage them to join and own that profile through the social community algorithm).
Some of the reasons we believe these embodiments are unique include:
Search engine that provides a visual map (e.g., rather than text) display of information relevant to user queries.
Users can search on the map for other people having certain professional, educational, personal, extracurricular, cultural, political and/or family etc. profiles or interests, within any location range.
Users can search for information on the map, that is accessible directly through profile displays. For example, the user may search for information about a certain subject and be directed to a profile of another user having information about the subject. Alternatively, the user may view the search subject itself as a visible item (e.g., if applicable to the search query) having a profile on the map display, along with additional information associated with the item (e.g., contributed by other users).
Allows users to search, browse and view information posted by other users about an entity location such as a home, a business property, a condo, an apartment complex, etc. directly on a map display
Allows users to browse, form and join groups and communities based on location, preferences, interests, friend requests, etc.
Users can send messages to other people through their profiles within the map display
Users can find friends, business associates, vendors, romantic partners, etc. on the map within any location range (e.g., in their neighborhood, street, subdivision, etc.) by browsing the map display or searching for people with certain profile characteristics and/or similar interests.
Users can view, browse and post comments/information/reviews about entity locations and/or people associated with those locations (e.g., occupants of a house, families, apartment residents, businesses, non-governmental entities, etc.), even for locations that do not have a profile owner. For example, all entity locations visible on the map display may link to a profiles on which any user can post comments. To own the profile and edit the information posted about an entity location or the occupant(s), the occupant(s) would have to join the network associated with the social community algorithm and become the owner of the profile. The profile owner would then become visible in the map display (e.g., entity locations without profile owners may only be visible as questions marks on the map, having blank profiles but public comment sections).
Users can share their comments and opinions about locations, preferences and/or interests on their profiles that are visible and searchable on the map display
Automatically notifies users of events and promotions in an area (e.g., scope of area can be selected by the user), and highlights venues and user profiles on the map.
Users can post reviews about entity locations (e.g., businesses) such that ratings for entity locations are visible on the map. Other users can trace the location of the users that posted the comments on the map.
Users who post comments on other profiles can be traced directly on the map through their comments. Alternatively, users can choose to submit anonymous postings or comments on other user/entity profiles, and/or may choose not to be traceable on the map through their comments.
For entity locations having more than one residency unit (e.g., apartment complexes), people can create and post on profiles for any room/floor of the location (e.g., by entering information on a schematic view of the location that is visible on the map).
Users can visually determine routes/directions/orientation to locations that they can browse within the map display. Additionally, users can generate written driving, walking or public transit directions between points of interest (e.g., from the user's house to a friend's house) within the map display.
Users can communicate (e.g., through live chat) directly with other users in the area based on an association determined through their profiles
Business entity locations can generate targeted ads and promotions within locations on the map display (e.g., virtual billboards).
The social community algorithm can realize revenue based on ad clickthroughs by users, without the users being directed away from the interface. For example, when a user clicks on any targeted ad/promotion displayed on the map, the profile of the entity associated with the ad/promotion may be generated alongside the map display.
Neighborhood or neighborhood (see spelling differences) is a geographically localized community located within a larger city or suburb. The residents of a given neighborhood are called neighbors (or neighbors), although this term may also be used across much larger distances in rural areas.
Traditionally, a neighborhood is small enough that the neighbors are all able to know each other. However in practice, neighbors may not know one another very well at all. Villages aren't divided into neighborhoods, because they are already small enough that the villagers can all know each other.
The system however may work in any country and any geography of the world. In Canada and the United States, neighborhoods are often given official or semi-official status through neighborhood associations, neighborhood watches, or block watches. These may regulate such matters as lawn care and fence height, and they may provide such services as block parties, neighborhood parks, and community security. In some other places the equivalent organization is the parish, though a parish may have several neighborhoods within it depending on the area.
In localities where neighborhoods do not have an official status, questions can arise as to where one neighborhood begins and another ends, such as in the city of Philadelphia, Pa. Many cities may use districts and wards as official divisions of the city, rather than traditional neighborhood boundaries.
In the mainland of the People's Republic of China, the term is generally used for the urban administrative unit usually found immediately below the district level, although an intermediate, sub-district level exists in some cities. They are also called streets (administrative terminology may vary from city to city). Neighborhoods encompass 2,000 to 10,000 families. Within neighborhoods, families are grouped into smaller residential units or quarters of 2900 to 3400 families and supervised by a residents' committee; these are subdivided into residents' small groups of fifteen to forty families. In most urban areas of China, neighborhood, community, residential community, residential unit, residential quarter have the same meaning: or , or or , and is the direct sublevel of a subdistrict (), which is the direct sublevel of a district (), which is the direct sublevel of a city (). (See Political divisions of China.
The system and methods may be distributed through neighborhood associations. A neighborhood or neighborhood (see spelling differences) is a geographically localized community located within a larger city or suburb. The residents of a given neighborhood are called neighbors (or neighbors), although this term may also be used across much larger distances in rural areas.
Traditionally, a neighborhood is small enough that the neighbors are all able to know each other. However in practice, neighbors may not know one another very well at all. Villages aren't divided into neighborhoods, because they are already small enough that the villagers can all know each other. Each of the technologies and concepts disclosed herein may be embodied in software and/or hardware through one or more of the algorithms/embodiments discussed in
A block party is a large public celebration in which many members of a single neighborhood congregate to observe a positive event of some importance. Many times, there will be celebration in the form of playing music and dance. Block parties gained popularity in the United States during the 1970s. Block Parties were often held outdoors and power for the DJ's sound system was taken illegally from street lights. This was famously referenced in the song “South Bronx” by KRS-One with the line:
“Power from a street light made the place dark. But yo, they didn't care, they turned it out.” It is also interesting to note that many inner city block parties were actually held illegally, as they might be described as loitering. However, police turned a blind eye to them, reasoning that if everyone from the neighborhood was gathered in one place there was less chance of crime being committed elsewhere.
In the suburbs, block parties are commonly held on holidays such as Fourth of July or Labor Day. Sometimes the occasion may be a theme such a “Welcome to the Neighborhood” for a new family or a recent popular movie. Often block parties involve barbecuing, lawn games such as Simon Says and group dancing such as the Electric Slide, the Macarena or line dancing.
In other usage, a block party has come to mean any informal public celebration. For example, a block party can be conducted via television even though there is no real block in the observance. The same is true for the Internet. The block party is closely related to the beach party. The British equivalent is the street party.
The systems and methods illustrated in
The current American system of neighborhood watches began developing in the late 1960s as a response to the rape and murder of Kitty Genovese in Queens, N.Y. People became outraged that three dozen witnesses did nothing to save Genovese or to apprehend her killer. Some locals formed groups to watch over their neighborhoods and to look out for any suspicious activity in their areas. Shortly thereafter, the National Sheriffs' Association began a concerted effort in 1972 to revitalize the “watch group” effort nationwide.
A neighborhood watch (also called a crime watch or neighborhood crime watch) is a citizens' organization devoted to crime and vandalism prevention within a neighborhood. It is not a vigilante organization, since members are expected not to directly intervene in possible criminal activity. Instead, neighborhood watch members are to stay alert to unusual activity and contact the authorities. It builds on the concept of a town watch from Colonial America.
The current American system of neighborhood watches began developing in the late 1960s as a response to the rape and murder of Kitty Genovese in Queens, N.Y. People became outraged that three dozen witnesses did nothing to save Genovese or to apprehend her killer. Some locals formed groups to watch over their neighborhoods and to look out for any suspicious activity in their areas. Shortly thereafter, the National Sheriffs' Association began a concerted effort in 1972 to revitalize the “watch group” effort nationwide.
The various methods, systems, and apparatuses disclosed herein and illustrated and described using the attached
As people grow, they learn about and form perceptions of social structures. During this progression, they form personal and cultural values, a world view and attitudes toward the larger society. Gaining an understanding of group dynamics and how to “fit in” is part of socialization. Individuals develop interpersonal relationships and begin to make choices about whom to associate with and under what circumstances.
During adolescence and adulthood, the individual tends to develop a more sophisticated identity, often taking on a role as a leader or follower in groups. If associated individuals develop the intent to give of themselves, and commit to the collective well-being of the group, they begin to acquire a sense of community.
Socialization: The process of learning to adopt the behavior patterns of the community is called socialization. The most fertile time of socialization is usually the early stages of life, during which individuals develop the skills and knowledge and learn the roles necessary to function within their culture and social environment. For some psychologists, especially those in the psychodynamic tradition, the most important period of socialization is between the ages of 1 and 10. But socialization also includes adults moving into a significantly different environment, where they must learn a new set of behaviors.
Socialization is influenced primarily by the family, through which children first learn community norms. Other important influences include school, peer groups, mass media, the workplace and government. The degree to which the norms of a particular society or community are adopted determines one's willingness to engage with others. The norms of tolerance, reciprocity and trust are important “habits of the heart,” as de Tocqueville put it, in an individual's involvement in community.
Continuity of the connections between leaders, between leaders and followers, and among followers is vital to the strength of a community. Members individually hold the collective personality of the whole. With sustained connections and continued conversations, participants in communities develop emotional bonds, intellectual pathways, enhanced linguistic abilities, and even a higher capacity for critical thinking and problem-solving. It could be argued that successive and sustained contact with other people might help to remove some of the tension of isolation, due to alienation, thus opening creative avenues that would have otherwise remained impassable.
Conversely, sustained involvement in tight communities may tend to increase tension in some people. However, in many cases, it is easy enough to distance oneself from the “hive” temporarily to ease this stress. Psychological maturity and effective communication skills are thought to be a function of this ability. In nearly every context, individual and collective behaviors are required to find a balance between inclusion and exclusion; for the individual, a matter of choice; for the group, a matter of charter. The sum of the creative energy (often referred to as “synergy”) and the strength of the mechanisms that maintain this balance is manifest as an observable and resilient sense of community.
McMillan and Chavis (1986) identify four elements of “sense of community”: 1) membership, 2) influence, 3) integration and fulfillment of needs, and 4) shared emotional connection. They give the following example of the interplay between these factors: Someone puts an announcement on the dormitory bulletin board about the formation of an intramural dormitory basketball team. People attend the organizational meeting as strangers out of their individual needs (integration and fulfillment of needs). The team is bound by place of residence (membership boundaries are set) and spends time together in practice (the contact hypothesis). They play a game and win (successful shared valent event). While playing, members exert energy on behalf of the team (personal investment in the group). As the team continues to win, team members become recognized and congratulated (gaining honor and status for being members). Someone suggests that they all buy matching shirts and shoes (common symbols) and they do so (influence).
A Sense of Community Index (SCI) has been developed by Chavis and his colleagues (1986). Although originally designed to assess sense of community in neighborhoods, the index has been adapted for use in schools, the workplace and a variety of types of communities.
Communitarianism as a group of related but distinct philosophies (or ideologies) began in the late 20th century, opposing classical liberalism, capitalism and socialism while advocating phenomena such as civil society. Not necessarily hostile to social liberalism, communitarianism rather has a different emphasis, shifting the focus of interest toward communities and societies and away from the individual. The question of priority, whether for the individual or community, must be determined in dealing with pressing ethical questions about a variety of social issues, such as health care, abortion, multiculturalism, and hate speech.
Effective communication practices in group and organizational settings are important to the formation and maintenance of communities. How ideas and values are communicated within communities are important to the induction of new members, the formulation of agendas, the selection of leaders and many other aspects. Organizational communication is the study of how people communicate within an organizational context and the influences and interactions within organizational structures. Group members depend on the flow of communication to establish their own identity within these structures and learn to function in the group setting. Although organizational communication, as a field of study, is usually geared toward companies and business groups, these may also be seen as communities. The principles can also be applied to other types of communities.
If the sense of community exists, both freedom and security exist as well. The community then takes on a life of its own, as people become free enough to share and secure enough to get along. The sense of connectedness and formation of social networks comprise what has become known as social capital.
Azadi Tower is a town square in modern Iran. Social capital is defined by Robert D. Putnam as “the collective value of all social networks (who people know) and the inclinations that arise from these networks to do things for each other (norms of reciprocity).” Social capital in action can be seen in groups of varying formality, including neighbors keeping an eye on each others' homes. However, as Putnam notes in Bowling Alone: The Collapse and Revival of American Community (30000), social capital has been falling in the United States. Putnam found that over the past 25 years, attendance at club meetings has fallen 58 percent, family dinners are down 33 percent, and having friends visit has fallen 45 percent.
Western cultures are thus said to be losing the spirit of community that once were found in institutions including churches and community centers 2921. Sociologist Ray Oldenburg states in The Great Good Place that people need three places: 1) The home, 2) the workplace, and, 3) the community hangout or gathering place.
With this philosophy in mind, many grassroots efforts such as The Project for Public Spaces are being started to create this “Third Place” in communities. They are taking form in independent bookstores, coffeehouses, local pubs and through many innovative means to create the social capital needed to foster the sense and spirit of community.
Community development is often formally conducted by universities or government agencies to improve the social well-being of local, regional and, sometimes, national communities. Less formal efforts, called community building or community organizing, seek to empower individuals and groups of people by providing them with the skills they need to effect change in their own communities. These skills often assist in building political power through the formation of large social groups working for a common agenda. Community development practitioners must understand both how to work with individuals and how to affect communities' positions within the context of larger social institutions.
Formal programs conducted by universities are often used to build a knowledge base to drive curricula in sociology and community studies. The General Social Survey from the National Opinion Research Center at the University of Chicago and the Saguaro Seminar at the John F. Kennedy School of Government at Harvard University are examples of national community development in the United States. In The United Kingdom, Oxford University has led in providing extensive research in the field through its Community Development Journal, used worldwide by sociologists and community development practitioners.
At the intersection between community development and community building are a number of programs and organizations with community development tools. One example of this is the program of the Asset Based Community Development Institute of Northwestern University. The institute makes available downloadable tools to assess community assets and make connections between non-profit groups and other organizations that can help in community building. The Institute focuses on helping communities develop by “mobilizing neighborhood assets”—building from the inside out rather than the outside in.
Community building and organizing: M. Scott Peck is of the view that the almost accidental sense of community which exists at times of crisis, for example in New York City after the attacks of Sep. 11, 2001, can be consciously built. Peck believes that the process of “conscious community building” is a process of building a shared story, and consensual decision making, built upon respect for all individuals and inclusivity of difference. He is of the belief that this process goes through four stages:
Pseudo-community: Where participants are “nice with each other”, playing-safe, and presenting what they feel is the most favorable sides of their personalities. Chaos: When people move beyond the inauthenticity of pseudo-community and feel safe enough to present their “shadow” selves. This stage places great demands upon the facilitator for greater leadership and organization, but Peck believes that “organizations are not communities”, and this pressure should be resisted.
Emptying: This stage moves beyond the attempts to fix, heal and convert of the chaos stage, when all people become capable of acknowledging their own woundedness and brokenness, common to us all as human beings. Out of this emptying comes
Authentic community: the process of deep respect and true listening for the needs of the other people in this community. This stage Peck believes can only be described as “glory” and reflects a deep yearning in every human soul for compassionate understanding from one's fellows.
