This disclosure generally relates to illumination from light modulation devices, and more specifically relates to optical stacks for providing control of illumination for use in display including privacy display and night-time display.
Privacy displays provide image visibility to a primary user that is typically in an on-axis position and reduced visibility of image content to a snooper, that is typically in an off-axis position. A privacy function may be provided by micro-louvre optical films that transmit some light from a display in an on-axis direction with low luminance in off-axis positions. However such films have high losses for head-on illumination and the micro-louvres may cause Moiré artefacts due to beating with the pixels of the spatial light modulator. The pitch of the micro-louvre may need selection for panel resolution, increasing inventory and cost.
Switchable privacy displays may be provided by control of the off-axis optical output.
Control may be provided by means of luminance reduction, for example by means of switchable backlights for a liquid crystal display (LCD) spatial light modulator. Display backlights in general employ waveguides and edge emitting sources. Certain imaging directional backlights have the additional capability of directing the illumination through a display panel into viewing windows. An imaging system may be formed between multiple sources and the respective window images. One example of an imaging directional backlight is an optical valve that may employ a folded optical system and hence may also be an example of a folded imaging directional backlight. Light may propagate substantially without loss in one direction through the optical valve while counter-propagating light may be extracted by reflection off tilted facets as described in U.S. Pat. No. 9,519,153, which is herein incorporated by reference in its entirety.
According to a first aspect of the present disclosure there is provided a display device comprising: a spatial light modulator; a display polariser arranged on a side of the spatial light modulator, the display polariser being a linear polariser; a first additional polariser arranged on the same side of the spatial light modulator as the display polariser, the first additional polariser being a linear polariser; at least one first polar control retarder arranged between the first additional polariser and the display polariser, a second additional polariser, the second additional polariser being a linear polariser; and at least one second polar control retarder, wherein either: the second additional polariser is arranged on the same side of the spatial light modulator as the first additional polariser outside the first additional polariser, and the at least one second polar control retarder is arranged between the first additional polariser and the second additional polariser; or the display device further comprises a backlight arranged to output light, the spatial light modulator comprises a transmissive spatial light modulator arranged to receive output light from the backlight, said display polariser is an input display polariser arranged on the input side of the spatial light modulator, and the display device further comprises an output display polariser arranged on the output side of the spatial light modulator, the second additional polariser is arranged on the output side of the spatial light modulator, and the at least one second polar control retarder is arranged between the second additional polariser and the output display polariser, wherein: each of the at least one first polar control retarder and the at least one second polar control retarder comprises a respective switchable liquid crystal retarder comprising a layer of liquid crystal material and two surface alignment layers disposed adjacent to the layer of liquid crystal material and on opposite sides thereof, in respect of one of the at least one first polar control retarder and the at least one second polar control retarder, both of the surface alignment layers are arranged to provide homogenous alignment in the adjacent liquid crystal material, and in respect of the other of the at least one first polar control retarder and the at least one second polar control retarder, both of the surface alignment layers are arranged to provide homeotropic alignment in the adjacent liquid crystal material. Advantageously a switchable privacy display may be provided with extended polar regions over which desirable security level may be achieved.
The display device may further comprise a reflective polariser, the reflective polariser being a linear polariser, and either: said display polariser may be an output display polariser arranged on the output side of the spatial light modulator, the second additional polariser may be arranged on the same side of the spatial light modulator as the first additional polariser outside the first additional polariser, the at least one second polar control retarder may be arranged between the first additional polariser and the second additional polariser, and the reflective polariser may be arranged between the first additional polariser and the at least one second polar control retarder; or the display device may further comprise a backlight arranged to output light, the spatial light modulator may comprise a transmissive spatial light modulator arranged to receive output light from the backlight, said display polariser may be an input display polariser arranged on the input side of the spatial light modulator, and the display device may further comprise an output display polariser arranged on the output side of the spatial light modulator, the second additional polariser may be arranged on the output side of the spatial light modulator, and the at least one second polar control retarder may be arranged between the second additional polariser and the output display polariser, and the reflective polariser may be arranged between the output display polariser and at least one second polar control retarder. Advantageously in a privacy mode of operation, increased display reflectivity may be provided. In ambient illuminance, increased security level of the display may be achieved for snooper locations.
The switchable liquid crystal retarder of said one of the at least one first polar control retarder and the at least one second polar control retarder may have a retardance for light of a wavelength of 550 nm having a first retardance value and the switchable liquid crystal retarder of said other the at least one first polar control retarder and the at least one second polar control retarder may have a retardance for light of a wavelength of 550 nm has a second retardance value, and either: the first retardance value may be greater than the second retardance value and the magnitude of the difference between half the first retardance value and the second retardance value is at most 400 nm; or the first retardance value may be less than the second retardance value and the magnitude of the difference between the first retardance value and half the second retardance value may be at most 400 nm. The first retardance value may be greater than the second retardance value and the magnitude of the difference between half the first retardance value and the second retardance value may be at most 400 nm. Advantageously the size of the polar region for desirable security level is increased. The privacy switch-on angle may be reduced.
The first retardance value may be in a range from 700 nm to 2500 nm, preferably in a range from 850 nm to 1800 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 600 nm to 1600 nm, preferably in a range from 750 nm to 1300 nm, the second retardance value may be in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −800 nm, preferably in a range from −400 nm to −800 nm. The first retardance value may be less than the second retardance value and the magnitude of the difference between the first retardance value and half the second retardance value may be at most 400 nm. The first retardance value may be in a range from 450 nm to 900 nm, preferably in a range from 550 nm to 800 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 250 nm to 800 nm, preferably in a range from 400 nm to 625 nm, the second retardance value may be in a range from 700 nm to 2500 nm, preferably in a range from 1000 nm to 1800 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −700 nm to −2500 nm, preferably in a range from −900 nm to −1800 nm. The first retardance value may be in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm, the second retardance value may be in a range from 700 nm to 2500 nm, preferably in a range from 1000 nm to 1800 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −700 nm to −2500 nm, preferably in a range from −900 nm to −1800 nm. Advantageously the size of the polar region for desirable security level is increased. The privacy switch-on angle may be reduced.
The retardance of the switchable liquid crystal retarder of the at least one first polar control retarder may be less than the retardance of the switchable liquid crystal retarder of the at least one second polar control retarder. The display device may not comprise a reflective polariser, and the switchable liquid crystal retarder of said one of the at least one first polar control retarder and the at least one second polar control retarder may have a retardance for light of a wavelength of 550 nm having a first retardance value and the switchable liquid crystal retarder of said other the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm may have a second retardance value, the magnitude of the difference between the first retardance value and the second retardance value may be at most 400 nm. Advantageously the size of the polar region for desirable security level is increased.
Said one of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed. The first retardance value may be in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said pair of passive uniaxial retarders of said one of the at least one first polar control retarder and the at least one second polar control retarder each have a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm. Advantageously in arrangements wherein the polar control retarder comprises two homogeneous alignment layers, the size of the polar region for desirable security level is increased.
Said other of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder. The second retardance value may be in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said passive uniaxial retarder of said other of the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm. Advantageously the thickness and cost of the passive retarder may be reduced.
Said surface alignment layers of said one of the at least one first polar control retarder and the at least one second polar control retarder have pretilts having pretilt directions with components in the plane of the layer of liquid crystal material in a first pair of anti-parallel directions, and said surface alignment layers of said other of the at least one first polar control retarder and the at least one second polar control retarder have pretilts having pretilt directions with components in the plane of the layer of liquid crystal material in a second pair of anti-parallel directions, the first pair of anti-parallel directions being crossed with the second pair of anti-parallel directions. The first pair of anti-parallel directions are at 90 degrees to the second pair of anti-parallel directions, as viewed normal the planes of the layers of liquid crystal material of the at least one first polar control retarder and the at least one second polar control retarder. An emissive display may be provided to operate in a privacy mode for both landscape and portrait operation.
The switchable liquid crystal retarder of said one of the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm having a first retardance value and the switchable liquid crystal retarder of said other the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm has a second retardance value, the magnitude of the difference between the first retardance value and the second retardance value may be at most 400 nm. Advantageously polar regions with desirable security level may be achieved in both lateral and elevation directions. A switchable privacy display may be provided in landscape and portrait directions. In an automotive use, reflections from windscreens may be reduced.
Said one of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed. The first retardance value may be in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said pair of passive uniaxial retarders of said one of the at least one first polar control retarder and the at least one second polar control retarder each have a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm. Said other of the at least one first polar control retarder and the at least one second polar control retarder may further comprise a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder. The second retardance value may be in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said passive uniaxial retarder of said other of the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm. Advantageously the size of the polar region for desirable visual security may be increased.
The spatial light modulator may comprise an emissive spatial light modulator arranged to output light, the emissive spatial light modulator comprising an array of pixels arranged in a pixel layer, the display polariser may be an output display polariser arranged on the output side of the emissive spatial light modulator, the second additional polariser may be arranged on the output side of the spatial light modulator outside the first additional polariser, and the at least one second polar control retarder may be arranged between the first additional polariser and the second additional polariser, the display device may further comprise a parallax barrier forming an array of apertures, wherein the parallax barrier may be separated from the pixel layer by a parallax distance along an axis along a normal to the plane of the pixel layer, each pixel being aligned with an aperture, and the retardance of the switchable liquid crystal retarder of the at least one second polar control retarder may be less than the retardance of the switchable liquid crystal retarder of the at least one first polar control retarder. Advantageously a switchable privacy display may be provided with increased security level for off-axis snooper locations. An emissive display may be provided to operate in a privacy mode for both landscape and portrait operation.
