Wireless Local Area Network (WLAN) equipment continues to be used as a solution for many different data connectivity applications. WLANs are now viewed as an ideal solution for providing access to wireless equipped personal computers within home networks, mobile access to laptop computers and personal digital assistants (PDAs), as well as providing robust and convenient access in business applications.
Indeed, at the present time many laptop computers are shipped from the factory with WLAN interface cards. Certain microprocessor manufacturers, such as Intel, have also announced intentions to incorporate WLAN capability directly into processor chip platforms. These and other initiatives will continue to drive the integration of WLAN equipment into personal computers of all types.
It is already the case that in many cities, WLAN access equipment operating in accordance with the IEEE 802.11a, 802.11b, and 802.11g standards is in wide use. In these cities one can now find “hot spots” that provide network connectivity. Unfortunately, having tens, if not hundreds, of closely spaced wireless networks using the same radio spectrum means that interference becomes a problem. That is, although the 802.11 standards provide for robust signaling in the form of spread spectrum radio frequency modulation, and using orthogonal frequency division multiplexing over modulated subcarriers, crowding of the radio spectrum still increases noise and therefore decreases performance for all users.
It is recognized that directional antenna arrays can be used to steer radio frequency energy between a transmitter and receiver. This greatly reduces the amount of interference that would otherwise be created for concurrent users of the spectrum. The use of such arrays in wireless subscriber equipment has been described in U.S. Pat. No. 6,100,843 entitled “Adaptive Antenna for Use in Same Frequency Networks”; U.S. Pat. No. 6,400,317 entitled “Methods and Apparatus for Antenna Control in a Communications Network”; and in U.S. Pat. No. 6,473,036 entitled “Method Apparatus for Adapting Antenna Array to Reduce Adaptation Time While Increasing Array Performance”. Each of these patents is assigned to Tantivity Communications, Inc., the assignee of the present application.
However, WLAN signaling has special considerations in that communication is expected to be on a peer-to-peer basis with extremely short packet lengths. It has heretofore been thought quite difficult to require WLAN subscriber equipment to steer an antenna array, to one of many possible candidate angles, during such very short intervals.
The present invention is a technique for implementing an antenna steering at the physical layer of a Wireless Local Area Network (WLAN) device. Implementing the antenna steering decision at the physical layer eliminates involving higher communication layers, which would otherwise require modification of standardized communication processing software, such as the Media Access Control (MAC) or Link layers.
In one embodiment, the invention provides techniques for signal detection during short sync symbol reception in the very beginning of a preamble portion of a WLAN frame. Specifically, in the context of an 802.11a or 802.11g Packet Protocol Data Unit (PPDU) frame (packet), this may be concluded within only a few initial training sequence symbols of the Physical Layer Convergent Procedure (PLCP) preamble portion. Operating very quickly during these so-called short sync pulses, the antenna will be steered to an optimum direction prior to receiving other portions of the preamble. This permits the radio receiver equipment to use the remainder of the preamble to acquire carrier phase lock and frequency synchronization, in just about the same manner as if no directional antennal were present. The remaining preamble portions can thus be processed according to standard WLAN frame processing.
One specific technique employed is to set an antenna array to an omni-directional mode prior to reception of the first short sync pulse. This permits Automatic Gain Control (AGC) circuitry in the receiver to track for an initial short sync pulse. During reception of the next one or two short sync pulses, a signal metric such as a correlation is used to evaluate the observed response against an expected response. The expected response can either be a stored response that is the optimum expected for a short sync. Alternatively, the expected response can be a stored version of a measured response received with an omni setting during the initial short sync pulse.
In accordance with certain other aspects of the invention, correlations can be performed over a first and second half of a short sync pulse by swapping real and imaginary samples. This provides twice as many candidate angles to be tested for each subsequent short sync pulse.
With either of these two techniques, by the time of arrival of the fourth short sync pulse, the antenna array has been steered to a candidate direction. This provides at least five to six additional short sync pulses that may be used by the receiver to acquire frequency and phase lock.