More recently Scott Peck has remarked that building a sense of community is easy. It is maintaining this sense of community that is difficult in the modern world. The Ithaca Hour is an example of community-based currency. Community building can use a wide variety of practices, ranging from simple events such as potlucks and small book clubs to larger-scale efforts such as mass festivals and construction projects that involve local participants rather than outside contractors. Some communities have developed their own “Local Exchange Trading Systems” (LETS) and local currencies, such as the Ithaca Hours system, to encourage economic growth and an enhanced sense of community.
Community building that is geared toward activism is usually termed “community organizing.” In these cases, organized community groups seek accountability from elected officials and increased direct representation within decision-making bodies. Where good-faith negotiations fail, these constituency-led organizations seek to pressure the decision-makers through a variety of means, including picketing, boycotting, sit-ins, petitioning, and electoral politics. The ARISE Detroit! coalition and the Toronto Public Space Committee are examples of activist networks committed to shielding local communities from government and corporate domination and inordinate influence.
Community organizing is sometimes focused on more than just resolving specific issues. Organizing often means building a widely accessible power structure, often with the end goal of distributing power equally throughout the community. Community organizers generally seek to build groups that are open and democratic in governance. Such groups facilitate and encourage consensus decision-making with a focus on the general health of the community rather than a specific interest group.
The three basic types of community organizing are grassroots organizing, coalition building, and faith-based community organizing (also called “institution-based community organizing,” “broad-based community organizing” or “congregation-based community organizing”).
Community service is usually performed in connection with a nonprofit organization, but it may also be undertaken under the auspices of government, one or more businesses, or by individuals. It is typically unpaid and voluntary. However, it can be part of alternative sentencing approaches in a justice system and it can be required by educational institutions.
The most common usage of the word “community” indicates a large group living in close proximity. Examples of local community include: A municipality is an administrative local area generally composed of a clearly defined territory and commonly referring to a town or village. Although large cities are also municipalities, they are often thought of as a collection of communities, due to their diversity.
A neighborhood is a geographically localized community, often within a larger city or suburb. A planned community is one that was designed from scratch and grew up more or less following the plan. Several of the world's capital cities are planned cities, notably Washington, D.C., in the United States, Canberra in Australia, and Brasilia in Brazil. It was also common during the European colonization of the Americas to build according to a plan either on fresh ground or on the ruins of earlier Amerindian cities. Identity: In some contexts, “community” indicates a group of people with a common identity other than location. Members often interact regularly. Common examples in everyday usage include: A “professional community” is a group of people with the same or related occupations. Some of those members may join a professional society, making a more defined and formalized group.
These are also sometimes known as communities of practice. A virtual community is a group of people primarily or initially communicating or interacting with each other by means of information technologies, typically over the Internet, rather than in person. These may be either communities of interest, practice or communion. (See below.) Research interest is evolving in the motivations for contributing to online communities.
Some communities share both location and other attributes. Members choose to live near each other because of one or more common interests. A retirement community is designated and at least usually designed for retirees and seniors—often restricted to those over a certain age, such as 55. It differs from a retirement home, which is a single building or small complex, by having a number of autonomous households.
An intentional community is a deliberate residential community with a much higher degree of social interaction than other communities. The members of an intentional community typically hold a common social, political or spiritual vision and share responsibilities and resources. Intentional communities include Amish villages, ashrams, cohousing, communes, ecovillages, housing cooperatives, kibbutzim, and land trusts.
Special nature of human community Music in Central Park, a public space. Definitions of community as “organisms inhabiting a common environment and interacting with one another,” while scientifically accurate, do not convey the richness, diversity and complexity of human communities. Their classification, likewise is almost never precise. Untidy as it may be, community is vital for humans. M. Scott Peck expresses this in the following way: “There can be no vulnerability without risk; there can be no community without vulnerability; there can be no peace, and ultimately no life, without community.” This conveys some of the distinctiveness of human community.
Embodiments described herein in
A user can “Claim” one or more Business Pages and/or a Residential Pages, according to one embodiment. In order to secure their Claim, the user may verify their location associated with the Business Page and/or Residential page within 30 days, or the page becomes released to the community, according to one embodiment. A user can only have a maximum of 3 unverified Claims out at any given time, according to one embodiment. When a user clicks on “Claim this Page” on Business Profile page and/or a Residential Profile page, they can indicate the manner in which they intend to verify their claim, according to one embodiment. Benefits of Claiming a Business Page and/or Residential page may enable the user to mark their page ‘Self-Editable only’ from the default ‘Fully Editable’ status, and see “Private” listings in a claimed neighborhood around the verified location, according to one embodiment. Each edit by a user on a Residential Profile page and/or a Business Profile page may be made visible on the profile page, along with a date stamp, according to one embodiment.
Browse function: Based on the user's current location, the browse function may display a local map populated with pushpins for location-specific information, and a news feed, made up of business page edits, public people page edits, any recent broadcasts, etc., according to one embodiment. The news feed may show up on each Business Page and each Residential Page, based on activity in the surrounding area, according to one embodiment. Secure a Neighborhood function: May allow the user to identify and “secure” a neighborhood, restricting certain types of access to verified residents, according to one embodiment. Add a Pushpin function: May allow any registered or verified user to add any type of Pushpin (as described in
In addition to the map, the search results page may display a news feed, made up of business page edits, public people page edits, any recent broadcasts, and autogenerated alerts who has moved into the neighborhood, who has moved out of the neighborhood, any recent reviews in the neighborhood, any pushpins placed in the immediate area, etc., according to one embodiment. The news feed may prioritize entries relating to the search results, and will take into account privacy policies and preferences, according to one embodiment.
Example Newsfeeds may include:
Joe Smith moved into the neighborhood in September 2013. Welcome Joe! Like Share; 42 neighbors (hyperlink) moved in to the Cupertino library neighborhood in July 2013. Like Share; 12 neighbors (hyperlink) verified in to the Cupertino library neighborhood in July 2013. Like Share; Raj Abhyanker invited Paul Smith, a guest to the Cupertino neighborhood. Raj indicates Paul is a friend from college looking to move into the neighborhood. Welcome Paul!; Raj Abhyanker posted a Nissan Leaf for rent $35 a day, in mountain view Rent now. Like Share
This content may feed each Profile Page and helps to increase Search Engine value for content on the site, according to one embodiment. Alerts may be created and curated (prioritized, filtered) automatically and/or through crowdsourcing, to keep each page vibrant and actively updating on a regular basis (ideally once a day or more), according to one embodiment.
A Multi-Family Residence page will display a list of residents in the entire building, according to one embodiment. Clicking on any resident will display a Single Family Residence page corresponding to the individual living unit where that person resides, according to one embodiment.
For example, suppose that John Smith and Jane Smith live in apartment 12 of a large building. Their names are included in the list of residents. When a user clicks on either John Smith or Jane Smith, we will display a “Single Family Residence” page showing both John and Jane, just as if apartment 12 was a separate structure, according to one embodiment.
The broadcast feature (e.g., associated with the neighborhood broadcast data and generated by the Bezier curve algorithm 3040 of the social community algorithm 2906) may be a “Radio” like function that uses the mobile device's current geospatial location to send out information to neighbors around the present geospatial location of the user, according to one embodiment. Broadcasts may be posted to neighbor pages in the geospatial vicinity (e.g., in the same neighborhood) on public and private pages in the geospatial social network, according to one embodiment. These broadcasts may enable any user, whether they live in a neighborhood or not to communicate their thoughts to those that live or work (or have claimed) a profile in the neighborhood around where the broadcaster is physically at, regardless of where the broadcaster lives, according to one embodiment. Broadcasts can be audio, video, pictures, and or text, according to one embodiment. For accountability, the broadcaster may be a verified user and their identity made public to all users who receive the broadcast in one embodiment.
This means that the broadcast feature may be restricted to be used only by devices (e.g., mobile phones) that have a GPS chip (or other geolocation device) that an identify a present location of where the broadcast is originating from, according to one embodiment. The broadcast may be sent to all users who have claimed a profile in the geo spatial vicinity where the broadcast originates, according to one embodiment. This can either be broadcast live to whoever is “tuned” in to a broadcast of video, audio, picture, and text in their neighborhood, or can be posted on each users profile if they do not hear the broadcast to the neighborhood in a live mode in one embodiment.
When a broadcast is made neighbors, around where the broadcast is made, they may receive a message that says something like:
Raj Abhyanker, a user in Menlo Park just broadcast “Japanese cultural program” video from the Cupertino Union church just now. Watch, Listen, View
This broadcast may be shared with neighbors around Menlo park, and or in Cupertino. This way, Raj's neighbors and those in Cupertino can know what is happening in their neighborhoods, according to one embodiment. In one embodiment, the broadcast only goes to one area (Cupertino or Menlo park in the example above).
Broadcasts could be constrained to devices that have geospatial accuracy of present location and a current only (mobile devices for example). Otherwise, broadcasts won't mean much, according to one embodiment (would otherwise be just like thoughts/video upload without this). Broadcasts shouldn't be confused with ‘upload videos’, according to one embodiment. Different concepts. Why? Broadcasts have an accuracy of time and location that cannot be altered by a user, according to one embodiment, Hence, mobile is the most likely medium for this not desktop computer, according to one embodiment. We should not let the user set their own location for broadcasts (like other pushpin types), according to one embodiment. Also time is fixed, according to one embodiment. Fixing and not making these two variables editable give users confidence that the broadcast was associated with a particular time and place, and creates a very unique feature, according to one embodiment. For example, it would be not useful if the broadcast is untrusted as to location of origination, according to one embodiment. E.g., I broadcast when I am somewhere only about the location I am at, according to one embodiment.
Broadcasts are different that other pushpins because location of where a broadcast, and time of broadcast is
*current location* and *current time*, according to one embodiment. They are initiated wherever a broadcaster is presently at, and added to the news feed in the broadcasters neighborhood and in the area wherever a broadcaster is presently at, according to one embodiment.
Broadcast rules may include:
1. If I post a Broadcast in my secured neighborhood, only my neighbors can see it, according to one embodiment.
2. If I post a Broadcast in different secured neighborhood then my own, my neighbors can see it (e.g., unless I turn this off in my privacy setting) and neighbors in the secured neighborhood can see it (e.g., default not turn-offable, but I can delete my broadcast), according to one embodiment.
3. If I post a Broadcast in different unsecured neighborhood then my own, my neighbors can see it (unless I turn this off in my privacy setting) and the broadcast is publicly visible on user pages of public user profiles in the unsecured neighborhood until profiles are claimed and/or the neighborhood is secured, according to one embodiment.
4. If an outsider in a secure neighborhood posts a broadcast in my secure neighborhood, it's not public, according to one embodiment.
5. If an outsider in a unsecure neighborhood posts a broadcast in my secure neighborhood, the system does not post on profiles in his unsecure neighborhood (to prevent stalking, burglary), but does post in my secure neighborhood, according to one embodiment.
Privacy settings. For each verified residential or business location, the user may set Privacy to Default, Public, Private, or Inactive, according to one embodiment. The Default setting (which is the default) means that the profile will be public, until the neighborhood is secured; in a secured neighborhood, the profile will be Private, according to one embodiment. By changing this setting, the user may force the profile to be Public or Private, regardless of whether the neighborhood is secured, according to one embodiment.
For each verified residential location, the user may set edit access to Group Editable or Self Editable, according to one embodiment.
Residential Privacy example. The residential profiles can be: Public: anyone can search, browse, or view the user profile, according to one embodiment. This is the default setting for unsecured neighborhoods (initially, all the content on the site), according to one embodiment. Private: only people in my neighborhood can search, browse, or view the user's profile, according to one embodiment. This is the default for secured neighborhoods, according to one embodiment. Inactive: nobody can search, browse, or view the profile, even within a secured neighborhood, according to one embodiment. A user may have at least one active (public or private), verified profile in order to have edit capabilities, according to one embodiment; if the user makes all profiles inactive, that user is treated (for edit purposes) as an unverified user, according to one embodiment.
Verified users can edit the privacy setting for their profile and override the default, according to one embodiment. Group Editable: anyone with access to a profile based on the privacy roles above can edit the profile, according to one embodiment. This is the default setting, according to one embodiment Self Editable, only the verified owner of a profile can edit that profile, according to one embodiment.
Exceptions Guest User. A verified user in another neighborhood is given “Guest” access to a neighborhood for a maximum of 340 days by a verified user in the neighborhood in which the guest access is given, according to one embodiment. In effect, the guest becomes a member of the neighborhood for a limited period, according to one embodiment. Friend. When a user has self-elected being friends with someone in a different neighborhood, they can view each other's profiles only (not their neighbors), according to one embodiment. One way for a user to verify a location is to submit a scanned utility bill, according to one embodiment.
When a moderator selects the Verify Utility Bills function, the screen will display a list of items for processing, according to one embodiment. Accept the utility bill as a means of verification, according to one embodiment. This will verify the user's location, and will also generate an e-mail to the user, according to one embodiment. Or Decline the utility bill as a means of verification, according to one embodiment. There will be a drop-down list to allow the moderator to select a reason, according to one embodiment; this reason will be included in an e-mail message to the user. Reasons may include: Name does not match, address does not match, name/address can't be read, not a valid utility bill, according to one embodiment.
In one embodiment, a method includes associating a verified registered user (e.g., a verified registered user 4110 of
In another embodiment, a system includes a plurality of neighborhoods (e.g., the neighborhood(s) 2902A-N of
In addition, the system may include search algorithm (e.g., a search algorithm 2908 of
The system may also provide an advertisement system to a business (e.g., through business display advertisement algorithm 3302 of
In yet another embodiment, a global neighborhood environment 1800 (e.g., a privacy server 2900 of
A method and system of direct mailing in a geo-spatial environment 100 are disclosed.
In one aspect, a method includes generating a community network 200 of user profiles, each user profile of the user profiles associated with a verified geographic location 206 and a contact address 210. The method includes associating a first user with a first user profile of the user profiles, selecting a mail mode, and selecting a communication. The method further includes generating a first display view to include a map view 406 embodied by the community network 200, at least a portion of the user profiles represented at a location in the map view 406 associated with the verified geographic location 206 of the first user profile of the user profiles. The method includes selecting a second user profile from the at least a portion of the user profiles, and generating a mailing of the communication, in a format associated with the mail mode, between the first user profile of the user profiles and the contact address 210 associated with the second user profile of the user profiles, wherein the contact address 210 is based on the mail mode.
The selecting the mail mode may include selecting a physical mail mode, a facsimile mode, an email mode, and/or an instant message mode. The contact address 210 may be selected from a group including: a physical mailing address associated with the verified geographic location 206 of the user profile, a facsimile number, an email address, and/or an instant message user identifier. A physical mail mode may be selected.
