This invention relates to mobile or portable cellular communication systems, and more particularly to a compact antenna apparatus for use with mobile or portable subscriber units.
Code division multiple access (CDMA) communication systems provide wireless communications between a base station and one or more mobile or portable subscriber units. The base station is typically a computer-controlled set of transceivers that are interconnected to a land-based public switched telephone network (PSTN). The base station further includes an antenna apparatus for sending forward link radio frequency signals to the mobile subscriber units and for receiving reverse link radio frequency signals transmitted from each mobile unit. Each mobile subscriber unit also contains an antenna apparatus for the reception of the forward link signals and for the transmission of the reverse link signals. A typical mobile subscriber unit is a digital cellular telephone handset or a personal computer coupled to a cellular modem. In such systems, multiple mobile subscriber units may transmit and receive signals on the same center frequency, but unique modulation codes distinguish the signals sent to or received from individual subscriber units.
In addition to CDMA, other wireless access techniques employed for communications between a base station and one or more portable or mobile units include those described by the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard and the industry-developed Bluetooth standard. All such wireless communications techniques require the use of an antenna at both the receiving and transmitting end. It is well-known by experts in the field that increasing the antenna gain in any wireless communication system has beneficial affects on wireless systems performance.
A common antenna for transmitting and receiving signals at a mobile subscriber unit is a monopole antenna (or any other antenna with an omnidirectional radiation pattern) A monopole consists of a single wire or antenna element that is coupled to a transceiver within the subscriber unit. Analog or digital information for transmission from the subscriber unit is input to the transceiver where it is modulated onto a carrier signal at a frequency using a modulation code (i.e., in a CDMA system) assigned to that subscriber unit. The modulated carrier signal is transmitted from the subscriber unit to the base station. Forward link signals received by the subscriber unit are demodulated by the transceiver and supplied to processing circuitry within the subscriber unit.
The signal transmittal from a monopole antenna is omnidirectional in nature. That is, the signal is sent with approximately the same signal strength in all directions in a generally horizontal plane. Reception of a signal with a monopole antenna element is likewise omnidirectional. A monopole antenna does not differentiate in its ability to detect a signal in one azimuth direction versus detection of the same or a different signal coming from another azimuth direction. Also, a monopole antenna does not produce significant radiation in the elevation direction. The antenna pattern is commonly referred to as a donut shape with the antenna element located at the center of the donut hole.
A second type of antenna that may be used by mobile subscriber units is described in U.S. Pat. No. 5,617,102. The directional antenna comprises two antenna elements mounted on the outer case of a laptop computer, for example. A phase shifter attached to each element imparts a phase angle delay to the input signal, thereby modifying the antenna pattern (which applies to both the receive and transmit modes) to provide a concentrated signal or beam in the selected direction. Concentrating the beam increases the antenna gain and directivity. The dual element antenna of the cited patent thereby directs the transmitted signal into predetermined sectors or directions to accommodate for changes in orientation of the subscriber unit relative to the base station, thereby minimizing signal loss due to the orientation change. In accordance with the antenna reciprocity theorem, the antenna receive characteristics are similarly effected by the use of the phase shifters.
CDMA cellular systems are interference limited systems. That is, as more mobile or portable subscriber units become active in a cell and in adjacent cells, frequency interference increases and thus bit error rates also increase. To maintain signal and system integrity in the face of increasing error rates, the system operator decreases the maximum data rate allowable for one or more users, or decreases the number of active subscriber units, which thereby clears the airwaves of potential interference. For instance, to increase the maximum available data rate by a factor of two, the number of active mobile subscriber units is halved. However, this technique cannot generally be employed to increase data rates due to the lack of service priority assignments to the subscribers. Finally, it is also possible to avert excessive interference by using directive antennas at both (or either) the base station and the portable units,
Typically, a directive antenna beam pattern is achieved through the use of a phased array antenna. The phased array antenna is electronically scanned or steered to the desired direction by controlling the phase angle of the input signal to each antenna element. However, phase array antennas suffer decreased efficiency and gain as the element spacing becomes electrically small when compared to the wavelength of the received or transmitted signal. When such an antenna is used in conjunction with a portable or mobile subscriber unit, generally the antenna array spacing is relatively small and thus antenna performance is correspondingly compromised.
In a communication system in which portable or mobile units communicate with a base station, such as a CDMA communication system, the portable or mobile unit is typically a hand-held device or a relatively small device, such as, for instance, the size of a laptop computer. In some embodiments, the antenna is inside or protrudes from the devices housing or enclosure. For example, cellular telephone hand sets utilize either an internal patch antenna or a protruding monopole or dipole antenna. A larger portable device, such as a laptop computer, may have the antenna or antenna array mounted in a separate enclosure or integrated into the laptop housing. A separately-enclosed antenna may be cumbersome for the user or manage as the communications device is carried from one location to another. While integrated antennas overcome this disadvantage, such antennas, except for a patch antenna, generally are in the form of protrusions from the communications device. These protrusions can be broken or damaged, as the device is moved from one location to another. Even minor damage to a protruding antenna can drastically alter its operating characteristics.
