The invention relates to a direct plug-in connector for establishing an electric connection between a conductor and a metallized through opening of a printed circuit board, with a contact with at least one first contact arm, the first contact arm being configured for the electric connection of the conductor to the metallized through opening, and with a fastening element which can assume a fastening position and a release position.
DE 10 2013 214 232 A1 discloses a plug-in apparatus with two plug-in elements which lie opposite one another and a clamping pin which can be moved relative to the plug-in elements.
DE 10 2016 111 926 A1 discloses a plug-in contact with a bracket arm.
DE 10 2015 119 484 A1 discloses a plug-in contact which is bent away in an L-shaped manner.
SKEDD contacts (SKEDD is a trademark, EU010723948) are known which make a vibration-proof connection and reversible plugging into a metallized drilled hole of a printed circuit board possible. A SKEDD contact is produced by way of punching and subsequent bending, the SKEDD contact being produced from a piece of material and having two different material thicknesses.
The invention is based on the object of the provision of a direct plug-in connector which has a compact overall design, is inexpensive to produce, and increases the stability of a mechanical and electric connection.
The invention achieves the object by the provision of a direct plug-in connector with the features of Claim 1. Advantageous refinements of the invention are described in the subclaims.
The direct plug-in connector according to the invention for establishing an electric connection between a conductor and a metallized through opening of a printed circuit board has a fastening element and a contact with at least one first contact arm. The first contact arm is configured for the electric connection of the conductor to the metallized through opening. The fastening element can assume a fastening position and a release position, the fastening element being configured for fastening of the direct plug-in connector to the metallized through opening in the fastening position.
A compact overall design of the direct plug-in connector is achieved by way of the use of the metallized through opening both for the fastening of the direct plug-in connector and for establishing the electric connection. The compact overall design allows the material costs of the direct plug-in connector to be kept low, as a result of which the direct plug-in connector is inexpensive to produce. Moreover, if undesired forces act on a direct plug-in connector, no lever torques or merely minimum lever torques occur as a consequence of the arrangement of the contact and the fastening element, as a result of which a higher stability of an electric connection of the direct plug-in connector is achieved.
The conductor can be a cable strand of a cable or a wire.
The contact can have a connector section. The connector section can be configured to establish a releasable electric connection or a non-releasable electric connection to the conductor; in particular, the electric connection between the connector section and the conductor can be a soldered connection, a press joint, a pressure-type connection, an IDC connection, a clamped connection, a plug-in tongue connection, a connection by way of crimping or a welded connection.
The first contact arm can be configured to establish a releasable electric connection to the metallized through opening. In particular, the releasable electric connection can be a plug-in connection. The first contact arm can be configured to be pushed or plugged, in particular multiple times, into the metallized through opening, and to be pulled, in particular multiple times, out of the metallized through opening. In particular, the first contact arm can be of resilient configuration, with the result that a reliable electric connection is established after plugging into the metallized through opening. In other words, the first contact arm can be deformed elastically during plugging into the metallized through opening, as a result of which the first contact arm is prestressed. The prestress can press the first contact arm against the metallized through opening. The first contact arm and/or the contact can have a bevel or a rounded portion on its edges, in particular on its outer edges. The contact is produced from electrically conductive material or is at least coated in an electrically conductive manner.
The fastening element can be configured to act on the metallized through opening or to engage into the metallized through opening in the fastening position, and is configured, for example, in the release position, to be pushed or inserted into the metallized through opening or to be pulled or removed from the metallized through opening. The fastening element can be a flexible element; in particular, the fastening element can be transferred from the fastening position into the release position by way of exertion of force on the fastening element, for example by way of bending or deforming of the fastening element. The fastening element can be prestressed in the release position, the prestress bringing about an automatic transfer of the fastening element from the release position into the fastening position, for example by way of the fastening element springing back into the fastening position. The fastening element is an element which is separate from the contact. The fastening element can be, for example, part of the housing. The fastening element is produced from electrically insulating material or is at least coated with an electrically insulating material.
When the fastening element has been inserted into the metallized through opening, the fastening element can bring about a positively locking connection and/or a non-positive connection to the metallized through opening in the fastening position.
In one development of the invention, the direct plug-in connector has a locking pin which, in a locked state, prevents a transfer of the fastening element from the fastening position into the release position by way of a positively locking connection to the fastening element and, in an unlocked position, makes a transfer of the fastening element from the fastening position into the release position possible. A more stable mechanical fastening of the direct plug-in connector to the metallized through opening is advantageously achieved by way of the locking pin; in particular, an undesired release of the fastening of the direct plug-in connector to the metallized through opening is prevented by way of the locking pin. For example, the locking pin can be transferred multiple times between the unlocked state and the locked state. In the locked state, it is possible that the locking pin is inserted into the fastening element or is received by the fastening element. The locking pin can also be configured to block the fastening element not only in the fastening position, but rather also to press it against the metallized through opening.
