The present invention relates to a fluid jetting device; specifically, to a multiport nozzle directing a motive flow into the throat of a venturi-diffuser thus permitting homogeneous mixing, shearing or wetting of a bulk fluidal material with the motive flow to an outlet of the diffuser.
Eductor arrangements have long been used to provide pumping, mixing, blending, hydrating and shearing in a wide variety of industries, including chemical, petrochemical, pulp and paper, food, water and waste water treatment facilities. These types of eductors can be used for lifting, pumping, mixing or agitating liquids or other flowable materials such as powders or slurries. Eductors use a venturi design which permits small eductors to move large volumes of fluids or fluidal materials. Because the motive flow provides the kinetic energy necessary to entrain and move another fluid after thoroughly mixing the two, the mixture and discharge of the combined material is accomplished with lowered motive energy usage than if the volume was pumped with a conventional centrifugal pump.
The low pressure section or mixing chamber of the eductor pulls the flowable bulk material into the venturi neck of the eductor and out the diffuser or belled end of the eductor. Most prior art eductor bodies provided a single nozzle extending into the neck of the venturi, thereby hindering mixing in the vacuum or mixing chamber of the eductor body. The present invention separates the multiple directed nozzle ports from the venturi neck, thereby opening the mixing chamber to the rapid and unimpeded bulk material flow which is thereafter carried into the neck of the venturi. Eductor systems have long been recognized as providing lower capital costs because they have a simple design and limited size, require less energy to drive the pump providing motive force, provide less heating of the transported material, provide less settling because of the volume of circulation or movement provided, and provide better control when the bulk material and inlet side are properly sealed to outside air. These advantages are improved with this new directed multiport nozzle design when combined with the characteristics of the venturi-diffuser of the present invention.
The eductor of this application comprises a cylindrical body having a longitudinal bore therethrough; a perpendicular extension having a bore therethrough intersecting the cylindrical body permitting a flow of bulk materials into a hollow, low-pressure vestibular mixing chamber portion of the eductor; said low-pressure vestibular mixing chamber portion of the eductor formed between a face of a multiport jetting nozzle inserted in a first end of the cylindrical body, the intersection of the perpendicular extension, and an inlet lip of a venturi-diffuser inserted in a second end of the cylindrical body; and, said multiport jetting nozzle providing a plurality of ports directing a fluid flow from a first inlet of the cylindrical body toward an inlet lip of the venturi-diffuser having a venturi throat narrowing to provide turbulent flow, enlarging at an outlet of the diffuser wherein the fluid flow traversing the hollow vestibular mixing chamber from the multiport jetting nozzle carries the bulk material from the perpendicular extension converging in an interior portion of the venturi-diffuser throat.
This eductor's multiport jetting nozzle provides three or more directed ports converging on an interior portion of the inlet to the venturi-diffuser and can provide at least five directed ports converging on an interior portion of the inlet to the venturi-diffuser. The eductor's multiport jetting nozzle provides an angled ejection of the fluid converging on a point within the venturi-diffuser.
A method of fluid mixing bulk materials can be accomplished by supplying a fluidal bulk material to a perpendicular inlet of an eductor; and, supplying a fluid motive flow through an inlet of the eductor to a multiported jetting nozzle directing the motive fluid flow across a hollow vestibular section of the eductor and into a centralized portion of a throat of a venturi-diffuser for movement down the venturi-diffuser to homogeneously mix the fluidal bulk material with the motive fluid flow.
This structure can also accommodate a method of fluidic mixing of a variety of fluidal bulk materials with varying physical characteristics by supplying a first fluidal bulk material to an a first inlet of an eductor; supplying a fluid motive flow through a second inlet of the eductor to a multiported nozzle directing the fluid flow across a vestibular section of the eductor and into a centralized portion of a throat of a venturi-diffuser for movement down the venturi-diffuser to homogeneously mix the fluidic fluidal bulk material with the fluid flow until the first fluidal bulk material has been completely mixed; adding a second fluidal bulk material to a third inlet on the first inlet of an eductor; and, varying a rate of passage of the fluidal bulk material to the vestibular section of the eductor for mixing. This process can also provide the additional step of varying the fluid motive flow to the multiported jetting nozzle to correspond to the physical characteristics of the second fluidal bulk material.