Problems of the Prior Art
Several considerations must be taken into account in integrating a wireless-network antenna into an enclosure, whether the enclosure comprises a unit separate from the communications device or the housing of the communications device itself. In designing the antenna and its associated enclosure, careful consideration must be given to the antenna electrical characteristics so that signals propagating over the wireless link satisfy pre-determined system standards, such as, the bit error rate, signal-to-noise ratio or signal-to-noise-plus-interference ratio. The electrical properties of the antenna, as influenced by the antenna physical parameters, are discussed further herein below.
The antenna must also exhibit certain mechanical characteristics to satisfy user needs and meet the required electrical performance. The antenna length, or the length of each element of the antenna array, depends on the received and transmitted signal frequencies. If the antenna is configured as a monopole, the length is typically a quarter wavelength of the signal frequency. For operation at 800 MHz (one of the wireless frequency bands), a quarter-wavelength monopole is 3.7 inches long. The length of a half-wavelength dipole is 7.4 inches.
The antenna must further present an aesthetically pleasing appearance to the user. If the antenna is deployable from the communications device, sufficient volume within the communications device must be allocated to the stored antenna and peripheral components. But since the communications device is used in mobile or portable service, the device must remain relative small and light with a shape that allows it to be easily carried. The antenna deployment mechanism must be mechanically simple and reliable. For those antennas housed in the enclosure separate from the communications device, the connection mechanism between the antenna and the communications device must be reliable and simple.
Not only are the electrical, mechanical and aesthetic properties of the antenna important, but it must also overcome unique performance problems in the wireless environment. One such problem is called multipath fading. In multipath fading, a radio frequency signal transmitted from a sender (either a base station or mobile subscriber unit) may encounter interference in route to the intended receiver. The signal may, for example, be reflected from objects, such as buildings, thereby directing a reflected version of the original signal to the receiver. In such instances, two versions of the same radio frequency signal are received; the original version and a reflected version. Each received signal is at the same frequency, but the reflected signal may be out of phase with the original due to the reflection and consequence differential transmission path length to the receiver. As a result, the original and reflected signals may partially cancel each other out (destructive interference), resulting in fading or dropouts in the received signal.
Single element antennas are highly susceptible to multipath fading. A single element antenna cannot determine the direction from which a transmitted signal is sent and therefore cannot be tune to more accurately detect and received a transmitted signal. Its directional pattern is fixed by the physical structure of the antenna components. Only the antenna position and orientation can be changed in an effort to obviate the multipath fading effects.
The dual element antenna described in the aforementioned patent reference is also susceptible to multipath fading due to the symmetrical and opposing nature of the hemispherical lobes of the antenna pattern. Since the antenna pattern lobes are more or less symmetrical and opposite from one another, a signal reflected to the back side of the antenna may have the same received power as a signal received at the front. That is, if the transmitted signal reflects from an object beyond or behind the intended received and then reflects into the back side of the antenna, it will interfere with the signal received directly from the source, at points in space where the phase difference in the two signals creates destructive interference due to multipath fading.
Another problem present in cellular communication systems is inter-cell signal interference. Most cellular systems are divided into individual cells, with each cell having a base station located at its center. The placement of each base station is arranged such that neighboring base stations are located at approximately sixty degree intervals from each other. Each cell may be viewed as a six sided polygon with a base station at the center. The edges of each cell abut the neighboring cells and a group of cells form a honeycomb-like pattern. The distance from the edge of a cell to its base station is typically driven by the minimum power required to transmit an acceptable signal from a mobile subscriber unit located near the edge of the cell to that cell's base station (i.e., the power required to transmit an acceptable signal a distance equal to the radius of one cell).
Intercell interference occurs when a mobile subscriber unit near the edge of one cell transmits a signal that crosses over the edge into a neighboring cell and interferes with communications taking place within the neighboring cell. Typically, signals in neighboring cells on the same or closely spaced frequencies cause intercell interference. The problem of intercell interference is compounded by the fact that subscriber units near the edges of a cell typically transmit at higher power levels so that the transmitted signals can be effectively received by the intended base station located at the cell center. Also, the signal from another mobile subscriber unit located beyond or behind the intended received may arrive at the base station at the same power level, representing additional interference.