Said one of the at least one first polar control retarder and the at least one second polar control retarder may be the at least one second polar control retarder, the switchable liquid crystal retarder of the at least one second polar control retarder may have a retardance for light of a wavelength of 550 nm in a range from 200 nm to 550 nm, preferably from 350 nm to 550 nm, the at least one second polar control retarder may further comprise a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 150 nm to 550 nm, preferably in a range from 250 nm to 450 nm, said other of the at least one first polar control retarder and the at least one second polar control retarder may be the at least one first polar control retarder, the switchable liquid crystal retarder of the at least one first polar control retarder may have a retardance for light of a wavelength of 550 nm in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and the at least one first polar control retarder may further comprise a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −1000 nm, preferably in a range from −400 nm to −800 nm.
The spatial light modulator may comprise an emissive spatial light modulator arranged to output light, the display polariser may be an output display polariser arranged on the output side of the emissive spatial light modulator, the second additional polariser may be arranged on the output side of the spatial light modulator outside the first additional polariser, and the at least one second polar control retarder may be arranged between the first additional polariser and the second additional polariser. Advantageously a privacy display may be provided for an emissive spatial light modulator.
The emissive spatial light modulator may comprise an array of pixels arranged in a pixel layer, and the display device may further comprise a parallax barrier forming an array of apertures, wherein the parallax barrier may be separated from the pixel layer by a parallax distance along an axis along a normal to the plane of the pixel layer, each pixel being aligned with an aperture. The emissive spatial light modulator may have an output luminance profile having a full width half maximum that may be at most 40 degrees. Advantageously a switchable privacy display may be provided with increased security level for off-axis snooper locations. An emissive display may be provided to operate in a privacy mode for both landscape and portrait operation.
The display device may comprise a backlight arranged to output light, and the spatial light modulator may comprise a transmissive spatial light modulator arranged to receive output light from the backlight. The backlight may have an output luminance profile having a full width half maximum that may be at most 40 degrees. Advantageously a privacy display may be provided for a transmissive displays. The backlight may be provided with reduced cone angle. The polar area for desirable security level may be increased.
Said display polariser may be an input display polariser arranged on the input side of the spatial light modulator; the first additional polariser may be arranged between the backlight and the input display polariser; and the second additional polariser may be arranged on the same side of the spatial light modulator as the first additional polariser between the backlight and the first additional polariser, and the at least one second polar control retarder may be arranged between the first additional polariser and the second additional polariser. Advantageously the visibility of frontal reflections from the front surface of the display device may be reduced.
The at least one first polar control retarder and the at least one second polar control retarder may further comprise at least one passive compensation retarder. The at least one passive compensation retarder of the at least one first polar control retarder and the at least one second polar control retarder may comprise either: a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder; or a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed.
Said other of the at least one first polar control retarder and the at least one second polar control retarder may be between the backlight and the transmissive spatial light modulator. Advantageously the visibility of defects that may arise from material flow under applied pressure may be reduced. A touch screen apparatus may be provided with the privacy display.
Said one of the at least one first polar control retarder and the at least one second polar control retarder may be on the output side of said other of the at least one first polar control retarder and the at least one second polar control retarder.
Any of the aspects of the present disclosure may be applied in any combination.
Embodiments of the present disclosure may be used in a variety of optical systems. The embodiments may include or work with a variety of projectors, projection systems, optical components, displays, microdisplays, computer systems, processors, self-contained projector systems, visual and/or audio-visual systems and electrical and/or optical devices. Aspects of the present disclosure may be used with practically any apparatus related to optical and electrical devices, optical systems, presentation systems or any apparatus that may contain any type of optical system. Accordingly, embodiments of the present disclosure may be employed in optical systems, devices used in visual and/or optical presentations, visual peripherals and so on and in a number of computing environments.
Before proceeding to the disclosed embodiments in detail, it should be understood that the disclosure is not limited in its application or creation to the details of the particular arrangements shown, because the disclosure is capable of other embodiments. Moreover, aspects of the disclosure may be set forth in different combinations and arrangements to define embodiments unique in their own right. Also, the terminology used herein is for the purpose of description and not of limitation.
These and other advantages and features of the present disclosure will become apparent to those of ordinary skill in the art upon reading this disclosure in its entirety.
Embodiments are illustrated by way of example in the accompanying FIGURES, in which like reference numbers indicate similar parts, and in which:
Terms related to optical retarders for the purposes of the present disclosure will now be described.
In a layer comprising a uniaxial birefringent material there is a direction governing the optical anisotropy whereas all directions perpendicular to it (or at a given angle to it) have equivalent birefringence.
The optical axis of an optical retarder refers to the direction of propagation of a light ray in the uniaxial birefringent material in which no birefringence is experienced. This is different from the optical axis of an optical system which may for example be parallel to a line of symmetry or normal to a display surface along which a principal ray propagates.
For light propagating in a direction orthogonal to the optical axis, the optical axis is the slow axis when linearly polarized light with an electric vector direction parallel to the slow axis travels at the slowest speed. The slow axis direction is the direction with the highest refractive index at the design wavelength. Similarly the fast axis direction is the direction with the lowest refractive index at the design wavelength.
For positive dielectric anisotropy uniaxial birefringent materials the slow axis direction is the extraordinary axis of the birefringent material. For negative dielectric anisotropy uniaxial birefringent materials the fast axis direction is the extraordinary axis of the birefringent material.
The terms half a wavelength and quarter a wavelength refer to the operation of a retarder for a design wavelength λ0 that may typically be between 500 nm and 570 nm. In the present illustrative embodiments exemplary retardance values are provided for a wavelength of 550 nm unless otherwise specified.
The retarder provides a phase shift between two perpendicular polarization components of the light wave incident thereon and is characterized by the amount of relative phase, Γ, that it imparts on the two polarization components; which is related to the birefringence Δn and the thickness d of the retarder by
Γ=2·π·Δn·d/λ0 eqn. 1
In eqn. 1, Δn is defined as the difference between the extraordinary and the ordinary index of refraction, i.e.
Δn=ne−no eqn. 2
For a half-wave retarder, the relationship between d, Δn, and λ0 is chosen so that the phase shift between polarization components is Γ=π. For a quarter-wave retarder, the relationship between d, Δn, and λ0 is chosen so that the phase shift between polarization components is Γ=π/2.
The term half-wave retarder herein typically refers to light propagating normal to the retarder and normal to the spatial light modulator.
Some aspects of the propagation of light rays through a transparent retarder between a pair of polarisers will now be described.
The state of polarisation (SOP) of a light ray is described by the relative amplitude and phase shift between any two orthogonal polarization components. Transparent retarders do not alter the relative amplitudes of these orthogonal polarisation components but act only on their relative phase. Providing a net phase shift between the orthogonal polarisation components alters the SOP whereas maintaining net relative phase preserves the SOP. In the current description, the SOP may be termed the polarisation state.
A linear SOP has a polarisation component with a non-zero amplitude and an orthogonal polarisation component which has zero amplitude.
A linear polariser transmits a unique linear SOP that has a linear polarisation component parallel to the electric vector transmission direction of the linear polariser and attenuates light with a different SOP. The term “electric vector transmission direction” refers to a non-directional axis of the polariser parallel to which the electric vector of incident light is transmitted, even though the transmitted “electric vector” always has an instantaneous direction. The term “direction” is commonly used to describe this axis.
Absorbing polarisers are polarisers that absorb one polarisation component of incident light and transmit a second orthogonal polarisation component. Examples of absorbing linear polarisers are dichroic polarisers.
Reflective polarisers are polarisers that reflect one polarisation component of incident light and transmit a second orthogonal polarisation component. Examples of reflective polarisers that are linear polarisers are multilayer polymeric film stacks such as DBEF™ or APF™ from 3M Corporation, or wire grid polarisers such as ProFlux™ from Moxtek. Reflective linear polarisers may further comprise cholesteric reflective materials and a quarter waveplate arranged in series.
A retarder arranged between a linear polariser and a parallel linear analysing polariser that introduces no relative net phase shift provides full transmission of the light other than residual absorption within the linear polariser.
A retarder that provides a relative net phase shift between orthogonal polarisation components changes the SOP and provides attenuation at the analysing polariser.
In the present disclosure an ‘A-plate’ refers to an optical retarder utilizing a layer of birefringent material with its optical axis parallel to the plane of the layer.
A ‘positive A-plate’ refers to positively birefringent A-plates, i.e. A-plates with a positive Δn.
In the present disclosure a ‘C-plate’ refers to an optical retarder utilizing a layer of birefringent material with its optical axis perpendicular to the plane of the layer. A ‘positive C-plate’ refers to positively birefringent C-plate, i.e. a C-plate with a positive Δn. A ‘negative C-plate’ refers to a negatively birefringent C-plate, i.e. a C-plate with a negative Δn.