The mailing of the communication may be generated in a physical format associated with the physical mail mode, between the first user profile of the user profiles and the contact address 210 associated with the second user profile of the user profiles. The contact address 210 may be based on a physical address associated with the second user profile of the user profiles. A facsimile mode may be selected. The mailing of the communication may be generated in a facsimile format associated with the facsimile mode, between the first user profile of the user profiles and the contact address 210 associated with the second user profile of the user profiles. The contact address 210 may be based on the facsimile number associated with the second user profile of the user profiles.
An email mode may be selected. The mailing of the communication may be generated in an email format associated with the email mode, between the first user profile of the user profiles and the contact address 210 associated with the second user profile of the user profiles. The contact address 210 may be based on the email address associated with the second user profile of the user profiles. An instant message mode may be selected. The mailing of the communication may be generated in an instant message format associated with the instant message mode, between the first user profile of the user profiles and the contact address 210 associated with the second user profile of the user profiles. The contact address 210 may be based on the instant message user identifier associated with the second user profile of the user profiles.
The location may be selected in the map view 406 from a group including: a street address, a city, a county, a state, and/or a country. A radius associated with the location in the map view 406 may be selected. User profiles of the at least a portion of the user profiles having verified geographic location 206s included in the radius may be selected. Demographics associated with the community network 200 may be provided. The demographics may be associated with each user profile of the user profiles. At least one demographic of the demographics may be selected. The user profiles of the at least a portion of the user profiles having verified geographic location 206s included in the radius and having the at least one demographic of the demographics may be selected.
The demographics may include an age, an age range, a gender, an occupation, an ethnicity, a location of a residence, a location of a business, a marital status, an ownership status, a language, mobility, income, a life cycle, a socioeconomic status, and/or a lifestyle. An online commerce transaction associated with the mailing of the communication may be generated. The generating the online commerce transaction may include generating an online transaction associated with payment of postage, and/or generating an online transaction associated with payment of services related to the mailing of the communication.
The mailing of the communication may be scheduled. The scheduling the mailing of the communication may include determining a number of mailings, determining a time period, and/or generating the number of mailings within the time period. The communication may be created. The method may be in a form of a machine-readable medium embodying a set of instructions that, when executed by a machine, causes the machine to perform the method.
In another aspect, a system includes a geo-spatial environment 100, a community network 200 algorithm of the geo-spatial environment 100, to include user profiles, using a processor and a memory, each user profile of the user profiles to include a verified geographic location 206 and a contact address 210. The system includes a map algorithm of the geo-spatial environment 100 to include map data which serves as a basis to render a map view 406 in the geo-spatial environment 100 which identifies residences, businesses, and civic structures having verified geographic location 206s. The system further includes a mail mode algorithm of the geo-spatial environment 100 to determine a mail mode, a communication algorithm of the geo-spatial environment 100 to select a communication, and a display algorithm of the geo-spatial environment 100 to generate a first display view to include a map view 406 embodied by a community network 200, at least a portion of the user profiles represented at locations in the map view 406 associated with the verified geographic location 206s of the at least a portion of the user profiles. The system also includes a recipient algorithm of the geo-spatial environment 100 to select a user profile from the at least a portion of the user profiles and a mail communication algorithm of the geo-spatial environment 100 to generate a mailing of the communication, in a format associated with the mail mode, to a contact address 210 associated with the user profile of the user profiles.
A commerce transaction algorithm 302 of the geo-spatial environment 100 may generate a commerce transaction associated with elements. A postage algorithm 302A of the geo-spatial environment 100 may generate an online transaction associated with payment of postage and/or a service payment algorithm of the geo-spatial environment 100 may generate an online transaction associated with payment of services related to mailing the communication. A location algorithm 304 may select the location. The location may be selected from a group including: a street address, a city, a county, a state, and/or a country.
A radius algorithm 306 may determine a radius based on the location and to display the at least a portion of the user profiles having verified geographic location 206s included in the radius. A demographic algorithm 308 may provide demographics associated with the user profiles, select demographic of the demographics, and/or determine a group of user profiles of the at least a portion of the user profiles. The demographics may be associated with each user profiles of the group of user profiles. The demographic may be selected from a group including an age, an age range, a gender, an occupation, an ethnicity, a location of a residence, a location of a business, a marital status, an ownership status, a language, mobility, income, a life cycle, a socioeconomic status, and a lifestyle.
A scheduler algorithm 310 may schedule the mailing. The schedule may be based on a selected number of mailings per a predetermined time period. A document creation algorithm 312 may enable creation of a document. A letter creation algorithm 312A may enable creation of letters and/or a marketing brochure creation algorithm may enable creation of marketing brochures. The mail mode may be selected from a group including a physical mail mode, a facsimile mode, an email mode, and/or an instant message mode. The contact address 210 may be selected from a group including a physical mailing address associated with the verified geographic location 206 of the user profile, a facsimile number, an email address, and/or an instant message user identifier.
In yet another aspect, a geo-spatial environment 100 includes a first instruction set to enable, using a processor and a memory, a community network 200 to include a map database associated with map data and a user database associated with user profiles, each user profile of the user profiles associated with a verified geographic location 206 identifiable in the map data and a contact address 210. The geo-spatial environment 100 includes a second instruction set integrated with the first instruction set to display a map view 406, embodied by the community network 200, to include representations of a portion of the user profiles. Each representation of a user profile of the portion of the user profiles is displayed at a location in the map view 406 corresponding to the verified geographic location 206 associated with the user profile. The geo-spatial environment 100 also includes a third instruction set integrated with the first instruction set and the second instruction set to determine a second user profile of the portion of the user profiles, a communication, and a mail mode. The geo-spatial environment 100 further includes a fourth instruction set integrated with the first instruction set and the second instruction set and the third instruction set to generate a mailing of the communication, in a format associated with the mail mode, to the contact address 210 associated with the second user profile of the user profiles, wherein the contact address 210 is based on the mail mode.
A fifth instruction set may generate a commerce transaction associated with the mailing of the communication. A sixth instruction set may schedule the mailing of the communication. A seventh instruction set may enable creation of the communication.
The methods, systems, and apparatuses disclosed herein may be implemented in any means for achieving various aspects, and may be executed in a form of a machine-readable medium embodying a set of instructions that, when executed by a machine, cause the machine to perform any of the operations disclosed herein. Other features will be apparent from the accompanying drawings and from the detailed description that follows.
An example embodiment will now be described. In one embodiment, Bob may be new to his neighborhood and/or may not know many of his neighbors well. Bob may be looking for advice about the neighborhood. Bob may not have a suitable way to contact his neighbors. Bob may live in a busy area in a city and/or may not be able to go door to door as Bob may not want to intrude on his new neighbors and/or many of his neighbors may not be available (e.g., may be at work). Many neighbors may not be listed in the phone book and/or Bob may not know the names of his neighbors (e.g., people living around his claimed location (e.g., residence).
Bob may be able to claim his profile on the community network (e.g., Fatdoor.com) and/or view profiles of users around his location. Bob may be able to select profiles and/or establish communications (e.g., by email, physical mail, by attaining a phone number) with his neighbors. Bob may be able to meet new individuals, get recommendations on restaurants, and/or create connections in his community (e.g., neighborhood) quickly and easily.
In another embodiment, Jenna may live in a large apartment complex in a metropolitan area. Jenna may not know many individuals living around her and/or may only know small pieces of information such as names of people. Jenna may not know which apartments certain people live in and/or may not have contact information for many people she sees around the apartment buildings. Jenna may find a lost item (e.g., a set of keys, a package, a cell phone) and may not have the means of returning the item to its owner.
Jenna may log onto a community network (e.g., the geo-spatial environment 100 and/or Fatdoor.com) and/or search and/or view profiles of people in her area (e.g., community and/or neighborhood). Jenna may locate the owner of the lost item and/or may be able to open a line of communication with the other user. Jenna may be able to return the lost item(s) to the owner more easily and quickly than she could have by posting flyers and/or going door to door. Jenna may be able to make connections with users she would otherwise not be able to connect with and/or may help to establish a sense of community by using the community network.
It will be understood with those skill in the art that in some embodiments, the social community algorithm 2906 may restrict dissemination of broadcast data by verified users to claimed neighborhoods in a private neighborhood social network (e.g. the privacy server 2900 may be a private social network, the neighborhood curation system described herein may also be part of the private neighborhood social network) in which the broadcaster resides (e.g., has a home) using the radial algorithm (e.g., the Bezier curve algorithm 3040 of
Further, it follows that the threshold radial distance generated through the Bezier curve algorithm 3040 of
In an alternative embodiment, the threshold radial distance generated using the Bezier curve algorithm 3040 by the privacy server 2900 may be restricted to a shared apartment building (e.g., and/or an office building). In addition, it will be understood with those skilled in the art that the privacy server 2900 may be operate as a function of the privacy server 2900 (e.g., a neighborhood social network).
In addition, it will be understood that in some embodiments, the neighborhood broadcast data is generated by the police department (e.g., and/or others of the neighborhood services) in the form of crime alerts, health alerts, fire alerts, and other emergency alerts and provided as a feed (e.g., a Real Simple Syndication (RSS) feed) to the privacy server 2900 for distribution to relevant ones of the claimed neighborhoods in the privacy server 2900. It will be understood that the neighborhood broadcast data may appear in a ‘feed’ provided to users of the privacy server 2900 (e.g., a private social network for neighbors) on their profile pages based on access control privileges set by the social community algorithm using the Bezier curve algorithm 3040. For example, access to the neighborhood broadcast data may be limited to just a claimed neighborhood (e.g., as defined by neighborhood boundaries) and/or optionally adjacent neighborhoods.
In one embodiment, the privacy server 2900 may provide police departments and other municipal agencies with a separate login in which they can invite neighbors themselves, provide for a virtual neighborhood watch and emergency preparedness groups, and conduct high value crime and safety related discussions from local police and fire officials without requiring any technical integration. This may provide police departments and municipalities with a single channel to easily broadcast information across neighborhoods that they manage, and receive and track neighborhood level membership and activity to identify leaders of a neighborhood.
For example, communications defined from one broadcasting user to an adjacent neighborhood o may involve sharing information about a suspicious activity that might affect several neighborhoods, explaining about a lost pet that might have wandered into an adjoining neighborhood, to rally support from neighbors from multiple neighborhoods to address civic issues, to spread the word about events like local theater production or neighborhood garage sales, and/or to ask for advice or recommendations from the widest range of people in a community). In one embodiment, the privacy server 2900 may prevent self-promotional messages that are inappropriate (e.g., a user sending such messages may be suspended from the geospatially constrained social network using the crowd sourced moderation algorithm 3004. In one embodiment, the user 2916 may personalize nearby neighborhoods so that the user can choose exactly which nearby neighborhoods (if any) they wish to communicate with. The user 2916 may be able to flag a neighborhood feeds from adjacent neighborhoods. In addition, leaders from a particular neighborhood may be able to communicate privately with leaders of an adjoining neighborhood to plan and organize on behalf of an entire constituency. Similarly, users 2906 may be able to filter feeds to only display messages from the neighborhood that they reside in. The user 2916 may be able to restrict posts (e.g., pushpin placements) only in the neighborhood they are presently in. In one embodiment, nearby neighbors may (or may not) be able to access profiles of adjacent neighborhoods.
It will also be understood that in some embodiments, that users may be ‘verified through alternate means, for example through a utility bill verification (e.g., to verify that a user's address on a utility bill matches the residential address they seek to claim), a credit card verification (e.g., or debit card verification), a phone number verification (e.g., reverse phone number lookup), a privately-published access code (e.g., distributed to a neighborhood association president, and/or distributed at a neighborhood gathering), and a neighbor vouching method (e.g., in which an existing verified neighbor ‘vouches’ for a new neighbor as being someone that they personally know to be living in a neighborhood.
In one embodiment, the privacy server 2900 ensures a secure and trusted environment for a neighborhood website by requiring all members to verify their address. In this embodiment, verification may provide assurance the assurance that new members are indeed residing at the address they provided when registering for an account in the privacy server 2900. Once a neighborhood has launched out of pilot status, only members who have verified their address may be able access to their neighborhood website content.
It will be understood that among the various ways of verifying an address, a user of the privacy server 2900 may uses the following methods to verify the address of every member:
A. Postcard. The privacy server 2900 can send a postcard to the address listed on an account of the user 2916 with a unique code printed on it (e.g., using the Fatmail postcard campaign). The code may allow the user 2916 to log in and verify their account.
B. Credit or debit card. The privacy server 2900 may be able to verify a home address through a credit or debit card billing address. In one embodiment, billing address may be confirmed without storing personally identifiable information and/or charging a credit card.
C. Home phone. If a user 2916 has a landline phone, the user may receive an automated phone call from the privacy server 2900 that may provide with a unique code to verify an account of the user 2916.
D. Neighborhood leader. A neighborhood leader of the geo-spatially constrained social network can use a verify neighbors feature of the privacy server 2900 to vouch for and verify neighbors.
E. Mobile phone. A user 2916 may receive a call to a mobile phone associated with the user 2916 to verify their account.
F. Neighbor invitations. A neighbor who is a verified member of the privacy server 2900 can vouch for, and may invite another neighbor to join the privacy server 2900. Accepting such an invitation may allow the user 2916 to join the privacy server 2900 as a verified member, according to one embodiment.
H. Social Security Number (SSN). The privacy server 2900 can verify a home address when the user 2916 provides the last 4 digits of a SSN (e.g., not stored by the privacy server 2900 for privacy reasons).
It will be also understood that in a preferred embodiment neighborhood boundaries are defined by the social community algorithm 2906 using the Bezier curve algorithm 3040 of
It will also be appreciated that in some embodiments, a mobile device (e.g., the device 1806, the device 1808 of
Although the present embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices, algorithms, analyzers, generators, etc. described herein may be enabled and operated using hardware circuitry (e.g., CMOS based logic circuitry), firmware, software and/or any combination of hardware, firmware, and/or software (e.g., embodied in a machine readable medium). For example, the various electrical structure and methods may be embodied using transistors, logic gates, and electrical circuits (e.g., application specific integrated ASIC circuitry and/or in Digital Signal; Processor DSP circuitry).