The intercell interference problem is exacerbated in CDMA systems since the subscriber units in adjacent cells typically transmit on the same carrier or center frequency. For example, two subscriber units in adjacent cells operating at the same carrier frequency but transmitting to different base stations interfere with each other if both signals are received at one of the base stations. One signal appears as noise relative to the other. The degree of interference and the receiver's ability to detect and demodulate the intended signal is also influenced by the power level at which the subscriber units are operating. If one of the subscriber units is situated at the edge of a cell, it transmits at a higher power level, relative to other units within its cell and the adjacent cell, to reach the intended base station. But, its signal is also received by the unintended base station, i.e., the base station in the adjacent cell. Depending on the relative power level of two same-carrier frequency signals received at the unintended base station, it may not be able to properly differentiate a signal transmitted from within its cell from the signal transmitted from the adjacent cell. A mechanism is required to reduce the subscriber units antenna's apparent field of view, which can have a marked effect on the operation of the reverse link (subscriber to base) by reducing the number of interfering transmissions received at a base station. A similar improvement in the antenna pattern for the forward link, allows a reduction in the transmitted signal power to achieve a desired receive signal quality.
In summary, it is clear that in the wireless communications technology, it is of utmost importance to maximize antenna performance, while minimizing size and manufacturing complexity.
The present invention is a directional antenna having a number, N, of outlying monopole antenna elements. These monopole elements are formed as a first upper conductive segment on a portion of a dielectric substrate. The array also includes the same number, N, of image elements. The image elements are formed as a second set of lower conductive segments on the same substrate as the upper conductive segments. The image elements, generally having the same length and shape as the monopole elements, are connected to a ground reference potential. To complete the array, an active antenna element is also disposed on the same substrate, adjacent to at least one of the monopole elements. In a preferred embodiment, the active element is disposed in the center of the array.
The monopole elements are typically formed as elongated conductive sections on the dielectric substrate. The dielectric substrate itself may be formed as a first elongated section on which the conductive elements are disposed, and a second elongated section perpendicular to the first elongated section, forming an interconnecting arm between the first elongated section and the center active element. Likewise, the center active element may be formed as an elongated dielectric portion of the same substrate on which a conductive portion is disposed.
The image elements may be connected together electrically. In one embodiment, they are formed as a single conductive patch on the substrate.
In a preferred embodiment, the monopole antenna elements are electrically connected to act as passive elements; that is, only the single active center element is connected to radio transceiver equipment.
The passive monopole elements and corresponding image elements are selectively operable to in either a reflective or directive mode. In one configuration, each respective monopole element is connected to a corresponding one of the image elements through a coupling circuit. The coupling circuit may be as simple as a switch, providing a connected and un-connected selectable configuration.
However, in the preferred embodiment, the coupling circuit contains at least two impedances. In this configuration, a first impedance element is placed in series between the monopole element and the image element when the switch is in a first position, and a second impedance element is placed in series when the switch is in a second position.
The switches and impedances may typically be embodied as microelectronic components disposed on the same substrate as the antenna array elements. Signals supplied to the antenna array assembly may then control the switches for shorting or opening the connections between the upper portion and lower portion of each antenna element, to achieve either the directive or reflective operational state.
The foregoing and other features and advantages of the invention will be apparent from the following more particular description of the preferred embodiments of the invention, as illustrated in the accompanying drawings in which like referenced characters refer to the same parts throughout the different figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
It is also to be understood by those skilled in the art that
In one embodiment of the cell-base system, the mobile subscriber units 60 employ and antenna 70 that provides directional reception of forward link radio signals transmitted from the base station 65, as well as directional transmittal of reverse link signals (via a process called beam forming) from the mobile subscriber units 60 to the base station 65. This concept is illustrated in
The center element 102 comprises a conductive radiator 106 disposed on a dielectric substrate 108. Each passive element 104A through 104F comprises an upper conductive segment 110A through 110F and a lower conductive segment 112A through 112F disposed on a dielectric substrate 113A through 113F, respectively. The lower conductive segments 112A through F are grounded. Generally, the upper (110A–110F) and the lower (112A–112F) conductive segments are of equal length. When the upper conductive segment of one of the passive elements (for example, the upper conductive segment 110A) is connected to the respective lower conductive segment (the lower conductive segment 112A) the passive element 104A operates in a reflective mode such that all received radio frequency (RF) energy is reflected back from the passive element 104A toward the source. When the upper conductive segment 110A, for example, is open (i.e., not connected to the lower conductive segment 112A) the passive element 104A operates in a directive mode in which the passive element 104A essentially is invisible to the propagating RF energy which passes therethrough.