‘O-plate’ refers to an optical retarder utilizing a layer of birefringent material with its optical axis having a component parallel to the plane of the layer and a component perpendicular to the plane of the layer. A ‘positive O-plate’ refers to positively birefringent O-plates, i.e. O-plates with a positive Δn.
Achromatic retarders may be provided wherein the material of the retarder is provided with a retardance Δn. d that varies with wavelength λ as
Δn·d/λ=κ eqn. 3
where κ is substantially a constant.
Examples of suitable materials include modified polycarbonates from Teijin Films. Achromatic retarders may be provided in the present embodiments to advantageously minimise color changes between polar angular viewing directions which have low luminance reduction and polar angular viewing directions which have increased luminance reductions as will be described below.
Various other terms used in the present disclosure related to retarders and to liquid crystals will now be described.
A liquid crystal cell has a retardance given by Δn. d where Δn is the birefringence of the liquid crystal material in the liquid crystal cell and d is the thickness of the liquid crystal cell, independent of the alignment of the liquid crystal material in the liquid crystal cell.
Homogeneous alignment refers to the alignment of liquid crystals in switchable liquid crystal displays where molecules align substantially parallel to a substrate. Homogeneous alignment is sometimes referred to as planar alignment. Homogeneous alignment may typically be provided with a small pre-tilt such as 2 degrees, so that the molecules at the surfaces of the alignment layers of the liquid crystal cell are slightly inclined as will be described below. Pretilt is arranged to minimise degeneracies in switching of cells.
In the present disclosure, homeotropic alignment is the state in which rod-like liquid crystalline molecules align substantially perpendicularly to the substrate. In discotic liquid crystals homeotropic alignment is defined as the state in which an axis of the column structure, which is formed by disc-like liquid crystalline molecules, aligns perpendicularly to a surface. In homeotropic alignment, pretilt is the tilt angle of the molecules that are close to the alignment layer and is typically close to 90 degrees and for example may be 88 degrees.
In a twisted liquid crystal layer a twisted configuration (also known as a helical structure or helix) of nematic liquid crystal molecules is provided. The twist may be achieved by means of a non-parallel alignment of alignment layers. Further, cholesteric dopants may be added to the liquid crystal material to break degeneracy of the twist direction (clockwise or anti-clockwise) and to further control the pitch of the twist in the relaxed (typically undriven) state. A supertwisted liquid crystal layer has a twist of greater than 180 degrees. A twisted nematic layer used in spatial light modulators typically has a twist of 90 degrees.
Liquid crystal molecules with positive dielectric anisotropy are switched from a homogeneous alignment (such as an A-plate retarder orientation) to a homeotropic alignment (such as a C-plate or O-plate retarder orientation) by means of an applied electric field.
Liquid crystal molecules with negative dielectric anisotropy are switched from a homeotropic alignment (such as a C-plate or O-plate retarder orientation) to a homogeneous alignment (such as an A-plate retarder orientation) by means of an applied electric field.
Rod-like molecules have a positive birefringence so that ne>no as described in eqn. 2. Discotic molecules have negative birefringence so that ne<no.
Positive retarders such as A-plates, positive O-plates and positive C-plates may typically be provided by stretched films or rod-like liquid crystal molecules. Negative retarders such as negative C-plates may be provided by stretched films or discotic like liquid crystal molecules.
Parallel liquid crystal cell alignment refers to the alignment direction of homogeneous alignment layers being parallel or more typically antiparallel. In the case of pre-tilted homeotropic alignment, the alignment layers may have components that are substantially parallel or antiparallel. Hybrid aligned liquid crystal cells may have one homogeneous alignment layer and one homeotropic alignment layer. Twisted liquid crystal cells may be provided by alignment layers that do not have parallel alignment, for example oriented at 90 degrees to each other.
Transmissive spatial light modulators may further comprise retarders between the input display polariser and the output display polariser for example as disclosed in U.S. Pat. No. 8,237,876, which is herein incorporated by reference in its entirety. Such retarders (not shown) are in a different place to the passive retarders of the present embodiments. Such retarders compensate for contrast degradations for off-axis viewing locations, which is a different effect to the luminance reduction for off-axis viewing positions of the present embodiments.
A private mode of operation of a display is one in which an observer sees a low contrast sensitivity such that an image is not clearly visible. Contrast sensitivity is a measure of the ability to discern between luminances of different levels in a static image. Inverse contrast sensitivity may be used as a measure of visual security, in that a high visual security level (VSL) corresponds to low image visibility.
For a privacy display providing an image to an observer, visual security may be given as:
V=(Y+R)/(Y−K) eqn. 4
where V is the visual security level (VSL), Y is the luminance of the white state of the display at a snooper viewing angle, K is the luminance of the black state of the display at the snooper viewing angle and R is the luminance of reflected light from the display.
Panel contrast ratio is given as:
C=Y/K eqn. 5
so the visual security level may be further given as:
V=(P·Ymax+I·ρ/π)/(P·(Ymax−Ymax/C)) eqn. 6
where: Ymax is the maximum luminance of the display; P is the off-axis relative luminance typically defined as the ratio of luminance at the snooper angle to the maximum luminance Ymax; C is the image contrast ratio; ρ is the surface reflectivity; and I is the illuminance. The units of Ymax are the units of I divided by solid angle in units of steradian.
The luminance of a display varies with angle and so the maximum luminance of the display Ymax occurs at a particular angle that depends on the configuration of the display.
In many displays, the maximum luminance Ymax occurs head-on, i.e. normal to the display. Any display device disclosed herein may be arranged to have a maximum luminance Ymax that occurs head-on, in which case references to the maximum luminance of the display device Ymax may be replaced by references to the luminance normal to the display device.
Alternatively, any display described herein may be arranged to have a maximum luminance Ymax that occurs at a polar angle to the normal to the display device that is greater than 0°. By way of example, the maximum luminance Ymax may occur may at a non-zero polar angle and at an azimuth angle that has for example zero lateral angle so that the maximum luminance is for an on-axis user that is looking down on to the display device. The polar angle may for example be 10 degrees and the azimuthal angle may be the northerly direction (90 degrees anti-clockwise from easterly direction). The viewer may therefore desirably see a high luminance at typical non-normal viewing angles.
The off-axis relative luminance, P is sometimes referred to as the privacy level. However, such privacy level P describes relative luminance of a display at a given polar angle compared to head-on luminance, and in fact is not a measure of privacy appearance.
The illuminance, I is the luminous flux per unit area that is incident on the display and reflected from the display towards the observer location. For Lambertian illuminance, and for displays with a Lambertian front diffuser illuminance I is invariant with polar and azimuthal angles. For arrangements with a display with non-Lambertian front diffusion arranged in an environment with directional (non-Lambertian) ambient light, illuminance I varies with polar and azimuthal angle of observation.
Thus in a perfectly dark environment, a high contrast display has VSL of approximately 1.0. As ambient illuminance increases, the perceived image contrast degrades, VSL increases and a private image is perceived.
For typical liquid crystal displays the panel contrast C is above 100:1 for almost all viewing angles, allowing the visual security level to be approximated to:
V=1+I·ρ/(π·P·Ymax) eqn. 7
In the present embodiments, in addition to the exemplary definition of eqn. 4, other measurements of visual security level, V may be provided, for example to include the effect on image visibility to a snooper of snooper location, image contrast, image colour and white point and subtended image feature size. Thus the visual security level may be a measure of the degree of privacy of the display but may not be restricted to the parameter V.
The perceptual image security may be determined from the logarithmic response of the eye, such that
S=log10(V) eqn. 8
Desirable limits for S were determined in the following manner. In a first step a privacy display device was provided. Measurements of the variation of privacy level, P(θ) of the display device with polar viewing angle and variation of reflectivity ρ(θ) of the display device with polar viewing angle were made using photopic measurement equipment. A light source such as a substantially uniform luminance light box was arranged to provide illumination from an illuminated region that was arranged to illuminate the privacy display device along an incident direction for reflection to a viewer positions at a polar angle of greater than 0° to the normal to the display device. The variation I(θ) of illuminance of a substantially Lambertian emitting lightbox with polar viewing angle was determined by and measuring the variation of recorded reflective luminance with polar viewing angle taking into account the variation of reflectivity ρ(θ). The measurements of P(θ), r(θ) and I(θ) were used to determine the variation of Security Factor S(θ) with polar viewing angle along the zero elevation axis.
In a second step a series of high contrast images were provided on the privacy display including (i) small text images with maximum font height 3 mm, (ii) large text images with maximum font height 30 mm and (iii) moving images.
In a third step each observer (with eyesight correction for viewing at 1000 mm where appropriate) viewed each of the images from a distance of 1000 mm, and adjusted their polar angle of viewing at zero elevation until image invisibility was achieved for one eye from a position near on the display at or close to the centre-line of the display. The polar location of the observer's eye was recorded. From the relationship S(θ), the security factor at said polar location was determined. The measurement was repeated for the different images, for various display luminance Ymax, different lightbox illuminance I(θ=0), for different background lighting conditions and for different observers.
From the above measurements S<1.0 provides low or no visual security, 1.0≤S<1.5 provides visual security that is dependent on the contrast, spatial frequency and temporal frequency of image content, 1.5≤S<1.8 provides acceptable image invisibility (that is no image contrast is observable) for most images and most observers and S≥1.8 provides full image invisibility, independent of image content for all observers.
