Active noise cancellation systems have been developed for use in many situations where passive noise control systems are impractical or insufficient. Such systems reduce unwanted noise by generating acoustic waves designed to cancel that sound (“anti-noise”). Often, such systems position a speaker to generate the anti-noise in or near each ear of the user. For example, the speaker can be mounted in a headphone cup, earphone pad, or an earbud. Microphones can be positioned upstream (further from the eardrum) or downstream (closer to the eardrum) than the speaker. Upstream microphones are also known as external microphones because they measure sound external to the protected space over or in the ear. Relatedly, downstream microphones are known as internal microphones because they measure sound within the protected space.
Internal microphones enable feedback control, so active noise cancellation systems using internal microphones are said to provide “feedback cancellation”. By way of contrast, active noise cancellation systems using external microphones are said to provide “feed-forward cancellation” or simply “forward cancellation”. Systems using both internal and external microphones are referred to herein as hybrid cancellation systems.
Forward cancellation systems tend to be the simplest, and thus most energy efficient. However, their performance is heavily dependent on how well the internal filter response matches the transfer function of the noise propagation path. Feedback cancellation systems can provide exceptional performance, but generally rely on complex filter adaptation strategies to do so. Hybrid cancellation systems can trade off these benefits and costs to provide superior performance with good energy efficiency, potentially enabling the development of battery-powered active earplugs as well as more efficient wireless earbuds and headphones.
As with forward cancellation systems, however, such hybrid cancellation systems would benefit from better matching of the internal filter response to the transfer function of the noise propagation path, so long as the matching can be performed in an energy-efficient manner.
Accordingly, there are disclosed herein active noise cancellation systems, components, and methods, that provide single-source forward cancellation using a direction-dependent filter response. One illustrative active sound cancelling device includes: a primary external microphone that produces a primary receive signal; a secondary external microphone that produces a secondary receive signal, the primary and secondary receive signals representing ambient audio that potentially includes sound having a predominate direction of arrival; a speaker that converts an output signal into internal audio to at least partly cancel said sound, the output signal including a forward cancellation signal; a forward filter that operates solely on the primary receive signal to produce the forward cancellation signal; and a direction finder that operates on the primary and secondary receive signals to derive an estimate of said predominate direction of arrival, the direction finder adjusting the forward filter to implement a filter response corresponding to said estimate.
An illustrative electronic component includes integrated circuitry for: a forward filter configured to operate solely on a primary receive signal from a primary external microphone to produce a forward cancellation signal that forms, or is an additive component of, an output signal for a speaker; and a direction finder configured to combine the primary receive signal with a secondary receive signal from a secondary external microphone to derive an estimate of a predominate direction of arrival of sound represented by the primary and secondary receive signals, the direction finder further configured to adjust the forward filter to implement a filter response corresponding to said estimate.
An illustrative sound cancelling method for use in a hearing protection device includes: operating on primary and secondary receive signals from primary and secondary external microphones, respectively, to derive an estimate of a predominate direction of arrival of sound represented by the primary and secondary receive signals; selecting a forward filter response corresponding to said estimate; applying the forward filter response exclusively to the primary receive signal to produce a forward cancellation signal, the forward cancellation signal forming, or being an additive component of, an output signal; and supplying the output signal to a speaker to at least partly cancel said sound.
Each of the foregoing embodiments may be employed separately or conjointly, and may optionally include one or more of the following features in any combination: 1. a memory that stores filter response parameters for each of multiple directions of arrival, wherein the direction finder accesses the stored filter response parameters corresponding to said estimate. 2. the forward filter is a finite impulse response filter, and the filter response parameters are filter coefficients. 3. the forward filter is an analog filter, and the filter response parameters are gain or impedance values for adjustable components of the analog filter. 4. an internal microphone that produces an internal receive signal, and a feedback filter that operates on the internal receive signal to produce an internal cancellation signal, the output signal being a sum of the forward cancellation signal and the internal cancellation signal. 5. a wireless receiver that produces an audio content signal, the audio content signal being an additive component of the output signal. 6. the secondary external microphone is one of multiple secondary microphones producing multiple secondary receive signals, the multiple secondary receive signals solely being used to derive said estimate.
The attached drawings and following description set out particular embodiments and details for explanatory purposes, but the drawings and corresponding detailed description do not limit the disclosure. On the contrary, they provide a foundation that, together with the understanding of one of ordinary skill in the art, discloses and enables all modifications, equivalents, and alternatives falling within the scope of the appended claims.