Another method of fluid mixing of a variety of fluidal bulk materials with varying physical characteristics can be accomplished by supplying a first fluidal bulk material to a perpendicular inlet of an eductor; supplying a motive fluid flow through an inlet of the eductor to a multiported nozzle directing the motive fluid flow across a hollow vestibular section of the eductor and converging in a centralized portion of a throat of a venturi-diffuser for movement down the venturi-diffuser to homogeneously mix the fluidal bulk material with the fluid flow until the fluidal bulk material has been completely mixed; adding a second fluidal bulk material to a secondary inlet on the perpendicular inlet of an eductor; and, varying a rate of passage of the fluidal bulk material to the hollow vestibular section of the eductor for mixing.
This method can further comprise the additional step of varying the motive fluid flow to the multiported jetting nozzle to correspond to the physical characteristics of the second fluidal bulk material.
The present invention relates to a directed multiport jetting eductor device 10, as more specifically shown in
Returning to
The motive flow 22 is provided by a fluid pump (not shown, but well known to those having ordinary skill in this art) which may be water or air or other liquid which is pumped into the inlet of the eductor body 10 and through a replaceable multiport nozzle 14 made in this embodiment from polyoxymethylene (commonly referred to as POM and also known as polyacetal or polyformaldehyde or acetal plastic). POM is an engineering machinable thermoplastic used in precision parts that require high stiffness, low friction and excellent dimensional stability. It is commonly known under DuPont's trade name Delrin. The replaceable venturi-diffuser body is also made of POM which resists wear from the slurry mixtures pushed through the diffuser throat. Again as with the body, alternative materials for both the replaceable multiport jetting nozzle and the replaceable venturi-diffuser body can be readily substituted without departing from the spirit or scope of this disclosure. For example, another material such as a high-temperature high tensile strength ceramic material made of alumina could be substituted for POM if the mixing of high temperature materials was required. Other nonresilient materials could be substituted for the POM in the fabrication of both the multiport jetting nozzle and the venturi-diffuser, but would require the use of a gasket between the flange and the piping flange to properly seal the eductor body. Other materials well known to those skilled in the materials arts could be substituted without departing from the invention disclosed herein. As may be readily seen in
Made from POM, this body 18, as shown in
Similarly,
Similarly, a larger diameter and replaceable alternative jetting nozzle is shown in
Finally, as shown in
This invention has been shown and described with respect to several preferred embodiments, but will be understood by one having ordinary skill in the art to which this invention pertains that various changes in the form and detail from the specific embodiments shown can be made without departing from the spirit and scope of the claimed invention.
Number | Name | Date | Kind |
---|---|---|---|
3304564 | Green et al. | Feb 1967 | A |
3470826 | Foulds | Oct 1969 | A |
3610535 | Bradshaw | Oct 1971 | A |
3678140 | Adams et al. | Jul 1972 | A |
4673335 | Nicodemus | Jun 1987 | A |
4781467 | Williams | Nov 1988 | A |
5322222 | Lott | Jun 1994 | A |
5323967 | Tanaka et al. | Jun 1994 | A |
5447394 | Shepard | Sep 1995 | A |
5664733 | Lott | Sep 1997 | A |
6000839 | Lott | Dec 1999 | A |
6427724 | Hua | Aug 2002 | B2 |
7048432 | Phillippi et al. | May 2006 | B2 |
7311270 | Kapila | Dec 2007 | B2 |
7635218 | Lott | Dec 2009 | B1 |
Number | Date | Country |
---|---|---|
WO 2005081709 | Sep 2005 | WO |
PCTUS2011030937 | Jun 2011 | WO |
PCTUS2011030937 | Oct 2012 | WO |
Entry |
---|
LOBESTAR Mixing Eductor brochure by Vortex Ventures. |
Stratton, Harry, Liquid Jet Eductors—The “Pumps” with No Moving Parts, originally published in Plant Engineering in Apr. 26, 1976 by the Technical Publishing Company. |
European Patent Office Search Report dated Nov. 3, 2014 related to application No. 11763509.4-1760/2555860; national stage from PCT/US2011/030937. |
Number | Date | Country | |
---|---|---|---|
20110240753 A1 | Oct 2011 | US |