In one development of the invention, the contact defines an intermediate space for receiving the locking pin at least in sections, the first contact arm delimiting the intermediate space at least partially, and the locking pin being arranged within the intermediate space at least in the fastening position. A compact overall design is advantageously achieved by way of the said arrangement of the locking pin and the contact.
In one development of the invention, the contact has a second contact arm which is arranged so as to lie opposite the first contact arm, the first contact arm and the second contact arm delimiting the intermediate space at least partially. The stability of an electric connection of a direct plug-in connector is increased by way of the use of a second contact arm. The second contact arm can have the same properties or the same configuration as the first contact arm.
In one development of the invention, the locking pin has at least one first groove, within which the first contact arm is arranged at least in sections in the locked state of the locking pin. For example, the first contact arm is arranged partially within the first groove. In the release position, the first contact arm can likewise be arranged in sections within the first groove.
In one development of the invention, the locking pin has a second groove, within which the second contact arm is arranged at least in sections in the locked state of the locking pin, the second groove being arranged so as to lie opposite the first groove. For example, the second contact arm is arranged partially within the second groove. In the release position, the second contact arm can likewise be arranged in sections within the second groove.
In one development of the invention, the locking pin and/or the first contact arm have/has at least one run-up slope which is configured in each case such that, in the locked state, the locking pin presses or prestresses the first contact arm against the metallized through opening. For example, the run-up slope can be configured such that the locking pin loads the first contact arm with a force in the direction of the metallized through opening. The locking pin and/or the second contact arm can have a further run-up slope which is configured in each case such that, in the locked state, the locking pin prestresses the second contact arm against the metallized through opening.
In one development of the invention, the fastening element has at least one first latching arm with a first latching lug. In order to fasten the direct plug-in connector to the metallized through opening, the first latching lug preferably latches on the metallized through opening or at one end of the through opening, at which end the through opening merges into a lower side of the printed circuit board. The first latching arm can be configured to be pushed or plugged, in particular multiple times, into the metallized through opening, and to be pulled, in particular multiple times, out of the metallized through opening. For example, the first latching arm can be deformed elastically, the first latching arm not being deformed in the fastening position and being deformed in the release position. For example, the first latching lug has a first slope and/or a second slope. The first slope can be configured such that the fastening element is transferred from the fastening position into the release position, in particular to deform and deflect the first latching arm when the fastening element is pushed into the metallized through opening, and/or the second slope can be configured such that the fastening element is transferred from the fastening position into the release position, in particular to deform and deflect the first latching arm when the fastening element is pulled out of the metallized through opening. The second slope can have a greater gradient than the first slope, with the result that a greater force is required for pulling the fastening element out of the metallized through opening than for pushing the fastening element into the metallized through opening.
In one development of the invention, the locking pin bears against a rear side of the first latching arm in the locked state, which rear side faces away from the first latching lug. For example, in the locked state, there is a positively locking connection between the locking pin and the first latching arm, which positively locking connection prevents a transfer, in particular a deformation, of the first latching arm from the fastening position into the release position. The rear side of the first latching arm and/or the locking pin can be provided with a run-up slope. In the locked state, the locking pin can prestress or press the first latching arm against the metallized through opening.
In one development of the invention, the fastening element has a second latching arm with a second latching lug, the second latching arm being arranged so as to lie opposite the first latching arm. The stability of a fastening of the direct plug-in connector to the metallized through opening is increased by way of the use of a second latching arm. The second latching arm can have the same properties or configurations of the first latching arm. The rear side of the second latching arm and/or the locking pin can be provided with a run-up slope. The locking pin can prestress or press the second latching arm against the metallized through opening in the locked state.
In one development of the invention, the locking pin is configured to be pushed between the first latching arm and the second latching arm.
In one development of the invention, the first latching arm and the second latching arm lie in a latching arm plane, the first contact arm and the second contact arm lie in a contact arm plane, and the latching arm plane and the contact arm plane lie perpendicularly on one another.
In one development of the invention, the direct plug-in connector has a housing, the housing having the fastening element. For example, the fastening element can be arranged on a lower side of the housing. The fastening element and the housing are preferably configured in one piece. For example, the fastening element and/or the housing can be made from plastic. Within the housing, the contact can be arranged in a contact-proof and electrically insulated manner with respect to the surroundings.
