The present invention relates to direction-finding, and more particularly, to techniques for determining the angles of arrival of multiple simultaneous radio frequency cochannel signals.
Radio direction-finding (DF) or determining the angles of arrival (AOA) of multiple simultaneous radio frequency (RF) cochannel signals in an inexpensive manner is a capability that is currently not found in existing implementations. In an RF environment, cochannel signals are two or more signals transmitted on the same carrier frequency at the same time. Generally, conventional direction-finding approaches fall into two broad categories.
The first category includes expensive, highly capable systems, which can locate multiple sources, but which require multiple phase coherent downconversion and sampling channels. Examples of these approaches include subspace based methods such as the MUSIC (multiple signal classification) algorithm, which capitalizes on the linear independence among multiple signals from different directions, thereby providing totally robust performance in complex signal environments. Another such example is a computed-interferometry radar system with coherent integration, as discussed in U.S. Pat. No. 4,992,796, which is herein incorporated by reference in its entirety.
The second category includes relatively inexpensive, single channel systems. With these approaches, multiple antennas are sampled at a high rate in a conmutated fashion, and the induced phase changes gives an indication of the AOA. However, systems of this type can only locate a single source and cannot operate in the presence of cochannel interference or jamming.
What is needed, therefore, are techniques for cost effective radio direction-finding for environments with cochannel signals.
One embodiment of the present invention provides a method for determining the angles of arrival of multiple simultaneous cochannel signals received at a P-element receiver array (e.g., such as an RF or acoustic array). The method includes receiving multiple simultaneous cochannel (e.g., RF or acoustic) signals at the array, sequentially forming mixtures of the received cochannel signals using mixture weights, and forming data cumulants based on the formed mixtures. The method further includes searching over appropriate degrees of freedom in a mixture manifold including a set of possible cumulants associated with the array to establish a best fit between the formed data cumulants and the possible data cumulants, thereby determining angle of arrival (AOA) estimates for each of the received cochannel signals.
In one such embodiment, searching over appropriate degrees of freedom in a mixture manifold includes limiting the search region. In another such embodiment, previous angle of arrival estimates can be used to initialize a next search, thus saving computational cost in the searching. Here, the search range can be reduced by allowing the searching to be performed only within a small angular window of last estimated positions. In another such an embodiment, searching over appropriate degrees of freedom in a mixture manifold includes an alternating least squares (ALS) iterative optimization process. Note, however, that any general purpose optimization process can be employed here.
Note that in an RF application, where multiple simultaneous RF cochannel signals are received at a P-element antenna array, and mixtures of the received RF cochannel signals are formed using RF mixture weights, the method may further include forming data cumulants based on the formed mixtures. The method may further include forming a downconverted baseband mixture for each RF mixture using single channel downconversion. In such an application, the forming of data cumulants is based on the baseband mixtures.
The method may further include the preliminary step of determining the mixture manifold and appropriate degrees of freedom for searching based on calibrated antenna gains and phases associated with the array, and the baseband mixture weights. To this end, the method may further include determining the calibrated antenna gains and phases at desired operating frequencies associated with the array, and determining the RF mixture weights and associated baseband mixture weights for all desired mixtures of the RF cochannel signals.
Another embodiment of the present invention provides a system for determining the angles of arrival of multiple simultaneous cochannel signals received at a P-element receiver array (e.g., such as an RF or acoustic array). The system includes two or more elements (e.g., antenna or microphone) adapted to receive multiple simultaneous cochannel signals (simultaneous RF or acoustic cochannel signals). A mixture forming section is adapted to sequentially form mixtures of the received cochannel signals using mixture weights, and a form cumulants module is adapted to form data cumulants based on the formed mixtures. A subspace fitting search module is adapted to search over appropriate degrees of freedom in a mixture manifold including a set of possible cumulants associated with the array to establish a best fit between the formed data cumulants and the possible data cumulants, thereby determining angle of arrival (AOA) estimates for each of the received cochannel signals.
In one such embodiment, the subspace fitting search module is adapted to establish an optimal estimated mixture matrix (Aest), where
Here, A is the mixture manifold representing the set of possible mixture matrices, cyq represents the formed data cumulants, with q representing a particular data cumulant, PAq represents a matrix that projects onto the subspace spanned by ΘqA, where PAq=(ΘqA){(ΘqA)T(ΘqA)}+(ΘqA)T, and wq are nonnegative weights. The searching performed by the subspace fitting search module mall include, for example, an alternating least squares (ALS) iterative optimization process, or a general purpose optimization process.