In one embodiment, the center element 102 and the passive elements 104A and 104D are fabricated from a single dielectric substrate, such as a printed circuit board, with the respective antenna elements disposed thereon. The passive elements, 104B and 104C are disposed on a deformable or flexural substrate and attached or mounted to one surface of the center element 102. Thus the passive elements 104B and 104C are foldable into a compact arrangement when not in use, and deformable into the radial positions illustrated in
There are many devices and techniques available for attaching the deformable substrates carrying the passive elements 104A through 104F to the center element 102. An adhesive can be used to joint the surface of the center element 102 to the deformable substrates or the deformable material. Solderable vias can also be disposed into each of the surfaces to be mated. The joints are mated and the vias soldered so that the joints remain deformable. If it is required for signals to pass between the center element 102 and each of the passive elements 104A through 104F, then in another embodiment the solderable vias are connected to the appropriate conductive traces disposed on the center element 102 and the passive elements 104A through 104F. In this way, the soldered mated vias establish an electrical interconnection and a mechanical union between the passive elements 104A through 104F and the center element 102. Also, a mechanical fastener can also be utilized to joint the various passive elements 104A through 104F to the center element 102.
In yet another embodiment the center element 102 and the passive elements 104A and 104D are fabricated on a first deformable substrate, the passive elements 104B and 104C are fabricated on a second deformable substrate and the passive elements 104E and 104F are fabricated on a third deformable substrate. The three deformable substrates carrying the antenna elements are jointed as discussed above. In yet another embodiment, the center element 102 is formed of a rigid dielectric material, for example, printed circuit board, while the passive element 104A is disposed on a first deformable substrate, the passive elements 104B and 104C are formed on a second deformable substrate, the passive element 104D is formed on a third deformable substrate and the passive element 104E and 104F are disposed on a fourth deformable substrate. The four deformable substrates are then joined to the center element by way of soldered vias or an adhesive as discussed above.
In still another embodiment of the present invention, each of the passive elements 104A through 104F is disposed on a rigid dielectric substrate material and joined to the center element 102 by way of a deformable union. In particular, one edge of deformable or flexural material is attached to each of the passive elements 104A through 104F and the opposing edge of the material is attached to the center element 102. Thus in this embodiment, each antenna element is disposed on a rigid deformable material. Solderable vias or an adhesive are used to affix the deformable material to the center element 102.
A top view of the antenna array 100 is illustrated in
Returning to
In yet another embodiment of the antenna array 318 illustrated in
In the various embodiments discussed herein, for optimum antenna performance each of the passive elements 104A through 104F must be oriented at a specified angel or range of angles with respect to each other and the center element 102 (in those embodiments where a center element is present). This can be accomplished by mounting the antenna array on a base surface (now shown) and placing marks or mechanical stops on the base surface to ensure that each of the passive elements 104A through 104F is deployed to the correct position. Alternatively, if the antenna is mounted within a case or enclosure, various mechanical structures or stops can be incorporated into the enclosure so that in the deployed orientation, each of the passive elements 104A through 104F is situated at the optimum position.
An antenna array 430 is illustrated in the deployed configuration in
A five element antenna array 450, including a center element is shown in
The teachings of the present invention have been described in conjunction with various antenna arrays having an active center element and a plurality of radial elements spaced apart therefrom, or having only a plurality of spaced apart radial elements operation as conventional phased arrays or digital beam formers. In a first such embodiment, the antenna array comprises a plurality of active or passive elements, including a single active element at the center and a plurality of radially spaced apart active or passive elements deformably joined to the center active element. In another embodiment, each of the radial elements is joined to one or more other radial elements at the central intersecting point. Control signals and radio frequency signals are input to or received from the various antenna embodiments through an interface (similar to the interface 125 of
While the invention has been described with references to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalent elements may be substituted for the elements of the invention without departing from the scope thereof. The scope of the present invention further includes any combination of the elements from the various embodiments set forth herein. In addition, modifications may be made to adapt a particular situation to the teachings of the present invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this intention, but that the invention will include all other constructions falling within the scope of the appended claims.
This application is a continuation of 10/282,955 filed Oct. 28, 2002 now U.S. Pat. No. 6,762,722, which is a continuation-in-part of U.S. application Ser. No. 09/861,296, filed May 18, 2001 now U.S. Pat. No. 6,480,157. The entire teachings of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3846799 | Gueguen | Nov 1974 | A |
5173715 | Rodal et al. | Dec 1992 | A |
5521610 | Rodal | May 1996 | A |
5617102 | Prater | Apr 1997 | A |
5771025 | Reece et al. | Jun 1998 | A |
5905473 | Taenzer | May 1999 | A |
6054955 | Schlegel, Jr. et al. | Apr 2000 | A |
6111549 | Feller | Aug 2000 | A |
6340956 | Bowen et al. | Jan 2002 | B1 |
6476773 | Palmer et al. | Nov 2002 | B1 |
6480157 | Palmer et al. | Nov 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20050035910 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10282955 | Oct 2002 | US |
Child | 10889662 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09861296 | May 2001 | US |
Child | 10282955 | US |