A third technique involves the use of finite impulse response comb filtering. This may be performed through the use of inverse Fast Fourier Transforms. The process here is to implement an ideal comb type filter response for both signal and noise and then convolve it with the received short sync signal. An approximate estimate of a signal to noise ratio can be derived as a ratio of observed signal and noise filter responses. The candidate angle exhibiting the strongest signal to noise ratio is then selected to be used.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
A description of preferred embodiments of the invention follows.
The present invention is implemented as an antenna steering algorithm typically in the base band physical layer signal processor of a Wireless Local Area Network (WLAN) receiver. Specifically, the invention involves various techniques to try candidate antenna settings in response to receiving one or more very short duration synchronization pulses that typically make up an initial portion of a preamble. A metric is used to evaluate the candidate responses, and an antenna setting is then stabilized for reception of the remaining portions of the preamble as well as the traffic portion of a protocol data unit (frame). The invention thus does not require modification of higher layer processing components such as the Media Access Control (MAC) layer to perform antenna optimization for each received packet.
The band select 130, RF/IF 140 and IF/BB 160 operate in conjunction with the base band processor 170, in accordance with known techniques, to implement the physical layer (PHY) of the WLAN protocol. For example, these components may implement a physical layer such as specified by the Institute for Electrical and Electronic Engineers' (IEEE) 802.11a Standard. This standard specifically provides for a physical layer that implements wireless data transmission in an unlicensed radio band at 5.15 through 5.825 GigaHertz (GHz). Using spread spectrum signaling, in particular orthogonal frequency division multiplexing, payload data rates from 6 through 54 Megabits per second (Mbps) can be provided. Modulation schemes that are implemented in 802.11a include binary phase shift keying, quadrative phase shift keying 16 QAM and 64 QAM, with convolutional coding of one-half, two-thirds, or three-quarter rates.
What is important to note here is that the equipment 100 includes a directional antenna array 110 that may be steered to a number of different azimuthol angles. Through the use of the steerable array 110, it is possible to increase the selectivity of the base band processor 120 thereby improving the performance (that is rejection of unwanted signals and noise) of the equipment 100. An antenna controller 120 forms part of the physical layer processor in order to permit setting the array 110 at one of N angles. The steering algorithm 175 implemented in the base band processor 170 selects candidate angles to try during an initial processing phase. The candidate angles are evaluated by the steering algorithm 175 with the antenna controller setting the array 110 in a fixed condition for reception of the remainder of the Packet Protocol Data Unit (PPDU) frame. The invention thus accomplishes this without making modifications to the MAC layer 180 or higher level layers with the communication protocol that would be implemented by an associated computer host (not shown).
Before describing in detail how a steering algorithm 175 is implemented, it is important to understand the format of a PPDU frame. The format of one such frame is shown in
A double guard band GI2 is provided prior to the inclusion of two long sync symbols T1 and T2. The entire duration of the long sync portion of the preamble 214 is 8.0 microseconds as was in the case of the short sync symbol section. What is important to note here is that there is not a particularly long amount of time available to steer an antenna array at the beginning of the PLCP preamble. For example, by time t7 or by at least by the time t8, it is expected that the receiver will already be performing course frequency offset estimation. Thus, if an antenna array is to be steered such that it is optimized for each received PPDU frame, the steering must be completed, and the antenna may not be further steered or “spinning” after approximately t6. Otherwise, the receiver will be prone to not properly obtaining course frequency and timing synchronization, never mind not being able to perform fine frequency and timing offset synchronization needed to properly decode the data symbols occurring later in the frame.
What can be noted from this diagram is that symmetry exists between samples 1 through 8 and samples 9 through 16. Specifically, the first portion of the real part (i.e., samples 1 through 8) corresponds to the second portion of the imaginary part (samples 9 through 16). Likewise, the second portion of the real part (samples 9 through 16) corresponds to the first portion of the imaginary part, (samples 1 through 8). This symmetry is indicative of several techniques that may be used to shorten processing needed to probably detect a short sync pulse. Specifically, as long as one can track at least one half of a short sync pulse, then it should be possible to properly detect it, since the second half is redundant, in a sense. This characteristic of a short sync pulse can be further exploited in a manner that can be described in greater detail below in connection with the steering algorithm.