The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not to limit the scope of the inventive subject matter.
FIG. 1 is a block diagram illustrating a radio frequency direction-finding receiver configured for determining the angles of arrival of multiple simultaneous radio frequency cochannel signals received at a P-element antenna array in accordance with one embodiment of the present invention.
FIG. 2 is a flowchart illustrating a method for determining the angles of arrival of multiple simultaneous radio frequency cochannel signals received at a P-element antenna array in accordance with one embodiment of the present invention.
Embodiments of the present invention combine analog and digital signal processing to provide a cost effective alternative to prior radio frequency direction-finding approaches, by reducing the amount of downconversion hardware, and eliminating the requirement for phase coherent sampling, while at the same time allowing for several cochannel simultaneously transmitting sources. A number of identified conditions are exploited to achieve this result. In particular, it has been recognized that multiple source AOAs are encoded in the analog mixtures in a way that does not depend on simultaneity of sampling. Further, this information can be extracted through well-established higher order statistical approaches and general purpose multiple parameter function optimization techniques.
More specifically, a set of simultaneous non-linear equations that are functions of the mixtures are approximately solved, using any general purpose optimization methods. This technique differs from existing subspace methods and more recent blind source separation (BSS) techniques in that, due to the nonlinear nature of the formulation and solution, beneficial properties are provided that are lacking in subspace and BSS methods. For instance, embodiments of the present invention provide the ability to resolve the direction of arrival of multiple RF sources on an array while measuring only one array element or mixture of elements at a time. This ability allows the creation of relatively simple and low cost RF DF systems. Applications other than RF DF will be apparent in light of this disclosure (such as acoustic DF applications).
Before describing the architecture of the present invention, a discussion on notation and mathematics used herein is provided for purposes of clarity, as well as the derivation of a cumulant approach employed in accordance with the principles of the present invention.
In this disclosure, scalars are represented by non-bold letters, vectors are represented by boldface lower-case letters (e.g., v), the ith element of a vector v by [v]i or vi, matrices are represented by boldface upper-case letters (e.g., A), and the (i, j)th element of a matrix A by either [A]i,j or ai,j. Key properties and functions of matrices and subspaces which are used herein, such as pseudoinverses and projectors, are conventional.
The relevant background material on higher order statistics that will be needed to understand the techniques described herein, including properties of moments and cumulants, is now summarized. Given a set of N real random variables x1, . . . , xN their joint moments of order r=k1+ . . . +kN are given by:
mom(x1k
where E{·} is the statistical expectation operator.
Cumulants and moments are related by well known algebraic formulas. For example, letting mi=mom(x1i), ci=cum(x1i), the following cumulants are provided:
Thus, one way of forming cumulants of data is to first calculate the moments and then apply Equations 2.
Note the following properties associated with moments and cumulants. If a1, . . . , aN are constants, then:
mom(a1x1, . . . , aNxN)=a1 . . . aNmom(x1, . . . , xN) (Equation 3)
and
cum(a1x1, . . . , aNxN)=a1 . . . aNcum(x1, . . . , xN). (Equation 4)
In addition, moments and cumulants are symmetric functions. For example, mom(x1, x2, x3)=mom(x2, x3, x1).
Also, if the random variables x1, . . . , xN can be divided into two groups that are statistically independent, any cumulant containing members from each group is identically zero (whereas this is, usually not true for moments). For example if x1 is statistically independent from x2 and x3, then cum(x1, x2, x3)=0. Further, if the sets of random variables x1, . . . , xN and y1, . . . , yN are statistically independent, then:
cum(x1+y1, . . . , xN+yN)=cum(x1, . . . , xN)+cum(y1, . . . , yN), (Equation 5)
whereas this property does not generally hold for moments.