In practical display devices, this means that it is desirable to provide a value of S for an off-axis viewer who is a snooper that meets the relationship S≥Smin, where: Smin has a value of 1.0 or more to achieve the effect that the off-axis viewer cannot perceive the displayed image; Smin has a value of 1.5 or more to achieve the effect that the displayed image is invisible, i.e. the viewer cannot perceive even that an image is being displayed, for most images and most observers; or Smin has a value of 1.8 or more to achieve the effect that the displayed image is invisible independent of image content for all observers.
In comparison to privacy displays, desirably wide angle displays are easily observed in standard ambient illuminance conditions. One measure of image visibility is given by the contrast sensitivity such as the Michelson contrast which is given by:
M=(Imax−Imin)/(Imax+Imin) eqn. 9
and so:
M=((Y+R)−(K+R))/((Y+R)+(K+R))=(Y−K)/(Y+K+2·R) eqn. 10
Thus the visual security level (VSL), V is equivalent (but not identical to) 1/M. In the present discussion, for a given off-axis relative luminance, P the wide angle image visibility, W is approximated as
W=1/V=1/(1+I·ρ/(π·P·Ymax)) eqn. 11
The above discussion focusses on reducing visibility of the displayed image to an off-axis viewer who is a snooper, but similar considerations apply to visibility of the displayed image to the intended user of the display device who is typically on-axis. In this case, decrease of the level of the visual security level (VSL) V corresponds to an increase in the visibility of the image to the viewer. During observation S<0.1 may provide acceptable visibility of the displayed image. In practical display devices, this means that it is desirable to provide a value of S for an on-axis viewer who is the intended user of the display device that meets the relationship S≤Smax, where Smax has a value of 0.1.
In the present discussion the colour variation Δε of an output colour (uw′+Δu′, vw′+Δv′) from a desirable white point (uw′, vw′) may be determined by the CIELUV colour difference metric, assuming a typical display spectral illuminant and is given by:
Δε=(Δu′2+Δv′2)1/2 eqn. 12
The structure and operation of various directional display devices will now be described. In this description, common elements have common reference numerals. It is noted that the disclosure relating to any element applies to each device in which the same or corresponding element is provided. Accordingly, for brevity such disclosure is not repeated.
The display device 100 comprises a spatial light modulator 48; wherein the spatial light modulator 48 comprises an emissive spatial light modulator 48 arranged to output light, the display polariser 218 is an output display polariser arranged on the output side of the emissive spatial light modulator 48, the display polariser 218 being a linear polariser.
A quarter waveplate 202 is arranged between the display polariser 218 and the pixel plane 214 to reduce frontal reflections from the pixel plane 214. Substrates 212, 216 are arranged to provide support of the pixel plane 214.
A first additional polariser 318A is arranged on the same side of the spatial light modulator 48 as the display polariser 218, the first additional polariser 318 being a linear polariser. The first additional polariser 318A is an absorbing polariser such as an iodine polariser on stretched PVA.
At least one first polar control retarder 300A is arranged between the first additional polariser 318A and the display polariser 218.
The display device 100 further comprises a second additional polariser 318B, the second additional polariser being a linear polariser; and at least one second polar control retarder 300B. The second additional polariser 318B is arranged on the output side of the spatial light modulator 48 outside the first additional polariser 318A, and the at least one second polar control retarder 318B is arranged between the first additional polariser 318A and the second additional polariser 31B.
Said display polariser 218 is an output display polariser arranged on the output side of the spatial light modulator 48, and the display device further comprises a reflective polariser 302 arranged between the first additional polariser 318A and at least one second polar control retarder 300B, the reflective polariser being a linear polariser.
Each of the at least one first polar control retarder 300A and the at least one second polar control retarder 300B comprises a respective switchable liquid crystal retarder 301A, 301B comprising a layer of liquid crystal material 314A, 314B, arranged between transparent substrates 312A, 312B and 316A, 316B respectively.
Each of the at least one first polar control retarder 300A and at least one second polar control retarder 300B further comprises at least one passive retarder 330A, 330B respectively.
In an alternative embodiment (not shown), reflective polariser 302 may be omitted.
The spatial light modulator 48 may take any suitable form. Some possible alternatives are as follows.
In operation the parallax barrier 700 is arranged to provide transmission of light ray 440 from pixel 224 in the normal direction to the spatial light modulator 48, and the aligned aperture 702 is arranged with an aperture size to provide high transmission. By comparison light rays 442 that are inclined at a non-zero polar angle, may be absorbed in the absorbing region 704. The separation d is provided to achieve a minimum transmission at a desirable polar angle in at least one azimuthal direction. Advantageously off-axis luminance is reduced, achieving increased security factor.
Further, reflectivity of the pixel plane may be reduced as incident ambient light is absorbed at the absorbing region 704. Quarter waveplate 202 of
Features of the embodiment of
Another alternative for the emissive spatial light modulator 48 for use in the arrangement of
The backlight may comprise a light guide plate (LGP) 1, light extraction layers 5 and rear reflector 3. The light extraction layers may comprise diffusers, light turning films or prism films. Light may be provided from an array of light sources such as LEDs 15 arranged at the edge of the LGP 1.
The output may be provide a wide angle luminance profile such as achieved using crossed BEF™ films from 3M corporation and may have a full width half maximum of greater than 50 degrees. The output may provide a narrow angle profile, such backlights may be termed collimated backlights and have a full width half maximum luminance of less than 50 degrees, for example 30 degrees. Examples of collimated backlights are illustrated in U.S. Pat. No. 10,935,714, which is herein incorporated by reference in its entirety. The backlight may comprise other types of structure including mini-LED arrays and known light distribution optics to achieve desirable uniformity. The backlight 20 may be further provided with a micro-louvre array arranged to reduce off-axis luminance output from the backlight 20. Advantageously security factor, S may be improved in comparison to wide angle backlights.
Alternative arrangements of polar control retarders and additional polarisers will now be described for display devices 100 comprising backlights 20.
The display device 100 further comprises an input display polariser 210 arranged on the input side of the spatial light modulator 48, and the display device 100 further comprises an output display polariser 218 arranged on the output side of the spatial light modulator 48, the first additional polariser 318A is arranged on the input side of the spatial light modulator 48 and the first polar control retarder 300A is arranged between the first additional polariser 318A and the input display polariser 210. The second additional polariser 318B is arranged on the output side of the spatial light modulator 48, and the at least one second polar control retarder 300B is arranged between the second additional polariser 318B and the output display polariser 218.
Second polar control retarder 300B is arranged between the input display polariser 210 of the spatial light modulator 48 and a second additional polariser 318B. Reflective polariser 302 is arranged between the output display polariser 218 and the second polar control retarder 318B. In an alternative embodiment (not shown), reflective polariser 302 may be omitted.
Advantageously the separation of the output of the second additional polariser 318B to the pixel plane 214 is reduced in comparison to the arrangements of
Features of the embodiment of
The embodiments of
A first polar control retarder 300A is arranged between the input display polariser 210 of the spatial light modulator 48 and a first additional polariser 318A; and a second polar control retarder 300B is arranged between the first additional polariser 318A and a second additional polariser 318B.
Reflective polariser 302 is omitted. In some environments such as certain automotive environments, reflective operation may be undesirable and front of display reflectivity may be reduced. Further cost may be reduced.
In comparison to the arrangements of
Features of the embodiment of
Arrangements of liquid crystal alignment for use in the retarders 300A, 300B of
Electrodes 413, 415 are arranged to apply a voltage from driver 350 across the liquid crystal material 421 in the layer 314. In a first driven state the liquid crystal molecules are arranged to provide no phase modification to input polarisation state in a normal direction to the polar control retarder and modified phase to an input polarisation state in directions at an angle to the normal direction to the polar control retarder 300. Such a driven state may be provided for privacy mode operation.
In a second driven state the liquid crystal molecules are arranged to provide no phase modification to input polarisation state in a normal direction to the polar control retarder and modified phase to an input polarisation state in directions at an angle to the normal direction to the polar control retarder 300. Such a driven state may be provided for public (or share) mode operation.
Two surface alignment layers are disposed adjacent to the layer of liquid crystal material and on opposite sides thereof wherein both of the surface alignment layers 417A, 417B are arranged to provide homogenous alignment in the adjacent liquid crystal material.
The pretilt directions 419A, 419B of the alignment layers 417A, 417B have a component 419Ay, 419By in the plane of the alignment layers 417A, 417B that are antiparallel. The pretilt directions 419A, 419B refer to the alignment of the liquid crystal molecules 421 that are adjacent to said layers.
The pretilt angle is the angle between the directions 419A and 419Ay, and between directions 419B and 419By respectively.
In some of the embodiments described hereinbelow, the components 419AAy, 419ABy of the first liquid crystal retarder 301A may be parallel or anti-parallel to the components 419BAy, 419BBy of the second liquid crystal retarder 301B. In others of the embodiments described hereinbelow, the components 419AAy, 419ABy of the first liquid crystal retarder 301A may be orthogonal to the components 419BAy, 419BBy of the second liquid crystal retarder 301B.
Referring to
Alternative arrangements to the arrangement of
The at least one passive compensation retarder of said other of the at least one first polar control retarder and the at least one second polar control retarder comprises either: a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder; or a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed.