For example, the social community algorithm 2906, the search algorithm 2908, the claimable algorithm 2910, the commerce algorithm, the map algorithm 2914, the building builder algorithm 3000, the Nth degree algorithm, the tagging algorithm 3004, the verify algorithm 3006, the groups generator algorithm 3008, the pushpin algorithm 3010, the profile algorithm 3012, the announce algorithm 3014, the friend finder algorithm 3022, the neighbor-neighbor help algorithm 3024, the business search algorithm 3102, the communicate algorithm 3106, the directory assistance algorithm 3108, the embedding algorithm 3110, the no-match algorithm 3112, the range selector algorithm 3114, the user-place claimable algorithm, the user-user claimable algorithm 3202, the user-neighbor claimable algorithm 3204, the user-business claimable algorithm 3206, the reviews algorithm 3208, the defamation prevention algorithm 3210, the claimable social network conversion algorithm 3212, the claim algorithm 3214, the data segment algorithm 3216, the dispute resolution algorithm 3218, the resident announce payment algorithm 3300, the business display advertisement algorithm 3302, the geo-position advertisement ranking algorithm 3304, the content syndication algorithm 3306, the text advertisement algorithm 3308, the community market place algorithm 3310, the click-in tracking algorithm 3312, the satellite data algorithm 3400, the cartoon map converter algorithm 3404, the profile pointer algorithm 3406, the parcel algorithm 3408 and the occupant algorithm 3410 of
In addition, it will be appreciated that the various operations, processes, and methods disclosed herein may be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system (e.g., a computer system), and may be performed in any order. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This patent application is a Continuation in Part of: 1) U.S. Continuation-in-Part patent application Ser. No. 14/203,531, titled ‘GEO-SPATIALLY CONSTRAINED PRIVATE NEIGHBORHOOD SOCIAL NETWORK’ filed on Mar. 10, 2014, now issuing as U.S. Pat. No. 8,775,328 on Jul. 8, 2014, and which itself is a Continuation-in-Part application of two applications: a) U.S. Continuation-in-Part patent application Ser. No. 11/653,194 titled ‘LODGING AND REAL PROPERTY IN A GEO-SPATIAL MAPPING ENVIRONMENT’ filed on Jan. 12, 2007, andb) U.S. Utility patent application Ser. No. 11/603,442 titled ‘MAP BASED NEIGHBORHOOD SEARCH AND COMMUNITY CONTRIBUTION’ filed on Nov. 22, 2006, which further depends on 60/853,499 filed on Oct. 19, 2006 and 60/854,230 filed on Oct. 25, 2006.2) U.S. Utility patent application Ser. No. 14/089,779 titled ‘EMERGENCY INCLUDING CRIME BROADCAST IN A NEIGHBORHOOD SOCIAL NETWORK’, filed on Nov. 26, 2013.
Number | Name | Date | Kind |
---|---|---|---|
2035218 | Bloom | Mar 1936 | A |
3253806 | Eickmann | May 1966 | A |
3556438 | Meditz | Jan 1971 | A |
3762669 | Curci | Oct 1973 | A |
4161843 | Hui | Jul 1979 | A |
5032989 | Tornetta | Jul 1991 | A |
5325294 | Keene | Jun 1994 | A |
5521817 | Burdoin et al. | May 1996 | A |
5581630 | Bonneau, Jr. | Dec 1996 | A |
5584025 | Keithley et al. | Dec 1996 | A |
5590062 | Nagamitsu et al. | Dec 1996 | A |
5617319 | Arakawa et al. | Apr 1997 | A |
5630103 | Smith et al. | May 1997 | A |
5671342 | Millier et al. | Sep 1997 | A |
5774133 | Neave et al. | Jun 1998 | A |
5805810 | Maxwell | Sep 1998 | A |
5819269 | Uomini | Oct 1998 | A |
5826244 | Huberman | Oct 1998 | A |
5831664 | Wharton et al. | Nov 1998 | A |
5835896 | Fisher et al. | Nov 1998 | A |
5852810 | Sotiroff et al. | Dec 1998 | A |
5905499 | McDowall et al. | May 1999 | A |
5907322 | Kelly et al. | May 1999 | A |
5926765 | Sasaki | Jul 1999 | A |
5930474 | Dunworth et al. | Jul 1999 | A |
5937413 | Hyun et al. | Aug 1999 | A |
5940806 | Danial | Aug 1999 | A |
5991737 | Chen | Nov 1999 | A |
6024288 | Gottlich et al. | Feb 2000 | A |
6029141 | Bezos et al. | Feb 2000 | A |
6029195 | Herz | Feb 2000 | A |
6034618 | Tatebayashi et al. | Mar 2000 | A |
6036601 | Heckel | Mar 2000 | A |
6047194 | Andersson | Apr 2000 | A |
6047236 | Hancock et al. | Apr 2000 | A |
6049778 | Walker et al. | Apr 2000 | A |
6073138 | de l'Etraz et al. | Jun 2000 | A |
6078906 | Huberman | Jun 2000 | A |
6088702 | Plantz et al. | Jul 2000 | A |
6092076 | McDonough et al. | Jul 2000 | A |
6092105 | Goldman | Jul 2000 | A |
6101484 | Halbert et al. | Aug 2000 | A |
6108639 | Walker et al. | Aug 2000 | A |
6122592 | Arakawa et al. | Sep 2000 | A |
6148260 | Musk et al. | Nov 2000 | A |
6175831 | Weinreich et al. | Jan 2001 | B1 |
6199076 | Logan et al. | Mar 2001 | B1 |
6229533 | Farmer et al. | May 2001 | B1 |
6236990 | Geller et al. | May 2001 | B1 |
6269369 | Robertson | Jul 2001 | B1 |
6308177 | Israni et al. | Oct 2001 | B1 |
6317718 | Fano | Nov 2001 | B1 |
6336111 | Ashby et al. | Jan 2002 | B1 |
6339745 | Novik | Jan 2002 | B1 |
6356834 | Hancock et al. | Mar 2002 | B2 |
6381537 | Chenault et al. | Apr 2002 | B1 |
6401085 | Gershman et al. | Jun 2002 | B1 |
6405123 | Rennard et al. | Jun 2002 | B1 |
6408307 | Semple et al. | Jun 2002 | B1 |
6453339 | Schultz et al. | Sep 2002 | B1 |
6480885 | Olivier | Nov 2002 | B1 |
6487583 | Harvey et al. | Nov 2002 | B1 |
6498982 | Bellesfield et al. | Dec 2002 | B2 |
6507776 | Fox, III | Jan 2003 | B1 |
6513069 | Abato et al. | Jan 2003 | B1 |
6519629 | Harvey et al. | Feb 2003 | B2 |
6532007 | Matsuda | Mar 2003 | B1 |
6542813 | Kovacs | Apr 2003 | B1 |
6542817 | Miyaki | Apr 2003 | B2 |
6542936 | Mayle et al. | Apr 2003 | B1 |
6557013 | Ziff et al. | Apr 2003 | B1 |
6587787 | Yokota | Jul 2003 | B1 |
6597983 | Hancock | Jul 2003 | B2 |
6611751 | Warren | Aug 2003 | B2 |
6615039 | Eldering | Sep 2003 | B1 |
6622086 | Polidi | Sep 2003 | B2 |
6629136 | Naidoo | Sep 2003 | B1 |
6633311 | Douvikas et al. | Oct 2003 | B1 |
6636803 | Hartz, Jr. et al. | Oct 2003 | B1 |
6640187 | Chenault et al. | Oct 2003 | B1 |
6643663 | Dabney et al. | Nov 2003 | B1 |
6647383 | August et al. | Nov 2003 | B1 |
6654800 | Rieger, III | Nov 2003 | B1 |
6658410 | Sakamaki et al. | Dec 2003 | B1 |
6662016 | Buckham et al. | Dec 2003 | B1 |
6677894 | Sheynblat et al. | Jan 2004 | B2 |
6684196 | Mini et al. | Jan 2004 | B1 |
6687878 | Eintracht et al. | Feb 2004 | B1 |
6691114 | Nakamura | Feb 2004 | B1 |
6711414 | Lightman et al. | Mar 2004 | B1 |
6716101 | Meadows et al. | Apr 2004 | B1 |
6719570 | Tsuchioka | Apr 2004 | B2 |
6721748 | Knight et al. | Apr 2004 | B1 |
6728635 | Hamada et al. | Apr 2004 | B2 |
6745196 | Colyer et al. | Jun 2004 | B1 |
6750881 | Appelman | Jun 2004 | B1 |
6798407 | Benman | Sep 2004 | B1 |
6816850 | Culliss | Nov 2004 | B2 |
6819267 | Edmark et al. | Nov 2004 | B1 |
6834229 | Rafiah et al. | Dec 2004 | B2 |
6847823 | Lehikoinen et al. | Jan 2005 | B2 |
6871140 | Florance et al. | Mar 2005 | B1 |
6882307 | Gifford | Apr 2005 | B1 |
6883748 | Yoeli | Apr 2005 | B2 |
6889213 | Douvikas et al. | May 2005 | B1 |
6926233 | Corcoran, III | Aug 2005 | B1 |
6950791 | Bray et al. | Sep 2005 | B1 |
6963879 | Colver et al. | Nov 2005 | B2 |
6968179 | De Vries | Nov 2005 | B1 |
6968513 | Rinebold et al. | Nov 2005 | B1 |
6976031 | Toupal et al. | Dec 2005 | B1 |
6983139 | Dowling et al. | Jan 2006 | B2 |
6987976 | Kohar et al. | Jan 2006 | B2 |
7006881 | Hoffberg et al. | Feb 2006 | B1 |
7013292 | Hsu et al. | Mar 2006 | B1 |
7024397 | Donahue | Apr 2006 | B1 |
7024455 | Yokobori et al. | Apr 2006 | B2 |
7038681 | Scott et al. | May 2006 | B2 |
7047202 | Jaipuria et al. | May 2006 | B2 |
7068309 | Toyama et al. | Jun 2006 | B2 |
7069308 | Abrams | Jun 2006 | B2 |
7072849 | Filepp et al. | Jul 2006 | B1 |
7076409 | Agrawala et al. | Jul 2006 | B2 |
7076741 | Miyaki | Jul 2006 | B2 |
7080019 | Hurzeler | Jul 2006 | B1 |
7080096 | Imamura | Jul 2006 | B1 |
7085650 | Anderson | Aug 2006 | B2 |
7099745 | Ebert | Aug 2006 | B2 |
7099862 | Fitzpatrick et al. | Aug 2006 | B2 |
7117254 | Lunt et al. | Oct 2006 | B2 |
7136915 | Rieger, III | Nov 2006 | B2 |
7158878 | Rasmussen et al. | Jan 2007 | B2 |
7174301 | Florance et al. | Feb 2007 | B2 |
7177872 | Schwesig et al. | Feb 2007 | B2 |
7178720 | Strubbe et al. | Feb 2007 | B1 |
7188153 | Lunt et al. | Mar 2007 | B2 |
7209803 | Okamoto et al. | Apr 2007 | B2 |
7228232 | Bodin et al. | Jun 2007 | B2 |
7233942 | Nye | Jun 2007 | B2 |
7249123 | Elder et al. | Jul 2007 | B2 |
7249732 | Sanders, Jr. et al. | Jul 2007 | B2 |
7251647 | Hoblit | Jul 2007 | B2 |
7254559 | Florance et al. | Aug 2007 | B2 |
7269590 | Hull et al. | Sep 2007 | B2 |
7293019 | Dumais et al. | Nov 2007 | B2 |
7296026 | Patrick et al. | Nov 2007 | B2 |
7306186 | Kusic | Dec 2007 | B2 |
7324810 | Nave et al. | Jan 2008 | B2 |
7343564 | Othmer | Mar 2008 | B2 |
7353034 | Haney | Apr 2008 | B2 |
7353114 | Rohlf et al. | Apr 2008 | B1 |
7353199 | DiStefano, III | Apr 2008 | B1 |
7359871 | Paasche et al. | Apr 2008 | B1 |
7359894 | Liebman et al. | Apr 2008 | B1 |
7373244 | Kreft | May 2008 | B2 |
7383251 | Might | Jun 2008 | B2 |
7386542 | Maybury et al. | Jun 2008 | B2 |
7424438 | Vianello | Sep 2008 | B2 |
7424541 | Bourne | Sep 2008 | B2 |
7433832 | Bezos et al. | Oct 2008 | B1 |
7433868 | Satomi et al. | Oct 2008 | B1 |
7437368 | Kolluri et al. | Oct 2008 | B1 |
7441031 | Shrinivasan et al. | Oct 2008 | B2 |
7447509 | Cossins et al. | Nov 2008 | B2 |
7447685 | Nye | Nov 2008 | B2 |
7447771 | Taylor | Nov 2008 | B1 |
7454524 | Jeong | Nov 2008 | B2 |
7477285 | Johnson | Jan 2009 | B1 |
7478324 | Ohtsu | Jan 2009 | B1 |
7480867 | Racine et al. | Jan 2009 | B1 |
7483960 | Kyusojin | Jan 2009 | B2 |
7487114 | Florance et al. | Feb 2009 | B2 |
7496603 | Deguchi et al. | Feb 2009 | B2 |
7500258 | Eldering | Mar 2009 | B1 |
7505919 | Richardson | Mar 2009 | B2 |
7520466 | Bostan | Apr 2009 | B2 |
7561169 | Carroll | Jul 2009 | B2 |
7562023 | Yamamoto | Jul 2009 | B2 |
7580862 | Montelo et al. | Aug 2009 | B1 |
7581702 | Olson et al. | Sep 2009 | B2 |
7587276 | Gold et al. | Sep 2009 | B2 |
7596511 | Hall et al. | Sep 2009 | B2 |
7599795 | Blumberg et al. | Oct 2009 | B1 |
7599935 | La Rotonda et al. | Oct 2009 | B2 |
7636687 | Foster et al. | Dec 2009 | B2 |
7640204 | Florance et al. | Dec 2009 | B2 |
7658346 | Goossen | Feb 2010 | B2 |
7668405 | Gallagher | Feb 2010 | B2 |
7669123 | Zuckerberg et al. | Feb 2010 | B2 |
7680673 | Wheeler | Mar 2010 | B2 |
7680859 | Schiller | Mar 2010 | B2 |
7693953 | Middleton et al. | Apr 2010 | B2 |
7725492 | Sittig et al. | May 2010 | B2 |
7734254 | Frost et al. | Jun 2010 | B2 |
7751971 | Chang et al. | Jul 2010 | B2 |
7761789 | Erol et al. | Jul 2010 | B2 |
7792815 | Aravamudan et al. | Sep 2010 | B2 |
7797256 | Zuckerberg et al. | Sep 2010 | B2 |
7801542 | Stewart | Sep 2010 | B1 |
7802290 | Bansal et al. | Sep 2010 | B1 |