The componentwise exponentiation operator, Θq, which is defined for a generic matrix B as producing the matrix with elements:
[ΘqB]i,j=[B]qi,j. (Equation 6)
For the purposes of this disclosure, a two-dimensional (planar) world is assumed, and the extension of the techniques presented herein to three-dimensional geometries will be apparent in light of this disclosure. The array response r(ψ, θ) is the gain of the receiver's antenna or array as a function of the AOA θ when the array is steered to direction ψ. The simplest situation is when: r(ψ, θ) is completely known (i.e., the array is calibrated) and, r(ψ, θ) depends only on the angular difference between the AOA and the steering direction (i.e., r(ψ, θ)≡r(ψ−θ)). An algorithm has been developed for use when both of the above conditions hold, as well as the more difficult scenarios when only one of the above conditions hold.
When N sources impinge upon the array from AOAs θ1, . . . , θN (which are collected into a vector θ=[θ1, . . . , θN]T) their signals are weighted by the array response and then added together. That is, at each discrete sample time t, the output y(t) from the array is:
where ψ(t) is the steering direction at time t, and xn(t) is the effective signal at the array from source n at time t.
Assume that steering directions are chosen from a small set of discrete directions, for example, ψm=2π(m−1)/M for m=1, . . . , M. The M by N matrix A formed from r(ψm, θn) for a set of possible combinations ψm and θn via:
is termed the “mixture matrix”, and the entire set of possible A matrices is termed the “mixture manifold” and is denoted by A. How data formed from cumulants of mixtures of received signals relates to A is now discussed.
Assume that the N sources that impinge on a sensor array are statistically independent, and K samples for each of M mixtures are collected. In the following development, the sources are indexed by n=1, . . . , N, the mixtures by m=1, . . . , M, and the samples by k=1, . . . , K, and the cumulant orders by q=1, . . . , Q, where Q is some maximum order (typically, Q=6 or Q=8).
The nth source produces samples xm,k,n, all drawn from the same probability density function (PDF) pn(x). The qth-order cumulant of the source n PDF is denoted by cn,q, and cxq=[c1,q, . . . , cN,q]T. For convenience, the samples for the nth source are collected into an M by K matrices Xn with [Xn]m,k=xm,k,n, and the kth combined vector of sources for mixture m is defined as xm,k=[xm,k,1, . . . , xm,k,N]T.
Let ym,k, represent the kth sample of the mth mixture, and for convenience, define the vectors ym=[ym,1, . . . , ym,K]T. The empirical qth-order cumulant of the mth mixture is denoted by cq y,mand is calculated from the data ym. The empirical vector of qth-order cumulants for the M measured mixtures is denoted by cyq=[cqy,1, . . . , cqy,M]T.
Further, let am,n represent the mixture weight in the mth mixture for the nth source, and collect these mixture weights into the M by N matrix A (defined in Equation 8) such that [A]m,n=am,n. For convenience, define the vectors am=[am,1, . . . , am,N]T. When there is no observation noise, the mth mixture is formed as:
ymT=amtXm. (Equation 9)
The theoretical qth-order cumulant of a single mixture output sample ym,k(cum(ym,k, . . . , ym,k)) is therefore:
where properties of Equations 4 and 5 have been used. Stacking Equation 10 for all mixtures gives:
cyq=(ΘqA)cxq (Equation 11)
for all cumulant orders q.
Thus, Equation 11 enables the formulation of an equation error fitting approach to determine the AOAs, and if desired, the mixture matrix A and the cumulants cxq. By varying the estimated AOAs θ, the estimated ΘqA is varied, so that their range subspaces are also varied. When the ranges of the ΘqA include the empirical cumulants cyq, the best estimated θ is provided.
The above was formulated assuming that there was no noise and perfect cumulants. In reality, the fitting of the empirical cumulants to the range subspace will not be perfect. Thus, seeking to optimize an approximate criterion is a desirable option. For example, the AOAs θ that minimize the- total relative fitting error of Equation 11 can be sought as:
where J(A) is the fitting error cost function given by:
where PAq is the matrix that projects onto the subspace spanned by ΘqA, and is provided by:
PAq=(ΘqA){(ΘqA)T(ΘqA)}+(ΘqA)T, (Equation 14)
w=[w1 . . . wQ]T is a vector of nonnegative weights, and “{ }+” is the pseudoinverse operation. Note that linear algebra gives the equivalent optimization criteria:
The weights w should be chosen according to the relative importance of the various terms. For example, for PDFs that are zero mean, the q=1 cumulants for both x and y are ideally zero. The weight w1 should be set to zero in this case. Similarly, for Gaussian sources, wq=0 for q>2. Finally, for PDFs that are symmetric about zero, wq should be set to zero for all odd q.
