The present invention relates to a control system, and more particularly to a control system for a rotary-wing aircraft which reduces vibration.
Many rotary-wing aircraft utilize a single main rotor assembly and a tail rotor assembly. The tail rotor assembly provides yaw thrust to counteract induced torque generated by the main rotor assembly and provide yaw directional control.
Aircraft structures typically have several bending modes with frequencies which may be within the bandwidth of the control system. If an excitation such as turbulence excites the bending mode, airframe vibration and deflection results. In some instances, airframe deflections induce control system inputs that affect this mode and cause destabilizing feedback which may increase the magnitude of the vibration.
In a rotary-wing aircraft, development effort has been expended to reduce vibration that may excite bending mode response within the extending tail. Although effective, systems such as aerodynamic fairings, beanies, extended decks and strakes may increase aircraft weight.
A control system according to an exemplary aspect of the present invention includes: a control; and a link connected to the control, the link oriented to generate a control output in the control in response to a deflection, the control output operable to at least partially resist the deflection.
A rotary wing aircraft according to an exemplary aspect of the present invention includes: an airframe comprising an extending tail; a tail rotor system mounted to the extending tail; an input; and a link which connects the input to the tail rotor system, the link oriented to generate a pitch output in the tail rotor system in response to a deflection of the extending tail, the pitch output operable to at least partially resist the deflection.
A method of producing a stabilizing feedback according to an exemplary aspect of the present invention includes: orienting a link within a structure; and generating a control output with the link in response to a deflection of the structure, the control output operable to at least partially resist the deflection.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:
Referring to
Referring to
A set of links such as a set of flexible cables 38, 40 are connected to the forward control quadrant 36 at one end and connected at opposite ends to an aft control quadrant 42 (
The aft control quadrant 42 follows the pilot imparted motions of the forward control quadrant 36 due to the selective tension loading of flexible cables 38, 40 affected by the pilot in operation of the pedal system 32. The aft control quadrant 42 drives a tail rotor servo 46 which controls the pitch output of the tail rotor system 18.
The path of the flexible cables 38, 40 is established by a multiple of roller systems 44 through which the cables 38, 40 are received so that the aft control quadrant 42 follows the pilot imparted motions of the forward control quadrant 36. The flexible cables 38, 40 are guided in their path between control quadrants 36, 42 so as to be free of obstructions and to proceed in a generally parallel relationship through the extended tail 16. The flexible cables 38, 40 are arranged in a separated relationship through the extended tail 16 to provide ballistic tolerance through separation. The separation locates the flexible cables 38, 40 off of a neutral axis N of the extended tail 16. A neutral axis is an axis upon which a structure such as the aircraft tail 16 (
Referring to
Numerous orientations of the flexible cables 38, 40 and/or other linkages may be utilized to generate the stabilizing feedback. Additional linkages such as reversing systems 48 may be required to assure proper control output operation relative to control input. That is, reversing systems 48 may be required to assure that, for example, pilot port pedal (L) into the pedal system 32 resorts in a port output from the tail rotor system 18 and deflection of the extended tail 16 to the starboard results in a port output from the tail rotor system 18 to counter the deflection. It should be understood that the reversing systems 48 may be separate systems or alternatively incorporated into the pedal system 32, mixing unit 34, forward control quadrant 36, aft control quadrant 42, tail rotor servo 46 combinations thereof or other components of the flight control system 30 to achieve both stabilizing feedback and proper control response.
Referring to
The stabilizing feedback operates to reduce aircraft vibration from even a no feedback condition in which airframe deflections provide no inputs to the tail rotor control cables. Stabilizing feedback thereby improves aircrew and passenger ride quality from a no feedback condition in combination with weight reduction through removal or reduction of aerodynamic fairings, beanies, extended decks and strakes.
It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.
It should be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit from the instant invention.
Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.
The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations are possible in light of the above teachings. Non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.