In one development of the invention, the housing has a first housing part and a second housing part, the first housing part having the fastening element, and the second housing part having the locking pin, it being possible for the first housing part and the second housing part to be displaced relative to one another, the locking pin assuming the unlocked state in a first relative position of the first housing part and the second housing part, and the locking pin assuming the locked state in a second relative position of the first housing part and the second housing part. The locking pin is preferably configured in one piece with the second housing part. A displacement direction of the first housing part relative to the second housing part can be parallel to a longitudinal axis of the metallized through opening and/or parallel to a plug-in direction of the direct plug-in connector into the metallized through opening.
In one development of the invention, the contact has a securing section which is arranged within the housing and secures the contact against falling out of the housing. When the direct plug-in connector has established an electric connection between the conductor and the metallized through opening, the fastening element is situated in the fastening position and tensile forces act on the conductor, the securing section can prevent the contact falling out, in particular being pulled out, of the housing as a consequence of the tensile forces on the conductor, as a result of which a disconnection of the electric connection is prevented.
In one development of the invention, the direct plug-in connector has a centring element which can interact with a corresponding centring element of the printed circuit board and secures the direct plug-in connector against rotation. The centring element can be a centring opening or a centring pin. The corresponding centring element of the printed circuit board can be a centring pin or centring opening. As a rule, a centring opening will be provided on the printed circuit board. For example, the centring element can be arranged on a lower side of the housing, in particular on a lower side of the first housing part. For example, the centring element and the housing can be configured in one piece. For example, the centring element and the corresponding centring element of the printed circuit board can act as a positioning aid when the direct plug-in connector is fastened to the printed circuit board and specifically to the metallized through opening.
Further features and advantages of the invention result from the claims and the following description of preferred embodiments of the invention in conjunction with the drawings. Individual features of the different embodiments which are shown can be combined with one another here in any desired way, without departing from the scope of the invention.
In the drawings:
The housing 17 has a fastening element 4 on its lower side, on which the first contact arm 3a and the second contact arm 3b protrude and which faces the observer in
The fastening element 4 which is shown in
Furthermore,
Furthermore,
In order to release the direct plug-in connector 1 from the metallized through opening 40 and therefore from the printed circuit board 50, the locking pin 5 has to be transferred into a non-locked state (not shown). In the illustration of
Furthermore, the contact 2 has a securing section 20, an end 27 of the securing section 20, which end 27 faces the connector section 13, being bent away with respect to the contact arm plane 16, in which the contact arms 3a, 3b and the remaining securing section 20 lie. In the assembled state of the direct plug-in connector 1, the securing section 20 is arranged within the housing 17 (see also
The contact 2 is configured integrally from one piece of flat sheet metal material. The sheet metal material is first of all punched or lasered, in order subsequently to configure the connector section 13 and the end 27 of the securing section 20 by way of bending.
Furthermore,
As the exemplary embodiments which are shown and described above make clear, the invention provides a direct plug-in connector which has a compact overall design, is inexpensive to produce, and increases the stability and reliability of an electric connection.
Number | Date | Country | Kind |
---|---|---|---|
102019210235.2 | Jul 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/068692 | 7/2/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/004893 | 1/14/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5108308 | Northcraft | Apr 1992 | A |
5322452 | Mosquera | Jun 1994 | A |
5800209 | Suzuki | Sep 1998 | A |
6024603 | Chen | Feb 2000 | A |
6171133 | Altuner | Jan 2001 | B1 |
6244875 | McHugh | Jun 2001 | B1 |
6454600 | Jones | Sep 2002 | B1 |
8075322 | Schwettmann et al. | Dec 2011 | B2 |
10665970 | Geske | May 2020 | B2 |
Number | Date | Country |
---|---|---|
101944661 | Jan 2011 | CN |
108352636 | Jul 2018 | CN |
102013214232 | Jan 2015 | DE |
102014108001 | Dec 2015 | DE |
102016111926 | Jan 2018 | DE |
202016105358 | Jan 2018 | DE |
202015009518 | Feb 2018 | DE |
202018100416 | Feb 2018 | DE |
0955796 | Apr 1999 | EP |
3392971 | Oct 2018 | EP |
H06260251 | Sep 1994 | JP |
H11297432 | Oct 1999 | JP |
2016-152214 | Aug 2016 | JP |
Entry |
---|
EU Trademark Information for SKEDD; TM Filing No. 010723948; filed on Mar. 14, 2012; Owner: Wurth Elektronik ICS GMBH & CO KG. |
German Office Action, dated Nov. 7, 2022, 8 pages. |
English Machine Transcription of DE 102014108001 A1, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20220140511 A1 | May 2022 | US |