To perform the optimization illustrated in Equation 15, a general purpose optimization can be performed over the appropriate DOFs in the model. Two different cases are now examined which make varying assumptions about which parameters are known.
In a first case, r(ψ, θ) is completely known and is not required to be steering direction invariant (e.g., such as a conventional stationary electronically steerable array). Here, the mixture manifold A is parameterized by the N AOAs θn. A search over the θn will yield the best match of A∈A and thus optimize Equation 15.
In a second case, r(ψ, θ) is completely unknown and steering direction invariant (e.g., such as a spinning array). Because the response is steering direction invariant, the columns of A are circularly rotated (and interpolated) versions of each other, and the rotation amount is an indicator of relative AOA between the sources. In addition to the N−1 AOA differences θ1−θn, A is parameterized by the M parameters r(ψ1, θ1), . . . , r(ψM, θ1), but with the additional constraint that the columns of A be unit-norm. This additional constraint is required because there is a scale ambiguity between A and the sources. Thus, there are N+M−2 DOF in A. Therefore, a search over the N+M−2 DOF is performed to optimize Equation 15, reconstruct the estimated A, and circularly convolve each column with the first column to obtain the differences in AOA between sources, θ1−θn. For many situations, this is adequate (e.g., adaptive interference cancellation). If absolute AOA are required, then some other form of information must be provided to resolve the remaining one DOF and thus globally orient the sources.
There are various alternatives to the direction-finding method described herein that may be used to improve performance in different situations. For example, it can be beneficial to augment some of the ΘqA with an additional column of all ones, and then form the projection matrix PAq from the augmented matrix. This alternative embodiment allows for modeling errors and the finite sample effects in the cumulant formation.
Another embodiment considers that general purpose optimization routines usually require multiple starting points for searches to be supplied by the user. In the absence of any knowledge of where the true optima is located, many random starting points are generally tried. Because of the symmetry inherent in the direction-finding equations, the search region can be limited to 0≦θ1< . . . <θN<2π.
In a tracking situation, where the sources are assumed to be slowly moving, the AOAs estimated from earlier data can be used to initialize the next search, thus saving computational cost in performing the search. Additionally, the search range can be reduced by only allowing the search to be performed within some small angular window of the last estimated positions.
If enough data is available, note that the reciprocal of the cost criteria of Equation 15 has an interesting structure. In particular, it has ridges perpendicular to the coordinate axes. This form of cost structure is efficiently solved by a technique known as “alternating least squares” (ALS). In this iterative method, only one source direction estimate is altered at a time, while holding the other estimated directions fixed. The best cost along this line is found, the current estimated θ is updated, and the procedure is then repeated with a different component. Thus, another useful variation is to replace the general purpose optimization approach with an ALS optimization approach.
Once the optimal Aest is obtained, the source cumulants cxq can readily be obtained by solving Equation 11 using either ordinary least squares (OLS) or total least squares (TLS). These cumulants may be used as features for source type identification.
As formulated, the number of sources N must be known or guessed. One method to do this is to sequentially guess Nguess=1,2,3, . . . , perform the previously described algorithm (as represented in Equation 15), and look for a large reduction in the estimated power (i.e., the q=2 cumulant) of the weakest signal relative to the other signals. When the weakest source power drops below a detection threshold, N=Nguess−1 is selected as the estimated number of sources.
The previous section provides a detailed derivation of a baseband method to determine AOA from nonsimultaneously sampled mixtures. It will now be shown with reference to FIG. 1 how this technique can be employed in a real RF DF system, by deriving the baseband mixture weights (and hence A) as a function of mixtures applied at RF.
FIG. 1 is a block diagram illustrating a RF DF receiver configured in accordance with one embodiment of the present invention. The receiver includes an array of antennas (1, . . . , P), an RF mixture forming section 103 (multiplier modules 103a-b, summer module 103c, and digital-to-analog (D/A) converter 103d), a downconversion section 105 (multiplier 105a and low pass filter 105b), a baseband sampling section (analog-to-digital (A/D) converter 107), a digital signal processing (DSP) section (form cumulants module 109 and a subspace fitting search module 111), and a timing and control module 113. The receiver is adapted to receive multiple cochannel sources, and to provide AOA estimates of those signals.