7808378 | Hayden | Oct 2010 | B2 |
7809709 | Harrison, Jr. | Oct 2010 | B1 |
7809805 | Stremel et al. | Oct 2010 | B2 |
7810037 | Edwards et al. | Oct 2010 | B1 |
7812717 | Cona et al. | Oct 2010 | B1 |
7823073 | Holmes et al. | Oct 2010 | B2 |
7827120 | Evans et al. | Nov 2010 | B1 |
7827208 | Bosworth et al. | Nov 2010 | B2 |
7827265 | Cheever et al. | Nov 2010 | B2 |
7831917 | Karam | Nov 2010 | B1 |
7840224 | Vengroff et al. | Nov 2010 | B2 |
7840558 | Wiseman et al. | Nov 2010 | B2 |
7848765 | Phillips et al. | Dec 2010 | B2 |
7853518 | Cagan | Dec 2010 | B2 |
7853563 | Alvarado et al. | Dec 2010 | B2 |
7860889 | Martino et al. | Dec 2010 | B1 |
7870199 | Galli et al. | Jan 2011 | B2 |
7881864 | Smith | Feb 2011 | B2 |
7886024 | Kelly et al. | Feb 2011 | B2 |
7904366 | Pogust | Mar 2011 | B2 |
7913179 | Sheha et al. | Mar 2011 | B2 |
7933808 | Garcia | Apr 2011 | B2 |
7933810 | Morgenstern | Apr 2011 | B2 |
7945653 | Zuckerberg et al. | May 2011 | B2 |
7949714 | Burnim | May 2011 | B1 |
7958011 | Cretney et al. | Jun 2011 | B1 |
7961986 | Jing et al. | Jun 2011 | B1 |
7962281 | Rasmussen et al. | Jun 2011 | B2 |
7966567 | Abhyanker | Jun 2011 | B2 |
7969606 | Chu | Jun 2011 | B2 |
7970657 | Morgenstern | Jun 2011 | B2 |
7991703 | Watkins | Aug 2011 | B1 |
7996270 | Sundaresan | Aug 2011 | B2 |
8027943 | Juan et al. | Sep 2011 | B2 |
8046309 | Evans et al. | Oct 2011 | B2 |
8051089 | Gargi et al. | Nov 2011 | B2 |
8060389 | Johnson | Nov 2011 | B2 |
8060555 | Grayson et al. | Nov 2011 | B2 |
8064590 | Abhyanker | Nov 2011 | B2 |
8065291 | Knorr | Nov 2011 | B2 |
8095430 | Abhyanker | Jan 2012 | B2 |
8103734 | Galli et al. | Jan 2012 | B2 |
8108501 | Birnie et al. | Jan 2012 | B2 |
8112419 | Hancock et al. | Feb 2012 | B2 |
8117486 | Handley | Feb 2012 | B2 |
8136145 | Fetterman et al. | Mar 2012 | B2 |
8145661 | Billman et al. | Mar 2012 | B1 |
8145703 | Frishert et al. | Mar 2012 | B2 |
8149113 | Diem | Apr 2012 | B2 |
8167234 | Moore | May 2012 | B1 |
8171128 | Zuckerberg et al. | May 2012 | B2 |
8190357 | Abhyanker et al. | May 2012 | B2 |
8190476 | Urbanski et al. | May 2012 | B2 |
8195601 | Law et al. | Jun 2012 | B2 |
8195744 | Julia et al. | Jun 2012 | B2 |
8204776 | Abhyanker | Jun 2012 | B2 |
8204952 | Stremel et al. | Jun 2012 | B2 |
8223012 | Diem | Jul 2012 | B1 |
8225376 | Zuckerberg et al. | Jul 2012 | B2 |
8229470 | Ranjan et al. | Jul 2012 | B1 |
8249943 | Zuckerberg et al. | Aug 2012 | B2 |
8271057 | Levine et al. | Sep 2012 | B2 |
8275546 | Xiao et al. | Sep 2012 | B2 |
8290943 | Carbone et al. | Oct 2012 | B2 |
8292215 | Olm et al. | Oct 2012 | B2 |
8296373 | Bosworth et al. | Oct 2012 | B2 |
8301743 | Curran et al. | Oct 2012 | B2 |
8315389 | Qiu et al. | Nov 2012 | B2 |
8326091 | Jing et al. | Dec 2012 | B1 |
8328130 | Goossen | Dec 2012 | B2 |
8364757 | Scott et al. | Jan 2013 | B2 |
8370003 | So et al. | Feb 2013 | B2 |
8380638 | Watkins | Feb 2013 | B1 |
8391789 | Palin et al. | Mar 2013 | B2 |
8391909 | Stewart | Mar 2013 | B2 |
8402094 | Bosworth et al. | Mar 2013 | B2 |
8402372 | Gillespie et al. | Mar 2013 | B2 |
8412576 | Urbanski | Apr 2013 | B2 |
8412675 | Alvarado et al. | Apr 2013 | B2 |
8427308 | Baron, Sr. et al. | Apr 2013 | B1 |
8428565 | Middleton et al. | Apr 2013 | B2 |
8433609 | Abhyanker | Apr 2013 | B2 |
8433650 | Thomas | Apr 2013 | B1 |
8438156 | Redstone et al. | May 2013 | B2 |
8442923 | Gross | May 2013 | B2 |
8443107 | Burdette et al. | May 2013 | B2 |
8447810 | Roumeliotis et al. | May 2013 | B2 |
8463295 | Caralis et al. | Jun 2013 | B1 |
8463764 | Fujioka et al. | Jun 2013 | B2 |
8473199 | Blumberg et al. | Jun 2013 | B2 |
8493849 | Fuste Vilella et al. | Jul 2013 | B2 |
8504512 | Herzog et al. | Aug 2013 | B2 |
8510268 | Laforge et al. | Aug 2013 | B1 |
8521656 | Zimberoff et al. | Aug 2013 | B2 |
8538458 | Haney | Sep 2013 | B2 |
8543143 | Chandra et al. | Sep 2013 | B2 |
8543323 | Gold et al. | Sep 2013 | B1 |
8548493 | Rieger, III | Oct 2013 | B2 |
8554770 | Purdy | Oct 2013 | B2 |
8554852 | Burnim | Oct 2013 | B2 |
8560515 | Kimchi et al. | Oct 2013 | B2 |
8584091 | Champion et al. | Nov 2013 | B2 |
8589330 | Petersen et al. | Nov 2013 | B2 |
8594715 | Stewart | Nov 2013 | B1 |
8595292 | Grayson et al. | Nov 2013 | B2 |
8600602 | McAndrew et al. | Dec 2013 | B1 |
8615565 | Randall | Dec 2013 | B2 |
8620532 | Curtis et al. | Dec 2013 | B2 |
8620827 | Watkins, III | Dec 2013 | B1 |
8621374 | Sheha et al. | Dec 2013 | B2 |
8626699 | Xie et al. | Jan 2014 | B2 |
8627506 | Vera et al. | Jan 2014 | B2 |
8649976 | Kreft | Feb 2014 | B2 |
8650103 | Wilf et al. | Feb 2014 | B2 |
8655873 | Mitchell et al. | Feb 2014 | B2 |
8660541 | Beresniewicz et al. | Feb 2014 | B1 |
8660897 | Abhyanker | Feb 2014 | B2 |
8666660 | Sartipi et al. | Mar 2014 | B2 |
8671095 | Gross | Mar 2014 | B2 |
8671106 | Lee et al. | Mar 2014 | B1 |
8683342 | Van Riel | Mar 2014 | B2 |
8688594 | Thomas et al. | Apr 2014 | B2 |
8694605 | Burrell et al. | Apr 2014 | B1 |
8695919 | Shachor et al. | Apr 2014 | B2 |
8712441 | Haney | Apr 2014 | B2 |
8713055 | Callahan et al. | Apr 2014 | B2 |
8713143 | Centola et al. | Apr 2014 | B2 |
8718910 | Guéziec | May 2014 | B2 |
8723679 | Whisenant | May 2014 | B2 |
8732091 | Abhyanker | May 2014 | B1 |
8732155 | Vegnaduzzo et al. | May 2014 | B2 |
8732219 | Ferries et al. | May 2014 | B1 |
8732846 | D'Angelo et al. | May 2014 | B2 |
8738545 | Abhyanker | May 2014 | B2 |
8775405 | Gross | Jul 2014 | B2 |
D710454 | Barajas et al. | Aug 2014 | S |
8794566 | Hutson | Aug 2014 | B2 |
8799253 | Valliani et al. | Aug 2014 | B2 |
8832556 | Steinberg | Sep 2014 | B2 |
20010005829 | Raveis | Jun 2001 | A1 |
20010020955 | Nakagawa et al. | Sep 2001 | A1 |
20010029426 | Hancock et al. | Oct 2001 | A1 |
20010029501 | Yokobori et al. | Oct 2001 | A1 |
20010036833 | Koshima et al. | Nov 2001 | A1 |
20010037721 | Hasegawa et al. | Nov 2001 | A1 |
20010042087 | Kephart et al. | Nov 2001 | A1 |
20010049616 | Khuzadi et al. | Dec 2001 | A1 |
20010049636 | Hudda et al. | Dec 2001 | A1 |
20020019739 | Juneau et al. | Feb 2002 | A1 |
20020023018 | Kleinbaum | Feb 2002 | A1 |
20020026388 | Roebuck | Feb 2002 | A1 |
20020029350 | Cooper et al. | Mar 2002 | A1 |
20020030689 | Eichel et al. | Mar 2002 | A1 |
20020038225 | Klasky et al. | Mar 2002 | A1 |
20020046243 | Morris et al. | Apr 2002 | A1 |
20020049617 | Lencki et al. | Apr 2002 | A1 |
20020059201 | Work | May 2002 | A1 |
20020059379 | Harvey et al. | May 2002 | A1 |
20020065691 | Twig et al. | May 2002 | A1 |
20020065739 | Florance et al. | May 2002 | A1 |
20020070967 | Tanner et al. | Jun 2002 | A1 |
20020072848 | Hamada et al. | Jun 2002 | A1 |
20020077060 | Lehikoinen et al. | Jun 2002 | A1 |
20020077901 | Katz | Jun 2002 | A1 |
20020078171 | Schneider | Jun 2002 | A1 |
20020087260 | Hancock et al. | Jul 2002 | A1 |
20020087506 | Reddy | Jul 2002 | A1 |
20020090996 | Maehiro | Jul 2002 | A1 |
20020091556 | Fiala et al. | Jul 2002 | A1 |
20020097267 | Dinan et al. | Jul 2002 | A1 |
20020099693 | Kofsky | Jul 2002 | A1 |
20020103813 | Frigon | Aug 2002 | A1 |
20020103892 | Rieger | Aug 2002 | A1 |
20020124009 | Hoblit | Sep 2002 | A1 |
20020124053 | Adams et al. | Sep 2002 | A1 |
20020130906 | Miyaki | Sep 2002 | A1 |
20020133292 | Miyaki | Sep 2002 | A1 |
20020143462 | Warren | Oct 2002 | A1 |
20020147638 | Banerjee et al. | Oct 2002 | A1 |
20020156782 | Rubert | Oct 2002 | A1 |
20020156917 | Nye | Oct 2002 | A1 |
20020160762 | Nave et al. | Oct 2002 | A1 |
20020161666 | Fraki et al. | Oct 2002 | A1 |
20020169662 | Claiborne | Nov 2002 | A1 |
20020184496 | Mitchell et al. | Dec 2002 | A1 |
20030004802 | Callegari | Jan 2003 | A1 |
20030005035 | Rodgers | Jan 2003 | A1 |
20030018521 | Kraft et al. | Jan 2003 | A1 |
20030023489 | McGuire et al. | Jan 2003 | A1 |
20030023586 | Knorr | Jan 2003 | A1 |
20030033176 | Hancock | Feb 2003 | A1 |
20030036963 | Jacobson et al. | Feb 2003 | A1 |
20030055983 | Callegari | Mar 2003 | A1 |
20030061503 | Katz et al. | Mar 2003 | A1 |
20030063072 | Brandenberg et al. | Apr 2003 | A1 |
20030064705 | Desiderio | Apr 2003 | A1 |
20030065716 | Kyusojin | Apr 2003 | A1 |
20030069002 | Hunter et al. | Apr 2003 | A1 |
20030069693 | Snapp et al. | Apr 2003 | A1 |
20030078897 | Florance et al. | Apr 2003 | A1 |
20030088520 | Bohrer et al. | May 2003 | A1 |
20030145093 | Oren et al. | Jul 2003 | A1 |
20030154020 | Polidi | Aug 2003 | A1 |
20030154213 | Ahn | Aug 2003 | A1 |
20030158668 | Anderson | Aug 2003 | A1 |
20030177019 | Santos et al. | Sep 2003 | A1 |
20030177192 | Umeki et al. | Sep 2003 | A1 |
20030200192 | Bell et al. | Oct 2003 | A1 |
20030218253 | Avanzino et al. | Nov 2003 | A1 |
20030220807 | Hoffman et al. | Nov 2003 | A1 |
20030222918 | Coulthard | Dec 2003 | A1 |
20030225632 | Tong et al. | Dec 2003 | A1 |
20030225833 | Pilat et al. | Dec 2003 | A1 |
20040002871 | Geranio | Jan 2004 | A1 |
20040003283 | Goodman et al. | Jan 2004 | A1 |
20040021584 | Hartz et al. | Feb 2004 | A1 |
20040024846 | Randall et al. | Feb 2004 | A1 |
20040030525 | Robinson et al. | Feb 2004 | A1 |
20040030741 | Wolton et al. | Feb 2004 | A1 |
20040039581 | Wheeler | Feb 2004 | A1 |
20040054428 | Sheha et al. | Mar 2004 | A1 |
20040088177 | Travis et al. | May 2004 | A1 |
20040109012 | Kraus et al. | Jun 2004 | A1 |
20040111302 | Falk et al. | Jun 2004 | A1 |
20040122693 | Hatscher et al. | Jun 2004 | A1 |
20040128215 | Florance et al. | Jul 2004 | A1 |
20040135805 | Gottsacker et al. | Jul 2004 | A1 |
20040139034 | Farmer | Jul 2004 | A1 |
20040139049 | Hancock et al. | Jul 2004 | A1 |
20040145593 | Berkner et al. | Jul 2004 | A1 |
20040146199 | Berkner et al. | Jul 2004 | A1 |
20040148275 | Achlioptas | Jul 2004 | A1 |
20040153466 | Ziff et al. | Aug 2004 | A1 |
20040157648 | Lightman | Aug 2004 | A1 |
20040158488 | Johnson | Aug 2004 | A1 |
20040162064 | Himmelstein | Aug 2004 | A1 |
20040166878 | Erskine et al. | Aug 2004 | A1 |
20040167787 | Lynch et al. | Aug 2004 | A1 |
20040172280 | Fraki et al. | Sep 2004 | A1 |
20040186766 | Fellenstein et al. | Sep 2004 | A1 |
20040210661 | Thompson | Oct 2004 | A1 |
20040215559 | Rebenack et al. | Oct 2004 | A1 |
20040217884 | Samadani et al. | Nov 2004 | A1 |
20040217980 | Radburn et al. | Nov 2004 | A1 |
20040220903 | Shah et al. | Nov 2004 | A1 |
20040220906 | Gargi et al. | Nov 2004 | A1 |
20040236771 | Colver et al. | Nov 2004 | A1 |
20040257340 | Jawerth | Dec 2004 | A1 |
20040260604 | Bedingfield | Dec 2004 | A1 |
20040267625 | Feng et al. | Dec 2004 | A1 |
20050015488 | Bayyapu | Jan 2005 | A1 |
20050018177 | Rosenberg et al. | Jan 2005 | A1 |
20050021750 | Abrams | Jan 2005 | A1 |
20050027723 | Jones et al. | Feb 2005 | A1 |
20050034075 | Riegelman et al. | Feb 2005 | A1 |
20050044061 | Klemow | Feb 2005 | A1 |