It is important to also note here that at the time of reception of the long sync pulse, a receiver is expected to be performing a fine tuning operation. At this point it is also probably too late to therefore be changing the antenna directional settings.
Thus what is needed is a technique for steering the antenna on the short sync pulses 212 only. In general, these algorithms must be performed as quickly as possible, as the time available is only a few microseconds. Furthermore, the algorithm must work in synchronization with signal acquisition processing, such that a result is obtained prior to any long sync or fine frequency estimation processing required for each packet. It should also be understood that these algorithms operate with antennas that can be steered with extremely small latency time, less than one microsecond, or approximately the duration of one short sync pulse.
A first steering algorithm 175 shown in
In the next step 1230, a metric is determined. This can, in one embodiment, be a correlation performed over the first half of the short sync pulse, i.e., the first 400 nanoseconds of pulse t2 (
In state 1242 the real and imaginary samples are swapped during this second correlation step. This then gives a baseline for an omnidirectional response.
In state 1250 the array 110 is steered for a first candidate angle out of a number of candidate angles. The number of candidate angles depends upon the configuration of the antenna array; in one embodiment there are four candidate angles. From state 1260, the correlation steps 1230, 1240 and 1242 are repeated for each of the four candidate angles, with correlation results being stored for each candidate angle. The candidate angle that provided the best correlation result is then selected as the angle to be used for the remainder of short sync and the remainder of PPDU processing. This angle is selected in state 1270, and in state 1280 the candidate antenna direction is set. The steering algorithm of
Because of the in-phase and quadrative symmetry of each short sync pulse, it is possible to perform a correlation over a second half of a short sync pulse, using a different candidate angle than used for the first half. However, this assumes that the antenna array can be steered to a new candidate angle in about 30 to 200 nanoseconds. It also assumes that the correlation can be completed in such a timeframe. When this is possible, the algorithm can determine a correlation value for two different candidate angles for every short sync pulse. Determination of which embodiment is best for a particular implementation depends upon the availability of high speed correlation hardware and fast switching antenna components.
A second technique used for antenna steering algorithm 175 is described in
Yet another process shown in
In step 1400, this process performs a Fast Fourier Transform (FFT) of an ideal short sync pulse. The result would typically look like the response that was seen in
In state 1420 the other bins of “non-interest”, that is the bins having no expected energy level, are taken from the short sync response for FFT. A “mirror” of this response is then developed with, for example, magnitude “one” values placed in the 52 bins where noise is expected and magnitude “zero” in the bins where energy is expected. The inverse FFT of this “noise filter” is then taken in state 1430 to provide a “noise” time domain response.
In state 1440 the received waveform is correlated against both of these time domain sequences, i.e., for both the “signal” and “noise” filter responses. An expected “pseudo signal to noise” ratio is developed in state 1450. This can be calculated as a ratio of a peak of the “signal” correlation divided by the peak of the “noise” correlation at each bin location.
Specifically, each of the short sync pulses received for a candidate angle are fed to be convolved with both the signal and noise filters. Taking a ratio of these two responses provides a quasi-estimate of the signal to noise ratio to be used as the metric to measure how well each antenna angle should be expected to perform.
The FFTs and inverse FFTs could be taken over 64 samples, as suggested by
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a continuation of U.S. application Ser. No. 10/675,583, filed on Sep. 30, 2003, which claims the benefit of U.S. Provisional Application No. 60/414,947 filed Sep. 30, 2002 and U.S. Provisional Application No. 60/415,847 filed Oct. 3, 2002. The entire teachings of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60414947 | Sep 2002 | US | |
60415847 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10675583 | Sep 2003 | US |
Child | 11450091 | Jun 2006 | US |