1. Field of the Invention
The present invention relates to a directional antenna and radiating pattern adjustment method, and more particularly, to a directional antenna and radiating pattern adjustment method increasing antenna gain by adding a reflector.
2. Description of the Prior Art
An electronic product with a wireless communication function, such as a laptop computer, a personal digital assistant (PDA) and soon, transmits or receives radio signals through an antenna to access a wireless network. Therefore, for facilitating the wireless network access, an ideal antenna should have a wide bandwidth and a small size to meet the trends of compact electronic products.
A highly directional antenna such as a Yagi-Uda antenna achieves high gain over a rather narrow band. As a result, multiple Yagi-Uda antennas are commonly utilized in a wireless communication system supporting multi-in multi-out (MIMO) technology or a beam switchable antenna system. With a proper arrangement of the multiple Yagi-Uda antennas, the wireless communication system can reach high data throughput and significantly increase transmission distance under limited bandwidth or power expenditure.
In order to reach better performance of the Yagi-Uda antenna, a conventional method is to add directors to the Yagi-Uda antenna, which can direct a current route in a radiator of the Yagi-Uda antenna. In such a situation, directivity and antenna gain of the Yagi-Uda antenna increase. However, antenna body and the area of the Yagi-Uda antenna also increase.
In order to meet the trends of compact electronic products, there is a need to increase antenna gain and directivity of the Yagi-Uda antenna without increasing antenna area.
It is therefore an object to provide a directional antenna and radiating pattern adjustment method for a multi-in multi-out or a beam switchable antenna system.
The present invention discloses a directional antenna for a multi-in multi-out or a beam switchable antenna system, including a substrate, at least one directional antenna, formed on the substrate, for generating a radiating pattern of a polarization direction according to a feeding signal, and a reflector, disposed in parallel to the radiation plane of the directional antenna, for reflecting the radiating pattern of the directional antenna, to increase a gain of the directional antenna corresponding to the polarization direction.
The present invention further discloses a radiating pattern adjustment method for a directional antenna, including reflecting a radiating pattern of a signal transmitted from the directional antenna by a reflector in parallel to a radiation plane of the directional antenna, to improve a gain of the directional antenna corresponding to the radiation plane.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
In addition, the radiating pattern RP_H of the directional antenna ANT is the maximum gain cutting plane for high operating frequency bands, e.g. 5.45 GHz. The radiating pattern RP_L of the directional antenna ANT is the maximum gain cutting plane for low operating frequency bands, e.g. 2.45 GHz. As can be seen from
More specifically, according to electromagnetic theorem, when a metal sheet is insulated from a radiator with an area which is greater than a half wavelength of an incident radio wave radiated from the radiator, surface electrons of the metal sheet resonant with the incident radio wave, to generate a reflected radio wave with a frequency the same as a frequency of the incident radio wave, and with a reflected angle corresponding to an incident angle of the incident radio wave. In such a situation, the metal sheet appears reflecting the incident radio wave from the incident angle toward the reflected angle. Likewise, when the directional antenna ANT radiates the RF signal RFS to the air, the reflector 104 reflects the radiated RF signal RFS, such that a part of the RF signal RFS is reflected toward the radiation plane XY due to a reflection effect of the reflector 104, and thus a radiating pattern of the directional antenna ANT is changed. As a result, the gain corresponding to the radiation plane XY of the directional antenna ANT is improved.
In other words, the reflector 104 reflects a part of the RF signal RFS radiated from the directional antenna ANT, such that a part of the RF signal RFS is reflected toward the radiation plane XY, which adjusts the radiating patterns RP_H and RP_L, and thus the gain corresponding to the radiation plane XY of the directional antenna ANT is improved.
Please note that, the present invention is to increase the gain corresponding to the radiation plane XY of the directional antenna ANT via disposing the reflector 104 in parallel to the radiation plane XY. Type and number of the directional antenna ANT are not limited; for example, the directional antenna ANT can be any kind of directional antenna, such as a Yagi-Uda antenna, and may dispose or print multiple directional antennas on the substrate 102, as long as the multiple directional antennas have a same polarization direction, e.g. horizontal or vertical polarization direction. Material and shape of the reflector 104 are not limited either. For example, the reflector 104 can be made of iron, copper, or other pure or hybrid metal materials. The shape of the reflector 104 is not limited. For example, please refer to
Operations of adjusting the radiating patterns RP_H and RP_L to increase the gain corresponding to the radiation plane XY of the directional antenna ANT can be summarized into a radiating pattern adjustment process 30 as shown in
Step 300: Start.
Step 302: Reflect the radiating patterns RP_H and RP_L of the RF signal RFS transmitted from the directional antenna ANT by the reflector 104 in parallel to the radiation plane XY of the directional antenna ANT, to increase the gain of the directional antenna ANT corresponding to the radiation plane XY.
Step 304: End.
Details of the radiating pattern adjustment process 30 can be derived by referring to the above description.
Please refer to
Furthermore, the transceiver 40 may also combine another transceiver for increasing different directional antennas, so as to increase different polarization direction and enhance radiation coverage of the transceiver 40. Please refer to
In such an arrangement, the directional antennas ANT_4-ANT_7 form a radiating pattern within the radiation plane XY, and the system board SBD is disposed in parallel to a radiation plane XZ. Please note that, the system board SBD is regarded as a reflector performing reflection. As a result, please refer to
The transceiver 60 may further include a directional antenna ANT_8 at the other side of the system SBD as shown in
To sum up, the present invention adds the reflector insulated from the directional antenna and disposed in parallel to the radiation plane, to reflect the radiating pattern of the directional antenna, which increases antenna gain corresponding to radiated direction of the directional antenna without modifying the directional antenna. In comparison, the traditional method is to add directors to the direction antenna, for directing a current route in the radiator, which changes the radiating body and increase area of the directional antenna. Besides, when there are multiple directional antennas, the traditional method has to add directors on each of the antennas respectively, which significantly increases the total antenna area. However, the present invention adds single reflector in parallel to the radiation plane, such that antenna gains of the multiple directional antennas are increased at one time, which is simpler and easier.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5220335 | Huang | Jun 1993 | A |
6046703 | Wang et al. | Apr 2000 | A |
6529171 | Le Balier et al. | Mar 2003 | B1 |
6975278 | Song et al. | Dec 2005 | B2 |
8228254 | Foltz et al. | Jul 2012 | B2 |
20070195004 | Rebeiz et al. | Aug 2007 | A1 |
20110090131 | Chen et al. | Apr 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130169502 A1 | Jul 2013 | US |