Features of the embodiment of
In the present embodiments for any of
The operation of the polar control retarders in a ‘public’ or ‘share’ mode of operation will now be described.
In public mode, rays 402 with a non-zero polar angle to the normal direction are also transmitted with the same polarisation state 360 that is substantially not modified by the polar control retarders 300A, 300B and polarisers 318A, 302 and 318B. The polar profile of luminance from the spatial light modulator may be substantially unmodified. Advantageously the display may be visible from a wide range of polar viewing positions and viewable by multiple display users.
The operation of the polar control retarders in a private mode of operation will now be described.
By comparison light ray 406 undergoes a phase modulation at the polar control retarder 300B such that state 364 illuminates the reflective polariser. The resolved polarisation state 366 that is orthogonal to the electric vector transmission direction 303 of the reflective polariser 302 is reflected and is passed through the polar retarder such that polarisation state 368 is incident on to the second additional polariser. The component of the state 368 that is parallel to the electric vector transmission direction of the polariser 318B is thus transmitted. To an off-axis observer, the display appears to have increased reflectivity. Said increased reflectivity advantageously achieves increased security factor, S as described above.
Features of the embodiments of
The operation of
The embodiments of
It may be desirable to provide a switchable privacy display with narrow angle privacy switch-on and with a wide angle public mode.
The illustrative embodiment of TABLE 1A will now be discussed with reference to
In the illustrative embodiment of TABLE 1A, the switchable liquid crystal retarder of said one (with homogeneous alignment layers 417A, 417B) of the at least one first polar control retarder 300A and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm having a first retardance value and the switchable liquid crystal retarder of said other (with homeotropic alignment layers 417A, 417B) the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm has a second retardance value, and either: the first retardance value is greater than the second retardance value and the magnitude of the difference between half the first retardance value and the second retardance value is at most 400 nm; or the first retardance value is less than the second retardance value and the magnitude of the difference between the first retardance value and half the second retardance value is at most 400 nm. In
Further the first retardance value is in a range from 700 nm to 2500 nm, preferably in a range from 850 nm to 1800 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder further comprises a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 600 nm to 1600 nm, preferably in a range from 750 nm to 1300 nm, the second retardance value is in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −800 nm, preferably in a range from −400 nm to −800 nm.
As described above, the security performance of the display can be determined using the polar variation of visual security level, S with polar viewing angle.
Advantageously luminance at high polar angles is suppressed by the polar control retarder with the lower retardance (polar control retarder 300A in TABLE 1A) and luminance at lower polar angles is suppressed by the polar control retarder with the higher retardance (polar control retarder 300B in TABLE 1A).
Thus the arrangement of
Other illustrate embodiments are illustrated in TABLES 1B-F and TABLE 2 compares the privacy switch-on angle 140 for each illustrative embodiment. In comparison to the arrangement of TABLE 1A, embodiments comprising a C-plate in comparison to the crossed A-plates may advantageously be thinner and cheaper.
In the illustrative embodiment of TABLE 1B the first retardance value (for homogeneous alignment layers 417A, 417B) is in a range from 450 nm to 900 nm, preferably in a range from 550 nm to 800 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder further comprises a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 250 nm to 800 nm, preferably in a range from 400 nm to 625 nm, the second retardance value (for homeotropic alignment layers 417A, 417B) is in a range from 700 nm to 2500 nm, preferably in a range from 1000 nm to 1800 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −700 nm to −2500 nm, preferably in a range from −900 nm to −1800 nm.
In the illustrative embodiments of TABLES 1B-C, the retardance of the second polar control retarder 300B is higher than the retardance of the first polar control retarder 300A. The first retardance value (for homogeneous alignment layers 417A, 417B) is less than the second retardance value (for homeotropic alignment layers 417A, 417B) and the magnitude of the difference between the first retardance value and half the second retardance value is at most 400 nm.
Further the first retardance value is in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm, the second retardance value is in a range from 700 nm to 2500 nm, preferably in a range from 1000 nm to 1800 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −700 nm to −2500 nm, preferably in a range from −900 nm to −1800 nm.
The retardance of the switchable liquid crystal retarder of the at least one first polar control retarder is less than the retardance of the switchable liquid crystal retarder of the at least one second polar control retarder.
In the illustrative embodiment of TABLE 1D, the first retardance value (for homogeneous alignment layers 417A, 417B) is in a range from 700 nm to 2500 nm, preferably in a range from 850 nm to 1800 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder further comprises a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 600 nm to 1600 nm, preferably in a range from 750 nm to 1300 nm, the second retardance value (for homeotropic alignment layers 417A, 417B) is in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −800 nm, preferably in a range from −400 nm to −800 nm.
In the illustrative embodiment of TABLE 1E the first retardance value (for homogeneous alignment layers 417A, 417B) is in a range from 450 nm to 900 nm, preferably in a range from 550 nm to 800 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder further comprises a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 250 nm to 800 nm, preferably in a range from 400 nm to 625 nm, the second retardance value (for homeotropic alignment layers 417A, 417B) is in a range from 700 nm to 2500 nm, preferably in a range from 1000 nm to 1800 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −700 nm to −2500 nm, preferably in a range from −900 nm to −1800 nm.
In TABLE 1F he first retardance value is in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said one of the at least one first polar control retarder and the at least one second polar control retarder a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm, the second retardance value is in a range from 700 nm to 2500 nm, preferably in a range from 1000 nm to 1800 nm, and said other of the at least one first polar control retarder and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −700 nm to −2500 nm, preferably in a range from −900 nm to −1800 nm.
The retardance of the switchable liquid crystal retarder of the at least one first polar control retarder is less than the retardance of the switchable liquid crystal retarder of the at least one second polar control retarder.
In alternative embodiments of the present disclosure illustrated in
In other alternatives, said one of the at least one first polar control retarder and the at least one second polar control retarder is on the output side of said other of the at least one first polar control retarder and the at least one second polar control retarder.
TABLE 2 further illustrates that desirably the second plural retarder comprises a higher retardance liquid crystal retarder 314B than the retardance of the first liquid crystal retarder 314A when a reflective polariser 302 is provided as illustrated in
It may be desirable to provide a switchable privacy display with no reflective polariser 302. Illustrative embodiments of TABLE 3, TABLES 4A-C and TABLE 5 will now be discussed. In these embodiments the display device does not comprise a reflective polariser, and the switchable liquid crystal retarder of said one (with homogeneous alignment layers 417A, 417B) of the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm having a first retardance value and the switchable liquid crystal retarder of said other (with homeotropic alignment layers 417A, 417B); the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm has a second retardance value, the magnitude of the difference between the first retardance value and the second retardance value is at most 400 nm.
The illustrative embodiment of TABLE 3 will now be discussed with reference to
The second control retarder with homogeneous alignment layers 417A, 417B further comprises a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed. The first retardance value is in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said pair of passive uniaxial retarders of said one of the at least one first polar control retarder and the at least one second polar control retarder each have a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm.
Said other (with homeotropic alignment layers 417A, 417B) of the at least one first polar control retarder and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder, wherein the second retardance value is in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said passive uniaxial retarder of said other of the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm.
Other illustrate embodiments are illustrated in TABLES 1B-F and TABLE 2 compares the privacy switch-on angle 140 for each illustrative embodiment. In comparison to the arrangement of TABLE 1A, embodiments comprising a C-plate in comparison to the crossed A-plates may advantageously be thinner and cheaper.
Advantageously a display may be provided with lower reflectivity in comparison to arrangements with reflective polariser 302. Such arrangements may be desirable in certain operating environments such as automotive cabins in bright sunlight.
It may be desirable to provide privacy displays that achieve high security level for off-axis viewing in both landscape and portrait modes of operation. TABLE 6 and
The illustrative embodiment of TABLE 6 will now be discussed as an alternative arrangement of FIGS. 1A-B and
Said surface alignment layers of said one of the at least one first polar control retarder and the at least one second polar control retarder have pretilts having pretilt directions with components in the plane of the layer of liquid crystal material in a first pair of anti-parallel directions, and said surface alignment layers of said other of the at least one first polar control retarder and the at least one second polar control retarder have pretilts having pretilt directions with components in the plane of the layer of liquid crystal material in a second pair of anti-parallel directions, the first pair of anti-parallel directions being crossed with the second pair of anti-parallel directions. The first pair of anti-parallel directions are at 90 degrees to the second pair of anti-parallel directions, as viewed normal the planes of the layers of liquid crystal material of the at least one first polar control retarder and the at least one second polar control retarder.
The switchable liquid crystal retarder of said one (with homogeneous alignment layers 417A, 417B) of the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm having a first retardance value and the switchable liquid crystal retarder of said other (with homeotropic alignment layers 417A, 417B) the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm has a second retardance value, the magnitude of the difference between the first retardance value and the second retardance value is at most 400 nm.
Said one (with homogeneous alignment layers 417A, 417B) of the at least one first polar control retarder and the at least one second polar control retarder further comprises a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed.
The first retardance value is in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said pair of passive uniaxial retarders of said one of the at least one first polar control retarder and the at least one second polar control retarder each have a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm.
Said other (with homeotropic alignment layers 417A, 417B) of the at least one first polar control retarder and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder.