Experience reveals that at least some external noise always propagates past any earplug, ear pod, earphone pad, or headphone cup (collectively referred to herein as “hearing protector”) to reach the eardrum. Much of the noise propagates through the structure of the hearing protector itself (especially through any vents or gaps), but a non-negligible fraction also propagates through the bone and tissues of the user's skull. The forward filter 108 is intended to replicate the transfer function of noise propagating through the hearing protector structure, to produce a forward cancellation signal that, when converted into a sound waveform, destructively interferes with that noise. The internal microphone 106 detects the residual noise from other propagation paths and incomplete forward cancellation. The feedback filter 110 compensates for the mechanical characteristics of microphone 106 and speaker 102, as well as the propagation delay of the feedback loop itself, to turn this residual noise measurement into a feedback cancellation signal. This arrangement is expected to provide good, energy-efficient noise cancellation so long as good transfer function matching is achieved.
It is noted here that at least one prior art reference teaches the use of a sophisticated spatial partitioning module having multiple forward filters coupled to an array of external microphones to provide directional sensitivity. See U.S. Pat. No. 10,424,287 (“Guiu”), titled “Active Noise-Control Device”, which is hereby incorporated herein by reference. Given the complex frequency dependence of such spatial partitioning and the impact it has on frequency responses of the filters, it is far from clear that such a design can be implemented successfully. Moreover, the associated hardware complexity is undesirable for achieving the desired energy-efficiency and battery longevity.
Thus, with reference to
In at least some implementations, filter 108 is a finite impulse response (FIR) or infinite impulse response (IIR) filter implemented with a tapped delay line or digital delay chain, and the stored parameters are tap coefficients for the weighted sum representing the desired filter output. In other implementations, the filter is an analog filter implemented using adjustable components, and the stored parameters are gain or impedance values for those components. The coefficient or component values can be pre-programmed to provide the desired frequency responses.
It is noted that the filters 108, 110 are preferably implemented to provide highly responsive signal flows from microphones to speaker with a minimal latency (on the order of 50 microseconds or less) to enable superior noise cancellation performance. A much higher latency (approximately 10 to 100 milliseconds) would be acceptable in the direction finder 410, memory 412, and filter adjustment processing path, enabling the use of batch processing and/or a lower clock frequency for increased energy efficiency.
An adder 802 calculates a weighted difference of the two directional responses, relying on an adjustable gain amplifier 804. An update module 806 systematically or iteratively identifies the gain β that minimizes the weighted difference, which corresponds to the predominate direction of arrival 808. As with the previous example, normalization and bandpass filtering can be employed. More details and variations on this direction finder strategy can be found in U.S. Pat. No. 5,473,701 “Adaptive Microphone Array” by inventors Juergen Cezanne and Gary Elko.
The described direction finders are just two examples. Other suitable direction finders are available in the literature.
Any of the controllers described herein, or portions thereof, may be formed as a semiconductor device using one or more semiconductor dice. Though certain operations may have been described as sequential for explanatory purposes, in practice they may be carried out by multiple integrated circuit components operating concurrently. The sequential discussion is not meant to be limiting. These and numerous other modifications, equivalents, and alternatives, will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such modifications, equivalents, and alternatives where applicable.
It will be appreciated by those skilled in the art that the words during, while, and when as used herein relating to circuit operation are not exact terms that mean an action takes place instantly upon an initiating action but that there may be some small but reasonable delay(s), such as various propagation delays, between the reaction that is initiated by the initial action. Additionally, the term “while” means that a certain action occurs at least within some portion of a duration of the initiating action. The use of the words approximately or substantially means that a value of an element has a parameter that is expected to be close to a stated value or position. The terms first, second, third and the like in the claims or/and in the Detailed Description or the Drawings, as used in a portion of a name of an element are used for distinguishing between similar elements and not necessarily for describing a sequence, either temporally, spatially, in ranking or in any other manner. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments described herein are capable of operation in other sequences than described or illustrated herein. Reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but in some cases it may. Inventive aspects may lie in less than all features of a single foregoing disclosed embodiment. Furthermore, while some embodiments described herein include some, but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
5473701 | Cezanne et al. | Dec 1995 | A |
10424287 | Guiu et al. | Sep 2019 | B2 |
10497357 | Christoph | Dec 2019 | B2 |
10755690 | Mohammad et al. | Aug 2020 | B2 |
11056095 | Christoph | Jul 2021 | B2 |
20110158419 | Theverapperuma | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
WO-2010124176 | Oct 2010 | WO |