20050049971 | Bettinger | Mar 2005 | A1 |
20050055353 | Marx et al. | Mar 2005 | A1 |
20050086309 | Galli et al. | Apr 2005 | A1 |
20050091027 | Zaher et al. | Apr 2005 | A1 |
20050091175 | Farmer | Apr 2005 | A9 |
20050091209 | Frank et al. | Apr 2005 | A1 |
20050096977 | Rossides | May 2005 | A1 |
20050097319 | Zhu et al. | May 2005 | A1 |
20050108520 | Yamamoto et al. | May 2005 | A1 |
20050114527 | Hankey et al. | May 2005 | A1 |
20050114759 | Williams et al. | May 2005 | A1 |
20050114783 | Szeto | May 2005 | A1 |
20050120084 | Hu et al. | Jun 2005 | A1 |
20050131761 | Trika et al. | Jun 2005 | A1 |
20050137015 | Rogers et al. | Jun 2005 | A1 |
20050143174 | Goldman et al. | Jun 2005 | A1 |
20050144065 | Calabria et al. | Jun 2005 | A1 |
20050149432 | Galey | Jul 2005 | A1 |
20050154639 | Zetmeir | Jul 2005 | A1 |
20050159970 | Buyukkokten et al. | Jul 2005 | A1 |
20050171799 | Hull et al. | Aug 2005 | A1 |
20050171832 | Hull et al. | Aug 2005 | A1 |
20050171954 | Hull et al. | Aug 2005 | A1 |
20050171955 | Hull et al. | Aug 2005 | A1 |
20050177385 | Hull et al. | Aug 2005 | A1 |
20050187823 | Howes | Aug 2005 | A1 |
20050192859 | Mertins et al. | Sep 2005 | A1 |
20050192912 | Bator et al. | Sep 2005 | A1 |
20050192999 | Cook et al. | Sep 2005 | A1 |
20050193410 | Eldering | Sep 2005 | A1 |
20050197775 | Smith | Sep 2005 | A1 |
20050197846 | Pezaris et al. | Sep 2005 | A1 |
20050198020 | Garland et al. | Sep 2005 | A1 |
20050198031 | Pezaris et al. | Sep 2005 | A1 |
20050198305 | Pezaris et al. | Sep 2005 | A1 |
20050203768 | Florance et al. | Sep 2005 | A1 |
20050203769 | Weild | Sep 2005 | A1 |
20050203807 | Bezos et al. | Sep 2005 | A1 |
20050209781 | Anderson | Sep 2005 | A1 |
20050216186 | Dorfman et al. | Sep 2005 | A1 |
20050216300 | Appelman et al. | Sep 2005 | A1 |
20050216550 | Paseman et al. | Sep 2005 | A1 |
20050219044 | Douglass et al. | Oct 2005 | A1 |
20050235062 | Lunt et al. | Oct 2005 | A1 |
20050240580 | Zamir et al. | Oct 2005 | A1 |
20050251331 | Kreft | Nov 2005 | A1 |
20050256756 | Lam et al. | Nov 2005 | A1 |
20050259648 | Kodialam et al. | Nov 2005 | A1 |
20050270299 | Rasmussen et al. | Dec 2005 | A1 |
20050273346 | Frost | Dec 2005 | A1 |
20050283497 | Nurminen et al. | Dec 2005 | A1 |
20050288957 | Eraker et al. | Dec 2005 | A1 |
20050288958 | Eraker et al. | Dec 2005 | A1 |
20050289650 | Kalogridis | Dec 2005 | A1 |
20060004680 | Robarts et al. | Jan 2006 | A1 |
20060004703 | Spivack et al. | Jan 2006 | A1 |
20060004734 | Malkin et al. | Jan 2006 | A1 |
20060022048 | Johnson | Feb 2006 | A1 |
20060023881 | Akiyama et al. | Feb 2006 | A1 |
20060026147 | Cone et al. | Feb 2006 | A1 |
20060036588 | Frank et al. | Feb 2006 | A1 |
20060036748 | Nusbaum et al. | Feb 2006 | A1 |
20060041543 | Achlioptas | Feb 2006 | A1 |
20060042483 | Work et al. | Mar 2006 | A1 |
20060047825 | Steenstra et al. | Mar 2006 | A1 |
20060048059 | Etkin | Mar 2006 | A1 |
20060052091 | Onyon et al. | Mar 2006 | A1 |
20060058952 | Cooper et al. | Mar 2006 | A1 |
20060059023 | Mashinsky | Mar 2006 | A1 |
20060064431 | Kishore et al. | Mar 2006 | A1 |
20060075335 | Gloor | Apr 2006 | A1 |
20060080613 | Savant | Apr 2006 | A1 |
20060085419 | Rosen | Apr 2006 | A1 |
20060089882 | Shimansky | Apr 2006 | A1 |
20060100892 | Ellanti | May 2006 | A1 |
20060113425 | Rader | Jun 2006 | A1 |
20060123053 | Scannell | Jun 2006 | A1 |
20060136127 | Coch et al. | Jun 2006 | A1 |
20060136419 | Brydon et al. | Jun 2006 | A1 |
20060143066 | Calabria | Jun 2006 | A1 |
20060143067 | Calabria | Jun 2006 | A1 |
20060143183 | Goldberg et al. | Jun 2006 | A1 |
20060149624 | Baluja et al. | Jul 2006 | A1 |
20060161599 | Rosen | Jul 2006 | A1 |
20060178972 | Jung et al. | Aug 2006 | A1 |
20060184578 | La Rotonda et al. | Aug 2006 | A1 |
20060184617 | Nicholas et al. | Aug 2006 | A1 |
20060184997 | La Rotonda et al. | Aug 2006 | A1 |
20060190279 | Heflin | Aug 2006 | A1 |
20060190281 | Kott et al. | Aug 2006 | A1 |
20060194186 | Nanda | Aug 2006 | A1 |
20060200384 | Arutunian et al. | Sep 2006 | A1 |
20060217885 | Crady et al. | Sep 2006 | A1 |
20060218225 | Hee Voon et al. | Sep 2006 | A1 |
20060218226 | Johnson et al. | Sep 2006 | A1 |
20060223518 | Haney | Oct 2006 | A1 |
20060226281 | Walton | Oct 2006 | A1 |
20060229063 | Koch | Oct 2006 | A1 |
20060230061 | Sample et al. | Oct 2006 | A1 |
20060238383 | Kimchi et al. | Oct 2006 | A1 |
20060242139 | Butterfield et al. | Oct 2006 | A1 |
20060242178 | Butterfield et al. | Oct 2006 | A1 |
20060242581 | Manion et al. | Oct 2006 | A1 |
20060247940 | Zhu et al. | Nov 2006 | A1 |
20060248573 | Pannu et al. | Nov 2006 | A1 |
20060251292 | Gokturk et al. | Nov 2006 | A1 |
20060253491 | Gokturk et al. | Nov 2006 | A1 |
20060256008 | Rosenberg | Nov 2006 | A1 |
20060264209 | Atkinson et al. | Nov 2006 | A1 |
20060265277 | Yasinovsky et al. | Nov 2006 | A1 |
20060265417 | Amato et al. | Nov 2006 | A1 |
20060270419 | Crowley et al. | Nov 2006 | A1 |
20060270421 | Phillips et al. | Nov 2006 | A1 |
20060271287 | Gold et al. | Nov 2006 | A1 |
20060271472 | Cagan | Nov 2006 | A1 |
20060293976 | Nam | Dec 2006 | A1 |
20060294011 | Smith | Dec 2006 | A1 |
20070002057 | Danzig et al. | Jan 2007 | A1 |
20070003182 | Hunn | Jan 2007 | A1 |
20070005683 | Omidyar | Jan 2007 | A1 |
20070005750 | Lunt et al. | Jan 2007 | A1 |
20070011148 | Burkey et al. | Jan 2007 | A1 |
20070011617 | Akagawa et al. | Jan 2007 | A1 |
20070016689 | Birch | Jan 2007 | A1 |
20070027920 | Alvarado et al. | Feb 2007 | A1 |
20070032942 | Thota | Feb 2007 | A1 |
20070033064 | Abrahamsohn | Feb 2007 | A1 |
20070033182 | Knorr | Feb 2007 | A1 |
20070038646 | Thota | Feb 2007 | A1 |
20070043947 | Mizikovsky et al. | Feb 2007 | A1 |
20070050360 | Hull et al. | Mar 2007 | A1 |
20070061128 | Odom et al. | Mar 2007 | A1 |
20070061405 | Keohane et al. | Mar 2007 | A1 |
20070067219 | Altberg et al. | Mar 2007 | A1 |
20070078747 | Baack | Apr 2007 | A1 |
20070078772 | Dadd | Apr 2007 | A1 |
20070099609 | Cai | May 2007 | A1 |
20070105536 | Tingo | May 2007 | A1 |
20070106627 | Srivastava et al. | May 2007 | A1 |
20070112645 | Traynor et al. | May 2007 | A1 |
20070112729 | Wiseman et al. | May 2007 | A1 |
20070118430 | Wiseman et al. | May 2007 | A1 |
20070118525 | Svendsen | May 2007 | A1 |
20070150375 | Yang | Jun 2007 | A1 |
20070150603 | Crull et al. | Jun 2007 | A1 |
20070156429 | Godar | Jul 2007 | A1 |
20070159651 | Disario et al. | Jul 2007 | A1 |
20070162432 | Armstrong et al. | Jul 2007 | A1 |
20070162458 | Fasciano | Jul 2007 | A1 |
20070162547 | Ross | Jul 2007 | A1 |
20070162942 | Hamynen et al. | Jul 2007 | A1 |
20070167204 | Lyle et al. | Jul 2007 | A1 |
20070168852 | Erol et al. | Jul 2007 | A1 |
20070168888 | Jawerth | Jul 2007 | A1 |
20070174389 | Armstrong et al. | Jul 2007 | A1 |
20070179905 | Buch et al. | Aug 2007 | A1 |
20070185906 | Humphries et al. | Aug 2007 | A1 |
20070192299 | Zuckerberg et al. | Aug 2007 | A1 |
20070203644 | Thota et al. | Aug 2007 | A1 |
20070207755 | Julia et al. | Sep 2007 | A1 |
20070208613 | Backer | Sep 2007 | A1 |
20070208802 | Barman et al. | Sep 2007 | A1 |
20070208916 | Tomita | Sep 2007 | A1 |
20070214141 | Sittig et al. | Sep 2007 | A1 |
20070219659 | Abhyanker et al. | Sep 2007 | A1 |
20070219712 | Abhyanker | Sep 2007 | A1 |
20070220174 | Abhyanker | Sep 2007 | A1 |
20070226314 | Eick et al. | Sep 2007 | A1 |
20070233291 | Herde et al. | Oct 2007 | A1 |
20070233367 | Chen et al. | Oct 2007 | A1 |
20070233375 | Garg et al. | Oct 2007 | A1 |
20070233582 | Abhyanker | Oct 2007 | A1 |
20070239352 | Thota et al. | Oct 2007 | A1 |
20070239552 | Sundaresan | Oct 2007 | A1 |
20070239648 | Thota | Oct 2007 | A1 |
20070245002 | Nguyen et al. | Oct 2007 | A1 |
20070250321 | Balusu | Oct 2007 | A1 |
20070250511 | Endler et al. | Oct 2007 | A1 |
20070255785 | Hayashi et al. | Nov 2007 | A1 |
20070255831 | Hayashi et al. | Nov 2007 | A1 |
20070258642 | Thota | Nov 2007 | A1 |
20070259654 | Oijer | Nov 2007 | A1 |
20070260599 | McGuire et al. | Nov 2007 | A1 |
20070261071 | Lunt et al. | Nov 2007 | A1 |
20070266003 | Wong et al. | Nov 2007 | A1 |
20070266097 | Harik et al. | Nov 2007 | A1 |
20070266118 | Wilkins | Nov 2007 | A1 |
20070270163 | Anupam et al. | Nov 2007 | A1 |
20070271367 | Yardeni et al. | Nov 2007 | A1 |
20070273558 | Smith et al. | Nov 2007 | A1 |
20070281689 | Altman et al. | Dec 2007 | A1 |
20070281690 | Altman et al. | Dec 2007 | A1 |
20070281716 | Altman et al. | Dec 2007 | A1 |
20070282621 | Altman et al. | Dec 2007 | A1 |
20070282987 | Fischer et al. | Dec 2007 | A1 |
20070288164 | Gordon et al. | Dec 2007 | A1 |
20070288621 | Gundu et al. | Dec 2007 | A1 |
20070294357 | Antoine | Dec 2007 | A1 |
20080005076 | Payne et al. | Jan 2008 | A1 |
20080005231 | Kelley et al. | Jan 2008 | A1 |
20080010343 | Escaffi et al. | Jan 2008 | A1 |
20080016051 | Schiller | Jan 2008 | A1 |
20080020814 | Kernene | Jan 2008 | A1 |
20080032666 | Hughes et al. | Feb 2008 | A1 |
20080032703 | Krumm et al. | Feb 2008 | A1 |
20080033641 | Medalia | Feb 2008 | A1 |
20080033652 | Hensley et al. | Feb 2008 | A1 |
20080033739 | Zuckerberg et al. | Feb 2008 | A1 |
20080033776 | Marchese | Feb 2008 | A1 |
20080040370 | Bosworth et al. | Feb 2008 | A1 |
20080040428 | Wei et al. | Feb 2008 | A1 |
20080040474 | Zuckerberg et al. | Feb 2008 | A1 |
20080040475 | Bosworth et al. | Feb 2008 | A1 |
20080040673 | Zuckerberg et al. | Feb 2008 | A1 |
20080043020 | Snow et al. | Feb 2008 | A1 |
20080043037 | Carroll | Feb 2008 | A1 |
20080046976 | Zuckerberg | Feb 2008 | A1 |
20080048065 | Kuntz | Feb 2008 | A1 |
20080051932 | Jermyn et al. | Feb 2008 | A1 |
20080059992 | Amidon et al. | Mar 2008 | A1 |
20080065321 | DaCosta | Mar 2008 | A1 |
20080065611 | Hepworth et al. | Mar 2008 | A1 |
20080070593 | Altman et al. | Mar 2008 | A1 |
20080070697 | Robinson et al. | Mar 2008 | A1 |
20080071929 | Motte et al. | Mar 2008 | A1 |
20080077581 | Drayer et al. | Mar 2008 | A1 |
20080077642 | Carbone et al. | Mar 2008 | A1 |
20080077708 | Scott et al. | Mar 2008 | A1 |
20080086368 | Bauman et al. | Apr 2008 | A1 |
20080086458 | Robinson et al. | Apr 2008 | A1 |
20080091461 | Evans et al. | Apr 2008 | A1 |
20080091723 | Zuckerberg et al. | Apr 2008 | A1 |
20080097999 | Horan | Apr 2008 | A1 |
20080098090 | Geraci et al. | Apr 2008 | A1 |
20080098313 | Pollack | Apr 2008 | A1 |
20080103959 | Carroll et al. | May 2008 | A1 |
20080104227 | Birnie et al. | May 2008 | A1 |
20080109718 | Narayanaswami | May 2008 | A1 |
20080115082 | Simmons et al. | May 2008 | A1 |
20080115226 | Welingkar et al. | May 2008 | A1 |
20080117928 | Abhyanker | May 2008 | A1 |
20080125969 | Chen et al. | May 2008 | A1 |
20080126355 | Rowley | May 2008 | A1 |
20080126411 | Zhuang et al. | May 2008 | A1 |