The second retardance value is in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and said passive uniaxial retarder of said other of the at least one first polar control retarder and the at least one second polar control retarder has a retardance for light of a wavelength of 550 nm in a range from −300 nm to −700 nm, preferably in a range from −350 nm to −600 nm.
Advantageously a display may be provided with high visual security for landscape and portrait operation of a display in privacy mode, with high security factor for off-axis viewing locations. Such a display may be switched to a public mode of operation with security level similar to that illustrated in
In other embodiments the first polar control retarder may comprise homeotropic alignment layers, to advantageously achieve reduced power consumption. The first polar control retarder may comprise passive C-plate retarders to advantageously achieve reduced cost and complexity as described elsewhere herein. In alternative embodiments, the arrangements of TABLES 4A-C may be provided with orthogonal pretilt directions for the first and second polar control retarders in comparison to the parallel or anti-parallel arrangements indicated.
It may be desirable to provide privacy displays that achieve high security factor, S for off-axis viewing in both landscape and portrait modes of operation for an emissive display. The illustrative embodiment of TABLE 7 will now be discussed with reference to
The spatial light modulator 48 comprises an emissive spatial light modulator arranged to output light, the display polariser is an output display polariser 218 arranged on the output side of the emissive spatial light modulator 48, as illustrated in
The illustrative example of
As illustrated in
Said one (with homogeneous alignment layers 417A, 417B) of the at least one first polar control retarder and the at least one second polar control retarder is the at least one second polar control retarder 300B, the switchable liquid crystal retarder of the at least one second polar control retarder 300B has a retardance for light of a wavelength of 550 nm in a range from 200 nm to 550 nm, preferably from 350 nm to 550 nm. The at least one second polar control retarder 300B further comprises a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 150 nm to 550 nm, preferably in a range from 250 nm to 450 nm
Said other (with homeotropic alignment layers 417A, 417B) of the at least one first polar control retarder and the at least one second polar control retarder is the at least one first polar control retarder. The switchable liquid crystal retarder of the at least one first polar control retarder has a retardance for light of a wavelength of 550 nm in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and the at least one first polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −1000 nm, preferably in a range from −400 nm to −800 nm.
Advantageously a display that provides desirable security factor, S in landscape and portrait operation may be provided. In comparison to the embodiment of TABLE 6, the desirable retardance of the first polar control retarder is reduced. Such a polar control retarder provides high angle luminance reduction, while the parallax barrier 700 provides lower angle luminance reduction. Advantageously increased uniformity of security factor is achieved in an emissive display.
Thus said one (with homogeneous alignment layers 417A, 417B) of the at least one first polar control retarder and the at least one second polar control retarder is the at least one first polar control retarder, the switchable liquid crystal retarder of the at least one first polar control retarder has a retardance for light of a wavelength of 550 nm in a range from 200 nm to 550 nm, preferably from 350 nm to 550 nm, the at least one first polar control retarder further comprises a pair of passive uniaxial retarders having optical axes in the plane of the retarders that are crossed and each having a retardance for light of a wavelength of 550 nm in a range from 150 nm to 550 nm, preferably in a range from 250 nm to 450 nm.
Said other (with homeotropic alignment layers 417A, 417B) of the at least one second polar control retarder and the at least one first polar control retarder is the at least one second polar control retarder 300B. The switchable liquid crystal retarder of the at least one second polar control retarder 300B has a retardance for light of a wavelength of 550 nm in a range from 500 nm to 900 nm, preferably in a range from 600 nm to 850 nm, and the at least one second polar control retarder further comprises a passive uniaxial retarder having its optical axis perpendicular to the plane of the retarder and having a retardance for light of a wavelength of 550 nm in a range from −300 nm to −1000 nm, preferably in a range from −400 nm to −800 nm.
In alternative embodiments the polar control retarder may comprise passive C-plate retarders rather than crossed A-plates to advantageously achieve reduced cost and complexity.
In the alternatives of
For each polar control retarder 300A, 300B that comprises a liquid crystal retarder 314A, 314B with two homogeneous alignment layers 417A, 417B then the respective passive retarder 330A, 330B or pair of crossed passive retarders 330AA, 330AB or 330BA, 330BB may be arranged to either receive light from the respective liquid crystal retarder 314A, 314B; or the liquid crystal retarder 314A, 314B may be arranged to receive light from the respective passive retarder 330A, 330B or pair of crossed passive retarders 330AA, 330AB or 330BA, 330BB.
For the alternatives of
The alternatives of
As may be used herein, the terms “substantially” and “approximately” provide an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from zero percent to ten percent and corresponds to, but is not limited to, component values, angles, et cetera. Such relativity between items ranges between approximately zero percent to ten percent.
While various embodiments in accordance with the principles disclosed herein have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of this disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with any claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the embodiment(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background” is not to be construed as an admission that certain technology is prior art to any embodiment(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the embodiment(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple embodiments may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the embodiment(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3914022 | Kashnow | Oct 1975 | A |
4059916 | Tachihara et al. | Nov 1977 | A |
4586790 | Umeda et al. | May 1986 | A |
4621898 | Cohen | Nov 1986 | A |
4974941 | Gibbons et al. | Dec 1990 | A |
5005108 | Pristash et al. | Apr 1991 | A |
5035491 | Kawagishi et al. | Jul 1991 | A |
5126882 | Oe et al. | Jun 1992 | A |
5608550 | Epstein et al. | Mar 1997 | A |
5658490 | Sharp et al. | Aug 1997 | A |
5671994 | Tai et al. | Sep 1997 | A |
5715028 | Abileah et al. | Feb 1998 | A |
5779337 | Saito et al. | Jul 1998 | A |
5791757 | O'Neil et al. | Aug 1998 | A |
5808784 | Ando et al. | Sep 1998 | A |
5835166 | Hall et al. | Nov 1998 | A |
5854872 | Tai | Dec 1998 | A |
5894361 | Yamazaki et al. | Apr 1999 | A |
5914760 | Daiku | Jun 1999 | A |