On the transmitter side (not shown), an emitter transmits a complex narrowband signal x(t) after complex upconversion to a frequency ωc by sending:
u(t)=Re(x(t)ejω
across the radio channel.
At the receive P-element antenna array of FIG. 1, the vector of received signals for a single mixture is:
where hpejρ
The common unknown phase shift representing the time delay of the local oscillator has been absorbed into x(t). If the local oscillators of the source and receivers are stable, then this unknown phase term is constant for revisits to a given mixture. For example, a QPSK constellation might be rotated by the constant phase term. If either the source or received oscillator is not very stable, then the true source is smeared in angle, creating a new, perceived source PDF. However, this smearing is irrelevant to the present invention, which only requires that over many mixtures the perceived source PDF does not change.
A mixture is formed at RF with the real mixture weights m=[m1, . . . , mp]T via:
With reference to FIG. 1, each cochannel signal is received at all antennas. Each received signal is then weighted by operation of the multipliers 103a-b and the D/A converter 103d, which provides the RF mixture weights based on the desired mixture selection. The weighted signals are then summed by summer 103c to form a desired RF mixture.
Note that the mixture forming section can be implemented in a number of ways as will be apparent in light of this disclosure, and the present invention is not intended to be limited to any one such configuration. For example, alternative embodiments of the present invention may form mixtures using a programmable resistor network, where each receiving element is communicatively coupled to the network of resistors, and resistor values are set to provide the desired mixtures.
For a quadrature downconversion path, the Hilbert transform is formed, which amounts to removing the Re(·) from Equation 18. The transform is then multiplied (by multiplier 105a) by e−jω
For multiple sources at different AOAs, this equation can be generalized to
where x(t)=[x1({overscore (t)}), . . . , xN(t)]T,a=[a1, . . . , aN]H, and
Thus, for a quadrature downconversion path, sources at a given AOA experience a constant weighting derived from the antenna calibration data and the weighting applied by the designer at RF. This is a straightforward generalization of the model previously discussed, where A is now allowed to be complex. Note that the Hilbert transform function has been integrated into the downconversion path in the embodiment shown in FIG. 1.
Note that a complex quadrature downconversion is associated with an increase in hardware cost because of the complex number processing. Here, a less expensive real downconversion approach is discussed.
For a real downconversion path, the resulting signal after multiplication (by module 105a) by cos(ωct) and low pass filtering (by module 105b) is simply the real part of Equation 20, or
y(t)=arTxr(t)−aiTxi(t) (Equation 22)
where a=ar+jai and x(t)=xr(t)+jxi(t) are the decompositions into real and imaginary components. When the mixtures are formed implicitly by spinning a fixed array, a single antenna (P=1) is provided, and the phase term ρ1n is regarded to be zero and m1n=1. In this case ai=0, and y(t)=arTxr(t). This corresponds to the case of a steering direction invariant array response. Another case that readily reduces to the model described herein is when xi(t)=0 (i.e., a purely real baseband signal, or double-sideband modulation).
When P>1, the more general formulation of Equation 22 can be used. If the true x were real signals, then xi=0, and y(t)=arTxr(t), and thus the real source assumption allows for a simplification in hardware. Fortunately, x may in fact be assumed real, as is now shown. For any band limited complex baseband signal x(t), there is a real signal {tilde over (x)}(t) such that x(t) is a frequency shifted version of the Hilbert transform of {tilde over (x)}(t). These signals are equivalent in the sense that they can produce exactly the same frequency spectra when upconverted and emitted by a transmitter. Thus, no receiver can differentiate between the two signals, so it can be assumed that a real signal was sent. The real {tilde over (x)}(t) is recovered by tuning the receiver downconversion tone ωr to the lower band edge of u(t) in Equation 16, rather than to the transmitter carrier frequency ωc.
Number | Date | Country | Kind |
---|---|---|---|
60458006 | Mar 2003 | US | national |
This application claims the benefit of U.S. Provisional Application No. 60/458,006, filed Mar. 27, 2003, which is herein incorporated in its entirety by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/20679 | 7/1/2003 | WO | 12/21/2004 |