20080126476 | Nicholas et al. | May 2008 | A1 |
20080126478 | Ferguson et al. | May 2008 | A1 |
20080133495 | Fischer | Jun 2008 | A1 |
20080133649 | Pennington | Jun 2008 | A1 |
20080134035 | Pennington et al. | Jun 2008 | A1 |
20080148156 | Brewer et al. | Jun 2008 | A1 |
20080154733 | Wolfe | Jun 2008 | A1 |
20080155019 | Wallace et al. | Jun 2008 | A1 |
20080162211 | Addington | Jul 2008 | A1 |
20080162260 | Rohan et al. | Jul 2008 | A1 |
20080168068 | Hutheesing | Jul 2008 | A1 |
20080168175 | Tran | Jul 2008 | A1 |
20080172173 | Chang et al. | Jul 2008 | A1 |
20080172244 | Coupal et al. | Jul 2008 | A1 |
20080172288 | Pilskalns et al. | Jul 2008 | A1 |
20080189292 | Stremel et al. | Aug 2008 | A1 |
20080189380 | Bosworth et al. | Aug 2008 | A1 |
20080189768 | Callahan et al. | Aug 2008 | A1 |
20080195483 | Moore | Aug 2008 | A1 |
20080201156 | Abhyanker | Aug 2008 | A1 |
20080208956 | Spiridellis et al. | Aug 2008 | A1 |
20080208969 | Van Riel | Aug 2008 | A1 |
20080215994 | Harrison et al. | Sep 2008 | A1 |
20080221846 | Aggarwal et al. | Sep 2008 | A1 |
20080221984 | Abhyanker | Sep 2008 | A1 |
20080222140 | Lagad et al. | Sep 2008 | A1 |
20080222308 | Abhyanker | Sep 2008 | A1 |
20080228719 | Abhyanker et al. | Sep 2008 | A1 |
20080228775 | Abhyanker et al. | Sep 2008 | A1 |
20080229424 | Harris et al. | Sep 2008 | A1 |
20080231630 | Shenkar et al. | Sep 2008 | A1 |
20080238941 | Kinnan et al. | Oct 2008 | A1 |
20080240397 | Abhyanker | Oct 2008 | A1 |
20080242317 | Abhyanker | Oct 2008 | A1 |
20080243598 | Abhyanker | Oct 2008 | A1 |
20080243667 | Lecomte | Oct 2008 | A1 |
20080243830 | Abhyanker | Oct 2008 | A1 |
20080250025 | Abhyanker | Oct 2008 | A1 |
20080255759 | Abhyanker | Oct 2008 | A1 |
20080256230 | Handley | Oct 2008 | A1 |
20080263460 | Altberg et al. | Oct 2008 | A1 |
20080270158 | Abhyanker | Oct 2008 | A1 |
20080270366 | Frank | Oct 2008 | A1 |
20080270615 | Centola et al. | Oct 2008 | A1 |
20080270945 | Abhyanker | Oct 2008 | A1 |
20080281854 | Abhyanker | Nov 2008 | A1 |
20080288277 | Fasciano | Nov 2008 | A1 |
20080288612 | Kwon | Nov 2008 | A1 |
20080294678 | Gorman et al. | Nov 2008 | A1 |
20080294747 | Abhyanker | Nov 2008 | A1 |
20080300979 | Abhyanker | Dec 2008 | A1 |
20080301565 | Abhyanker | Dec 2008 | A1 |
20080306754 | Abhyanker | Dec 2008 | A1 |
20080307053 | Mitnick et al. | Dec 2008 | A1 |
20080307066 | Amidon et al. | Dec 2008 | A1 |
20080307320 | Payne et al. | Dec 2008 | A1 |
20080316021 | Manz et al. | Dec 2008 | A1 |
20080319778 | Abhyanker | Dec 2008 | A1 |
20080319806 | Abhyanker | Dec 2008 | A1 |
20090003265 | Agarwal et al. | Jan 2009 | A1 |
20090006177 | Beaver et al. | Jan 2009 | A1 |
20090006473 | Elliott et al. | Jan 2009 | A1 |
20090007195 | Beyabani | Jan 2009 | A1 |
20090018850 | Abhyanker | Jan 2009 | A1 |
20090018925 | Abhyanker | Jan 2009 | A1 |
20090019004 | Abhyanker | Jan 2009 | A1 |
20090019085 | Abhyanker | Jan 2009 | A1 |
20090019122 | Abhyanker | Jan 2009 | A1 |
20090019366 | Abhyanker | Jan 2009 | A1 |
20090019373 | Abhyanker | Jan 2009 | A1 |
20090024740 | Abhyanker | Jan 2009 | A1 |
20090029672 | Manz | Jan 2009 | A1 |
20090030927 | Cases et al. | Jan 2009 | A1 |
20090031006 | Johnson | Jan 2009 | A1 |
20090031245 | Brezina et al. | Jan 2009 | A1 |
20090031301 | D'Angelo et al. | Jan 2009 | A1 |
20090043650 | Abhyanker et al. | Feb 2009 | A1 |
20090044254 | Tian | Feb 2009 | A1 |
20090048922 | Morgenstern et al. | Feb 2009 | A1 |
20090049018 | Gross | Feb 2009 | A1 |
20090049037 | Gross | Feb 2009 | A1 |
20090049070 | Steinberg | Feb 2009 | A1 |
20090049127 | Juan et al. | Feb 2009 | A1 |
20090061883 | Abhyanker | Mar 2009 | A1 |
20090063252 | Abhyanker | Mar 2009 | A1 |
20090063467 | Abhyanker | Mar 2009 | A1 |
20090063500 | Zhai et al. | Mar 2009 | A1 |
20090064011 | Abhyanker | Mar 2009 | A1 |
20090064144 | Abhyanker | Mar 2009 | A1 |
20090069034 | Abhyanker | Mar 2009 | A1 |
20090070334 | Callahan et al. | Mar 2009 | A1 |
20090070435 | Abhyanker | Mar 2009 | A1 |
20090077100 | Hancock et al. | Mar 2009 | A1 |
20090102644 | Hayden | Apr 2009 | A1 |
20090132504 | Vegnaduzzo et al. | May 2009 | A1 |
20090132644 | Frishert et al. | May 2009 | A1 |
20090171950 | Lunenfeld | Jul 2009 | A1 |
20090177577 | Garcia | Jul 2009 | A1 |
20090228305 | Gustafsson et al. | Sep 2009 | A1 |
20090254971 | Herz et al. | Oct 2009 | A1 |
20090271417 | Toebes et al. | Oct 2009 | A1 |
20090271524 | Davi et al. | Oct 2009 | A1 |
20090282353 | Halbherr et al. | Nov 2009 | A1 |
20090284530 | Lester et al. | Nov 2009 | A1 |
20090287682 | Fujioka et al. | Nov 2009 | A1 |
20100011081 | Crowley et al. | Jan 2010 | A1 |
20100023388 | Blumberg et al. | Jan 2010 | A1 |
20100024045 | Sastry et al. | Jan 2010 | A1 |
20100051740 | Yoeli | Mar 2010 | A1 |
20100057555 | Butterfield et al. | Mar 2010 | A1 |
20100064007 | Randall | Mar 2010 | A1 |
20100082683 | Law et al. | Apr 2010 | A1 |
20100083125 | Zafar et al. | Apr 2010 | A1 |
20100088015 | Lee | Apr 2010 | A1 |
20100094548 | Tadman et al. | Apr 2010 | A1 |
20100100937 | Tran | Apr 2010 | A1 |
20100106731 | Cartmell et al. | Apr 2010 | A1 |
20100108801 | Olm et al. | May 2010 | A1 |
20100118025 | Smith et al. | May 2010 | A1 |
20100120422 | Cheung et al. | May 2010 | A1 |
20100138259 | Delk | Jun 2010 | A1 |
20100138318 | Chun | Jun 2010 | A1 |
20100191798 | Seefeld et al. | Jul 2010 | A1 |
20100198684 | Eraker et al. | Aug 2010 | A1 |
20100214250 | Gillespie et al. | Aug 2010 | A1 |
20100231383 | Levine et al. | Sep 2010 | A1 |
20100243794 | Jermyn | Sep 2010 | A1 |
20100275033 | Gillespie et al. | Oct 2010 | A1 |
20100306016 | Solaro et al. | Dec 2010 | A1 |
20110001020 | Forgac | Jan 2011 | A1 |
20110015954 | Ward | Jan 2011 | A1 |
20110022540 | Stern et al. | Jan 2011 | A1 |
20110040681 | Ahroon | Feb 2011 | A1 |
20110040692 | Ahroon | Feb 2011 | A1 |
20110041084 | Karam | Feb 2011 | A1 |
20110061018 | Piratla et al. | Mar 2011 | A1 |
20110066588 | Xie et al. | Mar 2011 | A1 |
20110066648 | Abhyanker et al. | Mar 2011 | A1 |
20110078012 | Adamec | Mar 2011 | A1 |
20110078270 | Galli et al. | Mar 2011 | A1 |
20110082747 | Khan et al. | Apr 2011 | A1 |
20110087667 | Hutheesing | Apr 2011 | A1 |
20110093340 | Kramer et al. | Apr 2011 | A1 |
20110093498 | Lunt et al. | Apr 2011 | A1 |
20110099142 | Karjalainen et al. | Apr 2011 | A1 |
20110106658 | Britt | May 2011 | A1 |
20110112976 | Ryan et al. | May 2011 | A1 |
20110128144 | Baron, Sr. et al. | Jun 2011 | A1 |
20110131172 | Herzog et al. | Jun 2011 | A1 |
20110151898 | Chandra et al. | Jun 2011 | A1 |
20110174920 | Yoeli | Jul 2011 | A1 |
20110181470 | Qiu et al. | Jul 2011 | A1 |
20110184643 | Abhyanker | Jul 2011 | A1 |
20110202426 | Cretney et al. | Aug 2011 | A1 |
20110219318 | Abhyanker | Sep 2011 | A1 |
20110231268 | Ungos | Sep 2011 | A1 |
20110246258 | Cragun et al. | Oct 2011 | A1 |
20110256895 | Palin et al. | Oct 2011 | A1 |
20110258028 | Satyavolu et al. | Oct 2011 | A1 |
20110264692 | Kardell | Oct 2011 | A1 |
20110289011 | Hull et al. | Nov 2011 | A1 |
20110291851 | Whisenant | Dec 2011 | A1 |
20120023196 | Grayson et al. | Jan 2012 | A1 |
20120047102 | Petersen et al. | Feb 2012 | A1 |
20120047448 | Amidon et al. | Feb 2012 | A1 |
20120077523 | Roumeliotis et al. | Mar 2012 | A1 |
20120084289 | Hutheesing | Apr 2012 | A1 |
20120096098 | Balassanian | Apr 2012 | A1 |
20120123667 | Guéziec | May 2012 | A1 |
20120138732 | Olm et al. | Jun 2012 | A1 |
20120163206 | Leung et al. | Jun 2012 | A1 |
20120166935 | Abhyanker | Jun 2012 | A1 |
20120191606 | Milne | Jul 2012 | A1 |
20120209775 | Milne | Aug 2012 | A1 |
20120246024 | Thomas et al. | Sep 2012 | A1 |
20120254774 | Patton | Oct 2012 | A1 |
20120259688 | Kim | Oct 2012 | A1 |
20120264447 | Rieger, III | Oct 2012 | A1 |
20120270567 | Johnson | Oct 2012 | A1 |
20120278743 | Heckman et al. | Nov 2012 | A1 |
20120331002 | Carrington | Dec 2012 | A1 |
20130005307 | Kim et al. | Jan 2013 | A1 |
20130024108 | Grün | Jan 2013 | A1 |
20130041862 | Yang et al. | Feb 2013 | A1 |
20130054317 | Abhyanker | Feb 2013 | A1 |
20130055163 | Matas et al. | Feb 2013 | A1 |
20130068876 | Radu | Mar 2013 | A1 |
20130072114 | Abhyanker | Mar 2013 | A1 |
20130073375 | Abhyanker | Mar 2013 | A1 |
20130073474 | Young et al. | Mar 2013 | A1 |
20130080217 | Abhyanker | Mar 2013 | A1 |
20130103437 | Nelson | Apr 2013 | A1 |
20130105635 | Alzu'bi et al. | May 2013 | A1 |
20130110631 | Mitchell et al. | May 2013 | A1 |
20130151455 | Odom et al. | Jun 2013 | A1 |
20130159127 | Myslinski | Jun 2013 | A1 |
20130254670 | Eraker et al. | Sep 2013 | A1 |
20130282842 | Blecon et al. | Oct 2013 | A1 |
20130297589 | Work et al. | Nov 2013 | A1 |
20130301405 | Vilella et al. | Nov 2013 | A1 |
20130303197 | Chandra et al. | Nov 2013 | A1 |
20130317999 | Zimberoff et al. | Nov 2013 | A1 |
20140032034 | Raptopoulos et al. | Jan 2014 | A1 |
20140040179 | Herzog et al. | Feb 2014 | A1 |
20140067167 | Levien et al. | Mar 2014 | A1 |
20140067704 | Abhyanker | Mar 2014 | A1 |
20140074736 | Carrington | Mar 2014 | A1 |
20140087780 | Abhyanker et al. | Mar 2014 | A1 |
20140095293 | Abhyanker | Apr 2014 | A1 |
20140100900 | Abhyanker | Apr 2014 | A1 |
20140108540 | Crawford | Apr 2014 | A1 |
20140108556 | Abhyanker | Apr 2014 | A1 |
20140108613 | Randall | Apr 2014 | A1 |
20140114866 | Abhyanker | Apr 2014 | A1 |
20140115671 | Abhyanker | Apr 2014 | A1 |
20140123246 | Abhyanker | May 2014 | A1 |
20140123247 | Abhyanker | May 2014 | A1 |
20140130140 | Abhyanker | May 2014 | A1 |
20140135039 | Siamak Sartipi et al. | May 2014 | A1 |
20140136328 | Abhyanker | May 2014 | A1 |
20140136414 | Abhyanker | May 2014 | A1 |
20140136624 | Abhyanker | May 2014 | A1 |
20140142848 | Chen et al. | May 2014 | A1 |
20140143061 | Abhyanker | May 2014 | A1 |
20140149244 | Abhyanker | May 2014 | A1 |
20140149508 | Middleton et al. | May 2014 | A1 |
20140165091 | Abhyanker | Jun 2014 | A1 |
20140172727 | Abhyanker et al. | Jun 2014 | A1 |
20140222908 | Park et al. | Aug 2014 | A1 |
20140254896 | Zhou et al. | Sep 2014 | A1 |
20140277834 | Levien et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1426876 | Jun 2004 | EP |
101069834 | Oct 2010 | KR |
1020120121376 | Jul 2012 | KR |
9808055 | Feb 1998 | WO |
9956143 | Nov 1999 | WO |
0054170 | Sep 2000 | WO |
0163423 | Aug 2001 | WO |
0201455 | Jan 2002 | WO |
0219236 | Mar 2002 | WO |
0241115 | May 2002 | WO |
03058540 | Jul 2003 | WO |
2005103624 | Nov 2005 | WO |
2006020471 | Feb 2006 | WO |
2007108927 | Sep 2007 | WO |
2007108928 | Sep 2007 | WO |
2007113844 | Oct 2007 | WO |
2008103149 | Aug 2008 | WO |
2008105766 | Sep 2008 | WO |
2008108772 | Sep 2008 | WO |
2008118119 | Oct 2008 | WO |
2008123851 | Oct 2008 | WO |
2008111929 | Nov 2008 | WO |
2009138559 | Nov 2009 | WO |