5997148 | Ohkawa | Dec 1999 | A |
6055103 | Woodgate et al. | Apr 2000 | A |
6099758 | Verrall et al. | Aug 2000 | A |
6144433 | Tillin et al. | Nov 2000 | A |
6169589 | Kaneko | Jan 2001 | B1 |
6204904 | Tillin et al. | Mar 2001 | B1 |
6222672 | Towler et al. | Apr 2001 | B1 |
6280043 | Ohkawa | Aug 2001 | B1 |
6364497 | Park et al. | Apr 2002 | B1 |
6379016 | Boyd et al. | Apr 2002 | B1 |
6392727 | Larson et al. | May 2002 | B1 |
6437915 | Moseley et al. | Aug 2002 | B2 |
6731355 | Miyashita | May 2004 | B2 |
6752505 | Parker et al. | Jun 2004 | B2 |
7067985 | Adachi | Jun 2006 | B2 |
7072096 | Holman et al. | Jul 2006 | B2 |
7163319 | Kuo et al. | Jan 2007 | B2 |
7227602 | Jeon et al. | Jun 2007 | B2 |
7366392 | Honma et al. | Apr 2008 | B2 |
7524542 | Kim et al. | Apr 2009 | B2 |
7528893 | Schultz et al. | May 2009 | B2 |
7528913 | Kobayashi | May 2009 | B2 |
7633586 | Winlow et al. | Dec 2009 | B2 |
7660047 | Travis et al. | Feb 2010 | B1 |
7766534 | Iwasaki | Aug 2010 | B2 |
7834834 | Takatani et al. | Nov 2010 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7991257 | Coleman | Aug 2011 | B1 |
8070346 | Maeda et al. | Dec 2011 | B2 |
8098350 | Sakai et al. | Jan 2012 | B2 |
8154686 | Mather et al. | Apr 2012 | B2 |
8237876 | Tan et al. | Aug 2012 | B2 |
8249408 | Coleman | Aug 2012 | B2 |
8262271 | Tillin et al. | Sep 2012 | B2 |
8469575 | Weber et al. | Jun 2013 | B2 |
8646931 | Choi et al. | Feb 2014 | B2 |
8801260 | Urano et al. | Aug 2014 | B2 |
8848132 | O'Neill et al. | Sep 2014 | B2 |
8939595 | Choi et al. | Jan 2015 | B2 |
8973149 | Buck | Mar 2015 | B2 |
9195087 | Terashima | Nov 2015 | B2 |
9274260 | Urano et al. | Mar 2016 | B2 |
9304241 | Wang et al. | Apr 2016 | B2 |
9324234 | Ricci et al. | Apr 2016 | B2 |
9448355 | Urano et al. | Sep 2016 | B2 |
9501036 | Kang et al. | Nov 2016 | B2 |
9519153 | Robinson et al. | Dec 2016 | B2 |
9541698 | Wheatley et al. | Jan 2017 | B2 |
10054732 | Robinson et al. | Aug 2018 | B2 |
10067726 | Wakamoto et al. | Sep 2018 | B2 |
10126575 | Robinson et al. | Nov 2018 | B1 |
10146093 | Sakai et al. | Dec 2018 | B2 |
10216018 | Fang et al. | Feb 2019 | B2 |
10303030 | Robinson et al. | May 2019 | B2 |
10401638 | Robinson et al. | Sep 2019 | B2 |
10488705 | Xu et al. | Nov 2019 | B2 |
10527775 | Yang et al. | Jan 2020 | B2 |
10627670 | Robinson et al. | Apr 2020 | B2 |
10649248 | Jiang et al. | May 2020 | B1 |
10649259 | Lee et al. | May 2020 | B2 |
10712608 | Robinson et al. | Jul 2020 | B2 |
10935714 | Woodgate et al. | Mar 2021 | B2 |
10976578 | Robinson et al. | Apr 2021 | B2 |
11016341 | Robinson et al. | May 2021 | B2 |
11070791 | Woodgate et al. | Jul 2021 | B2 |
11079645 | Harrold et al. | Aug 2021 | B2 |
11099448 | Woodgate et al. | Aug 2021 | B2 |
11237417 | Woodgate | Feb 2022 | B2 |
11442316 | Woodgate et al. | Sep 2022 | B2 |
20010024561 | Cornelissen et al. | Sep 2001 | A1 |
20020015300 | Katsu et al. | Feb 2002 | A1 |
20020024529 | Miller et al. | Feb 2002 | A1 |
20020171793 | Sharp et al. | Nov 2002 | A1 |
20030030764 | Lee | Feb 2003 | A1 |
20030058381 | Shinohara et al. | Mar 2003 | A1 |
20030089956 | Allen et al. | May 2003 | A1 |
20030107686 | Sato et al. | Jun 2003 | A1 |
20030117792 | Kunimochi et al. | Jun 2003 | A1 |
20030169499 | Bourdelais et al. | Sep 2003 | A1 |
20030214615 | Colgan et al. | Nov 2003 | A1 |
20030222857 | Abileah | Dec 2003 | A1 |
20040015729 | Elms et al. | Jan 2004 | A1 |
20040100598 | Adachi et al. | May 2004 | A1 |
20040125430 | Kasajima et al. | Jul 2004 | A1 |
20040141107 | Jones | Jul 2004 | A1 |
20040145703 | O'Connor et al. | Jul 2004 | A1 |
20040223094 | Hamada et al. | Nov 2004 | A1 |
20040240777 | Woodgate et al. | Dec 2004 | A1 |
20040264910 | Suzuki et al. | Dec 2004 | A1 |
20050002174 | Min et al. | Jan 2005 | A1 |
20050111100 | Mather et al. | May 2005 | A1 |
20050117186 | Li et al. | Jun 2005 | A1 |
20050135116 | Epstein et al. | Jun 2005 | A1 |
20050157225 | Toyooka et al. | Jul 2005 | A1 |
20050190326 | Jeon et al. | Sep 2005 | A1 |
20050190329 | Okumura | Sep 2005 | A1 |
20050213348 | Parikka et al. | Sep 2005 | A1 |
20050219693 | Hartkop et al. | Oct 2005 | A1 |
20050243265 | Winlow et al. | Nov 2005 | A1 |
20050259205 | Sharp et al. | Nov 2005 | A1 |
20050270798 | Lee et al. | Dec 2005 | A1 |
20060066785 | Moriya | Mar 2006 | A1 |
20060082702 | Jacobs et al. | Apr 2006 | A1 |
20060098296 | Woodgate et al. | May 2006 | A1 |
20060146405 | MacMaster | Jul 2006 | A1 |
20060203162 | Ito et al. | Sep 2006 | A1 |
20060215244 | Yosha et al. | Sep 2006 | A1 |
20060244884 | Jeon et al. | Nov 2006 | A1 |
20060262255 | Wang et al. | Nov 2006 | A1 |
20060262258 | Wang et al. | Nov 2006 | A1 |
20060262558 | Cornelissen | Nov 2006 | A1 |
20060268207 | Tan et al. | Nov 2006 | A1 |
20060285040 | Kobayashi | Dec 2006 | A1 |
20070008471 | Wang et al. | Jan 2007 | A1 |
20070024970 | Lub et al. | Feb 2007 | A1 |
20070030240 | Sumiyoshi et al. | Feb 2007 | A1 |
20070035964 | Olczak | Feb 2007 | A1 |
20070047254 | Schardt et al. | Mar 2007 | A1 |
20070064163 | Tan et al. | Mar 2007 | A1 |
20070139772 | Wang | Jun 2007 | A1 |
20070223251 | Liao | Sep 2007 | A1 |
20070268427 | Uehara | Nov 2007 | A1 |
20070285775 | Lesage et al. | Dec 2007 | A1 |
20080008434 | Lee et al. | Jan 2008 | A1 |
20080068329 | Shestak et al. | Mar 2008 | A1 |
20080068862 | Shimura | Mar 2008 | A1 |
20080129899 | Sharp | Jun 2008 | A1 |
20080158491 | Zhu et al. | Jul 2008 | A1 |
20080158912 | Chang et al. | Jul 2008 | A1 |
20080205066 | Ohta et al. | Aug 2008 | A1 |
20080285310 | Aylward et al. | Nov 2008 | A1 |
20080316198 | Fukushima et al. | Dec 2008 | A1 |
20090009894 | Chuang | Jan 2009 | A1 |
20090040426 | Mather et al. | Feb 2009 | A1 |
20090085894 | Gandhi et al. | Apr 2009 | A1 |
20090086509 | Omori et al. | Apr 2009 | A1 |
20090109381 | Haruyama | Apr 2009 | A1 |
20090109703 | Chen et al. | Apr 2009 | A1 |
20090128735 | Larson et al. | May 2009 | A1 |
20090128746 | Kean et al. | May 2009 | A1 |
20090135623 | Kunimochi | May 2009 | A1 |
20090174843 | Sakai et al. | Jul 2009 | A1 |
20090213298 | Mimura et al. | Aug 2009 | A1 |
20090213305 | Ohmuro et al. | Aug 2009 | A1 |
20090244415 | Ide | Oct 2009 | A1 |
20100002296 | Choi et al. | Jan 2010 | A1 |
20100014313 | Tillin et al. | Jan 2010 | A1 |
20100128200 | Morishita et al. | May 2010 | A1 |
20100149459 | Yabuta et al. | Jun 2010 | A1 |
20100177113 | Gay et al. | Jul 2010 | A1 |
20100187704 | Hsu et al. | Jul 2010 | A1 |
20100205667 | Anderson et al. | Aug 2010 | A1 |
20100214324 | Broughton et al. | Aug 2010 | A1 |
20100238376 | Sakai et al. | Sep 2010 | A1 |
20100283930 | Park et al. | Nov 2010 | A1 |
20100289989 | Adachi et al. | Nov 2010 | A1 |
20100295755 | Broughton et al. | Nov 2010 | A1 |
20100328438 | Ohyama et al. | Dec 2010 | A1 |
20110018860 | Parry-Jones et al. | Jan 2011 | A1 |
20110032483 | Hruska et al. | Feb 2011 | A1 |
20110176089 | Ishikawa et al. | Jul 2011 | A1 |
20110241573 | Tsai et al. | Oct 2011 | A1 |
20110241983 | Chang | Oct 2011 | A1 |
20110255304 | Kinoshita | Oct 2011 | A1 |
20110286222 | Coleman | Nov 2011 | A1 |
20110321143 | Angaluri et al. | Dec 2011 | A1 |
20120002121 | Pirs et al. | Jan 2012 | A1 |
20120020078 | Chang | Jan 2012 | A1 |
20120086875 | Yokota | Apr 2012 | A1 |
20120120351 | Kawata | May 2012 | A1 |
20120127573 | Robinson et al. | May 2012 | A1 |
20120147026 | Gass et al. | Jun 2012 | A1 |
20120147280 | Osterman et al. | Jun 2012 | A1 |