2010103163 | Sep 2010 | WO |
2013188762 | Dec 2013 | WO |
2014121145 | Aug 2014 | WO |
Entry |
---|
Benchmark-Backed Nextdoor Launches as a Private Social Network for Neighborhoods, Techcrunch Article, Oct. 26, 2011 by Leena Rao (6 Pages). http://techcrunch.com/2011/10/26/benchmark-backed-nextdoor-launches-as-a-private-social-network-for-neighborhoods/. |
Case No. 111-CV-212924 Abhyanker v. Benchmark Capital Partners L.P., Superior Court of California, County of Santa Clara, Nov. 10, 2011 (pp. 78). http://www.scribd.com/doc/72441873/Stamped-COMPLAINT-Abhyanker-v-Benchmark-Capital-Et-Al-FILED-PUBLIC. |
Neighbors Stop Diaper and Formula Thief in his Tracks, Nextdoor Blog, Aug. 15, 2014, by Anne Dreshfield (pp. 12) http://blog.nextdoor.com/. |
Case No. 5:14-cv-03844-PSG, Complaint Fatdoor, Inc. v. IP Analytics LLC and Google Inc.,Northern District of California, Aug. 25, 2014, (pp. 16). |
Screenshot of My Neighbourhoods on Crunch Base, Aug. 27, 2014 (pp. 2) http://www.crunchbase.com/organization/my-neighbourhoods. |
Facebook Engineers bring Google-30 Circles to Facebook, Article on ZDNet by Emil Protalinski, Jul. 3, 2011, (pp. 2) http://www.zdnet.com/blog/facebook/facebook-engineers-bring-google-circles-to-facebook/1885. |
http://www.zdnet.com/news/perspective-social-networking-for-all/149441. |
http://www.remax.com/advancedsearch/. |
http://global.remax.com/AdvancedListingSearch.aspx. |
http://www.magicbricks.com/property-requirement-to-buy-rent/residential-commercial. |
http://www.mapmyindia.com/solutions/tracking-lbs/vehicle-tracking. |
http://www.mapmyindia.com/solutions/tracking-lbs/asset-tracking. |
http://www.mapmyindia.com/solutions/enterprises/geo-tagging. |
http://www.zillow.com/. |
http://www.zillow.com/homes/for—rent/. |
http://www.zillow.com/homes/for—sale/days—sort/53.409532,-64.072266,19.352611,-129.550781—rect/3—zm/. |
http://www.trulia.com/home—prices/. |
http://www.trulia.com/for—rent/New—York,NY. |
http://www.realtor.com/rentals. |
http://www.realtor.com/realestateforsale. |
http://www.househunt.com/. |
http://www.coldwellbanker.com/real—estate—search;jsessionid=S8ok3kaZtBh5GKHoo-Yzo28Z.sky-node04. |
http://www.switchboard.com/. |
http://www.anywho.com/whitepages. |
http://wp.superpages.com/. |
http://www.whitepages.com/. |
http://www-personal.umich.edu/˜ladamic/papers/socialsearch/adamicsocialsearch.pdf. |
http://cs.wellesley.edu/˜cs315/315—PPTs/L19-SocialNetworks/Stuff/wellesley.pdf. |
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.5230&rep=rep1&type=pdf. |
http://www.ece.lsu.edu/xinli/Research/HeatMap—TVCG06.pdf. |
http://www.usa-people-search.com/. |
https://www.i-neighbors.org/. |
“Friends and Neighbors on the Web”, 2001 by Lada A. Adamic et al. (pp. 9) http://www.hpl.hp.com/research/idl/papers/web10/fnn2.pdf. |
“A social influence model of consumer participation in network-and small-group-based virtual communities”, International Journal of Research in Marketing, 2004 by Utpal M, Dholakia et al. (pp. 23) http://www-bcf.usc.edu/˜douglast/620/bettina1.pdf. |
“BuzzMaps: a prototype social proxy for predictive utility”, ACM Digital Library, 2003 by Azzari Caillier Jarrett et al. (Pages) http://dl.acm.org/citation.cfm?id=948547&dl=ACM&coll=DL&CFID=456946313&CFTOKEN=50139062. |
“Direct Annotation: A Drag-and-Drop Strategy for Labeling Photos”, University of Maryland, 2000 by Ben Shneiderman et al. (pp. 8) http://hcil2.cs.umd.edu/trs/2000-6/2000-06.pdf. |
“Notification for Shared Annotation of Digital Documents”, Technical Report MSR-TR-2001-87, Sep. 19, 2001 by A. J. Bemheim Brush et al. (pp. 9) http://research.microsoft.com/pubs/69880/tr-2001-87.pdf. |
“HT06, Tagging Paper, Taxonomy, Flickr, Academic Article, ToRead”, Yahoo Research Berkeley, CA, 2006 by Cameron Marlow et al. (pp. 9) http://www.danah.org/papers/Hypertext2006.pdf. |
“Computer Systems and the Design of Organizational Interaction”, by Fernando Flores et al. (pp. 20) http://cpe.njit.edu/dlnotes/CIS/CIS735/ComputerSystemsandDesign.pdf. |
“ChipIn—the easy way to collect money”, Louis' Really Useful Finds, Mar. 12. (p. 1) http://reallyusefulthings.tumblr.com/post/28688782/chipin-the-easy-way-to-collect-money. |
Benchmark-Backed Nextdoor Launches As A Private Social Network for Neighborhoods, Techcrunch Article, Oct. 26, 2011 by Leena Rao (6 pages) http://techcrunch.com/2011/10/26/benchmark-backed-nextdoor-launches-as-a-private-social-network-for-neighborhoods/, Oct. 26, 2011. |
Fatdoor Founder Sues Benchmark Capital, Saying It Stole His Idea for Nextdoor, All Things Digital Article, Nov. 11, 2011, by Liz Gannes (7 pages) http://allthingsd.com/20111111/fatdoor-founder-sues-benchmark-capital-saying-it-stole-his-idea-for-nextdoor/. |
Fatdoor CEO Talks About Balancing Security with Community, Wired Magazine, May 31, 2007, by Terrence Russell (2 pages) http://www.wired.com/2007/05/fatdoor—ceo—tal/. |
Fatdoor Launches Social Network for Your Neighborhood, Mashable Article, May 28, 2007, by Kristen Nicole (3 pages) http://mashable.com/2007/05/28/fatdoor/. |
Screenshots of Nextdoor website and its features—as submitted in Case5:14-cv-02335-BLF on Jul. 15, 2014 (pp. 19) http://www.nextdoor.com/. |
Fatdoor turns neighborhoods into online social networks, VentureBeat News Article, May 28, 2007, by Dan Kaplan (pp. 4) http://venturebeat.com/2007/05/28/fatdoor-turns-neighborhoods-into-online-social-networks/. |
Halloween Just Got Easier: Nextdoor Debuts Halloween Treat Map, Nextdoor Blog, Oct. 17, 2013, by Anne Dreshfield (pp. 6) http://blog.nextdoor.com/2013/10/17/halloween-just-got-easier-nextdoor-debuts-halloween-treat-map/. |
Helping Neighbors Connect, Screenshot from FrontPorchForum website—screenshots of Aug. 21, 2014 (3 Pages) http://frontporchforum.com/. |
Advocacy Strategy for the Age of Connectivity, Netcentric Advocacy: fatdoor.com (alpha), Jun. 23, 2007 (p. 1) http://www.network-centricadvocacy.net/2007/06/fatdoorcom-alph.html. |
Silicon Valley venture capital and legal globalization Blog, WayBack Machine Blogs Apr. 8, 2008, by Raj V. Abhyanker (pp. 2) https://web.archive.org/web/20080706001509/http:/abhyanker.blogspot.com/. |
Frontporchforum. screenshots. Jul. 19, 2006 webarchive.org 1-15 (herein FrontPorch) (pp. 15). |
Fatdoor where 2.0 Launch Coverage Report, Jun. 21, 2007, by Sterling Communications (pp. 24). |
Screenshot of Fatdoor on Wikipedia, Apr. 12, 2007 (p. 1). |
Case No. 5-14-cv-02335-BLF Complaint Fatdoor v. Nextdoor, Northern District of California, with Exhibits A, B and C {Part 1 (pp. 258)} and Exhibits D, E, F, G and H {Part 2 (pp. 222)}, Jul. 15, 2014. |
Expert Report—Forensics of Jon Berryhill, Report, Nextdoor v. Abhyanker, Aug. 8, 2014, by Berryhill Computer forensics Inc. (pp. 23). |
Case No. 3:12-cv-05667-EMC Complaint Nextdoor v. Abhyanker, Northern District of California, Nov. 5, 2012 (pp. 46). |
Expert Report—Patent of Jeffrey G. Sheldon, Nextdoor v. Abhyanker, Aug. 8, 2014 (pp. 7). |
Exhibits of Expert Report—Patent of Jeffrey G. Sheldon, Nextdoor v. Abhyanker, with Attachments A, B, C, D and E (1/2) {Part 1 (pp. 46)} and Attachments E (2/2) and F {Part 2 (pp. 41)}. |
Case No. 111-CV-212924 Abhyanker v. Benchmark Capital Partners L.P., Superior Court of California, County of Santa Clara, Nov. 10, 2011 (pp. 78) http://www.scribd.com/doc/72441873/Stamped-COMPLAINT-Abhyanker-v-Benchmark-Capital-Et-Al-FILED-PUBLIC. |
Neighbors Stop Diaper and Formula Thief in his Tracks, Nextdoor Blog, Aug. 15, 2014, by Anne Dreshfield (pp. 12). http://blog.nextdoor.com/. |
Screenshot of Fatdoor website with its features—Aug. 21, 2014 (pp. 6) http://www.fatdoor.com/. |
Screenshot of AirBnB website with its features—Aug. 21, 2014 (pp. 4) http://www.airbnb.com/. |
Wikipedia entry AirBnB website—Aug. 21, 2014 (pp. 16) http://en.wikipedia.org/wiki/Airbnb. |
AirBed&Breakfast for Connecting '07—Oct. 10, 2007 (1 Page) http://www.core77.com/blog/events/airbed—breakfast—for—connecting—07—7715.asp. |
Case No. 5:14-cv-03844-PSG, Complaint Fatdoor, Inc. v. IP Analytics LLC and Google Inc., Northern District of California, Aug. 25, 2014, (pp. 16). |
Screenshot of Meetey on CrunchBase, Aug. 27, 2014, (pp. 3) http://www.crunchbase.com/organization/meetey. |
Wikipedia entry Patch Media website—Aug. 27, 2014 (pp. 2) http://en.wikipedia.org/wiki/Patch—Media. |
Wikipedia entry Yahoo! Groups website—Aug. 27, 2014 (pp. 7) http://en.wikipedia.org/wiki/Yahoo—groups. |
Palo Alto News on Topix, Aug. 27, 2014, (pp. 3) http://www.topix.com/palo-alto. |
Screenshot of My Neighbourhoods on CrunchBase, Aug. 27, 2014 (pp. 2) http://www.crunchbase.com/organization/my-neighbourhoods. |
Screenshot of Dehood website, Aug. 27, 2014, (p. 1) http://www.dehood.com/home. |
Wikipedia entry The Freecycle Network website—Aug. 27, 2014 (pp. 3) http://en.wikipedia.org/wiki/The—Freecycle—Network. |
eDirectree Brings Group Wiki Twist to Social Networking, Techcrunch Article, Feb. 1, 2008 by Mark Hendrickson, (pp. 2) http://techcrunch.com/2008/02/01/edirectree-brings-group-wiki-twist-to-social-networking/. |
Wikipedia entry Meetup website—Aug. 27, 2014 (p. 1) http://en.wikipedia.org/wiki/Meetup—(website). |
Wikipedia entry Google Maps website—Aug. 27, 2014 (p. 18) http://en.wikipedia.org/wiki/Google—Maps. |
Screenshot of Facebook website for groups, Aug. 27, 2014, (p. 1) https://www.facebook.com/about/groups. |
Facebook Engineers bring Google+Circles to Facebook, Article on ZDNet by Emil Protalinski, Jul. 3, 2011, (pp. 2) http://www.zdnet.com/blog/facebook/facebook-engineers-bring-google-circles-to-facebook/1885. |
Screenshot of Uber website, Aug. 27, 2014, (pp. 5) https://www.uber.com/. |
Screenshot of Lyft website, Aug. 27, 2014, (pp. 5) https://www.lyft.com/. |
Wikipedia entry Google driverless car—Aug. 27, 2014 (pp. 4) http://en.wikipedia.org/wiki/Google—driverless—car. |
Wikipedia entry Uber (company)—Aug. 27, 2014 (pp. 7) http://en.wikipedia.org/wiki/Uber—(company). |
Wikipedia entry Autonomous car—Aug. 27, 2014 (pp. 15) http://en.wikipedia.org/wiki/Autonomous—car. |
Screenshot of sidecar website, Aug. 27, 2014 (p. 1) http://www.sidecar.com/. |
Screenshot of patch media website, Aug. 27, 2014 (pp. 6) http://patch.com/. |
Screenshot of i-neighbors website, Aug. 27, 2014 (pp. 3) https://www.i-neighbors.org/howitworks.php. |
Number | Date | Country | |
---|---|---|---|
20140237062 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
60783226 | Mar 2006 | US | |
60817470 | Jun 2006 | US | |
60853499 | Oct 2006 | US | |
60854230 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11603442 | Nov 2006 | US |
Child | 14262716 | US | |
Parent | 11827834 | Jul 2007 | US |
Child | 11603442 | US | |
Parent | 14089779 | Nov 2013 | US |
Child | 11827834 | US | |
Parent | 14144612 | Dec 2013 | US |
Child | 14089779 | US |