20120170315 | Fan et al. | Jul 2012 | A1 |
20120188792 | Matsumoto et al. | Jul 2012 | A1 |
20120212414 | Osterhout et al. | Aug 2012 | A1 |
20120235891 | Nishitani et al. | Sep 2012 | A1 |
20120294037 | Holman et al. | Nov 2012 | A1 |
20120299913 | Robinson et al. | Nov 2012 | A1 |
20120314145 | Robinson | Dec 2012 | A1 |
20120320311 | Gotou et al. | Dec 2012 | A1 |
20120327101 | Blixt et al. | Dec 2012 | A1 |
20130039062 | Vinther et al. | Feb 2013 | A1 |
20130057807 | Goto et al. | Mar 2013 | A1 |
20130100097 | Martin | Apr 2013 | A1 |
20130107174 | Yun et al. | May 2013 | A1 |
20130120817 | Yoon et al. | May 2013 | A1 |
20130128165 | Lee et al. | May 2013 | A1 |
20130242231 | Kurata et al. | Sep 2013 | A1 |
20130242612 | Lee et al. | Sep 2013 | A1 |
20130278544 | Cok | Oct 2013 | A1 |
20130293793 | Lu | Nov 2013 | A1 |
20130300985 | Bulda | Nov 2013 | A1 |
20130307831 | Robinson et al. | Nov 2013 | A1 |
20130308339 | Woodgate et al. | Nov 2013 | A1 |
20130321340 | Seo et al. | Dec 2013 | A1 |
20130328866 | Woodgate et al. | Dec 2013 | A1 |
20140009508 | Woodgate et al. | Jan 2014 | A1 |
20140022619 | Woodgate et al. | Jan 2014 | A1 |
20140071382 | Scardato | Mar 2014 | A1 |
20140098418 | Lin | Apr 2014 | A1 |
20140098558 | Vasylyev | Apr 2014 | A1 |
20140104147 | Nakahara et al. | Apr 2014 | A1 |
20140111760 | Guo et al. | Apr 2014 | A1 |
20140132887 | Kurata | May 2014 | A1 |
20140133181 | Ishida et al. | May 2014 | A1 |
20140140091 | Vasylyev | May 2014 | A1 |
20140140095 | Yuki et al. | May 2014 | A1 |
20140176873 | Shinohara et al. | Jun 2014 | A1 |
20140185322 | Liao | Jul 2014 | A1 |
20140201844 | Buck | Jul 2014 | A1 |
20140211125 | Kurata | Jul 2014 | A1 |
20140232836 | Woodgate et al. | Aug 2014 | A1 |
20140232960 | Schwartz et al. | Aug 2014 | A1 |
20140240344 | Tomono et al. | Aug 2014 | A1 |
20140240828 | Robinson et al. | Aug 2014 | A1 |
20140240839 | Yang et al. | Aug 2014 | A1 |
20140268358 | Kusaka et al. | Sep 2014 | A1 |
20140286043 | Sykora et al. | Sep 2014 | A1 |
20140286044 | Johnson et al. | Sep 2014 | A1 |
20140289835 | Varshavsky et al. | Sep 2014 | A1 |
20140340728 | Taheri | Nov 2014 | A1 |
20140361990 | Leister | Dec 2014 | A1 |
20140367873 | Yang et al. | Dec 2014 | A1 |
20150035872 | Shima et al. | Feb 2015 | A1 |
20150055366 | Chang et al. | Feb 2015 | A1 |
20150116212 | Freed et al. | Apr 2015 | A1 |
20150177447 | Woodgate et al. | Jun 2015 | A1 |
20150177563 | Cho et al. | Jun 2015 | A1 |
20150185398 | Chang et al. | Jul 2015 | A1 |
20150205157 | Sakai et al. | Jul 2015 | A1 |
20150268479 | Woodgate et al. | Sep 2015 | A1 |
20150286061 | Seo et al. | Oct 2015 | A1 |
20150286817 | Haddad et al. | Oct 2015 | A1 |
20150293273 | Chen et al. | Oct 2015 | A1 |
20150293289 | Shinohara et al. | Oct 2015 | A1 |
20150301400 | Kimura et al. | Oct 2015 | A1 |
20150338564 | Zhang et al. | Nov 2015 | A1 |
20150346417 | Powell | Dec 2015 | A1 |
20150346532 | Do et al. | Dec 2015 | A1 |
20150355490 | Kao et al. | Dec 2015 | A1 |
20150378085 | Robinson et al. | Dec 2015 | A1 |
20160054508 | Hirayama et al. | Feb 2016 | A1 |
20160103264 | Lee et al. | Apr 2016 | A1 |
20160132721 | Bostick et al. | May 2016 | A1 |
20160147074 | Kobayashi et al. | May 2016 | A1 |
20160154259 | Kim et al. | Jun 2016 | A1 |
20160216420 | Gaides et al. | Jul 2016 | A1 |
20160216540 | Cho et al. | Jul 2016 | A1 |
20160224106 | Liu | Aug 2016 | A1 |
20160238869 | Osterman et al. | Aug 2016 | A1 |
20160259115 | Kitano et al. | Sep 2016 | A1 |
20160334898 | Kwak et al. | Nov 2016 | A1 |
20160349444 | Robinson et al. | Dec 2016 | A1 |
20160356943 | Choi et al. | Dec 2016 | A1 |
20160357046 | Choi et al. | Dec 2016 | A1 |
20170003436 | Inoue et al. | Jan 2017 | A1 |
20170031206 | Smith et al. | Feb 2017 | A1 |
20170085869 | Choi et al. | Mar 2017 | A1 |
20170090103 | Holman | Mar 2017 | A1 |
20170090237 | Kim et al. | Mar 2017 | A1 |
20170092187 | Bergquist | Mar 2017 | A1 |
20170092229 | Greenebaum et al. | Mar 2017 | A1 |
20170115485 | Saito et al. | Apr 2017 | A1 |
20170123241 | Su et al. | May 2017 | A1 |
20170139110 | Woodgate et al. | May 2017 | A1 |
20170168633 | Kwak et al. | Jun 2017 | A1 |
20170205558 | Hirayama et al. | Jul 2017 | A1 |
20170236494 | Sommerlade et al. | Aug 2017 | A1 |
20170269283 | Wang et al. | Sep 2017 | A1 |
20170269285 | Hirayama et al. | Sep 2017 | A1 |
20170276960 | Osterman et al. | Sep 2017 | A1 |
20170315423 | Serati et al. | Nov 2017 | A1 |
20170329399 | Azam et al. | Nov 2017 | A1 |
20170336661 | Harrold et al. | Nov 2017 | A1 |
20170339398 | Woodgate et al. | Nov 2017 | A1 |
20170343715 | Fang et al. | Nov 2017 | A1 |
20170363798 | Hirayama et al. | Dec 2017 | A1 |
20170363913 | Yi | Dec 2017 | A1 |
20180011173 | Newman | Jan 2018 | A1 |
20180014007 | Brown | Jan 2018 | A1 |
20180052346 | Sakai et al. | Feb 2018 | A1 |
20180082068 | Lancioni et al. | Mar 2018 | A1 |
20180095581 | Hwang et al. | Apr 2018 | A1 |
20180113334 | Fang | Apr 2018 | A1 |
20180188576 | Xu et al. | Jul 2018 | A1 |
20180188603 | Fang et al. | Jul 2018 | A1 |
20180196275 | Robinson et al. | Jul 2018 | A1 |
20180210243 | Fang | Jul 2018 | A1 |
20180210253 | Kashima | Jul 2018 | A1 |
20180231811 | Wu | Aug 2018 | A1 |
20180252949 | Klippstein et al. | Sep 2018 | A1 |
20180259799 | Kroon | Sep 2018 | A1 |
20180259812 | Goda et al. | Sep 2018 | A1 |
20180284341 | Woodgate et al. | Oct 2018 | A1 |
20180321523 | Robinson et al. | Nov 2018 | A1 |
20180321553 | Robinson et al. | Nov 2018 | A1 |
20180329245 | Robinson et al. | Nov 2018 | A1 |
20180364526 | Finnemeyer et al. | Dec 2018 | A1 |
20190086706 | Robinson et al. | Mar 2019 | A1 |
20190121173 | Robinson et al. | Apr 2019 | A1 |
20190154896 | Yanai | May 2019 | A1 |
20190196235 | Robinson et al. | Jun 2019 | A1 |
20190196236 | Chen et al. | Jun 2019 | A1 |
20190197928 | Schubert et al. | Jun 2019 | A1 |
20190215509 | Woodgate et al. | Jul 2019 | A1 |
20190227366 | Harrold et al. | Jul 2019 | A1 |
20190235304 | Tamada et al. | Aug 2019 | A1 |
20190250458 | Robinson et al. | Aug 2019 | A1 |
20190278010 | Sakai et al. | Sep 2019 | A1 |
20190293858 | Woodgate et al. | Sep 2019 | A1 |
20190293983 | Robinson et al. | Sep 2019 | A1 |
20190353944 | Acreman et al. | Nov 2019 | A1 |
20190361165 | Chang et al. | Nov 2019 | A1 |
20200026125 | Robinson et al. | Jan 2020 | A1 |
20200041839 | Robinson et al. | Feb 2020 | A1 |
20200110301 | Harrold et al. | Apr 2020 | A1 |
20200159055 | Robinson et al. | May 2020 | A1 |
20200185590 | Malhotra et al. | Jun 2020 | A1 |
20200218101 | Ihas et al. | Jul 2020 | A1 |
20200225402 | Ihas et al. | Jul 2020 | A1 |
20200233142 | Liao et al. | Jul 2020 | A1 |
20210033898 | Woodgate et al. | Feb 2021 | A1 |
20210116627 | Tsuji | Apr 2021 | A1 |
20210149233 | Robinson et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
2222313 | Jun 1998 | CA |
1125943 | Oct 2003 | CN |
1776484 | May 2006 | CN |
101042449 | Sep 2007 | CN |
101256251 | Sep 2008 | CN |
101454712 | Jun 2009 | CN |
101518095 | Aug 2009 | CN |
101681061 | Mar 2010 | CN |
103473494 | Dec 2013 | CN |
103688211 | Mar 2014 | CN |
104133292 | Nov 2014 | CN |
104303085 | Jan 2015 | CN |
104321686 | Jan 2015 | CN |
104380177 | Feb 2015 | CN |
204740413 | Nov 2015 | CN |
105842909 | Aug 2016 | CN |
106104372 | Nov 2016 | CN |
106415342 | Feb 2017 | CN |
209171779 | Jul 2019 | CN |
2037318 | Mar 2009 | EP |
2418518 | Mar 2006 | GB |
2428100 | Jan 2007 | GB |
2428345 | Jan 2007 | GB |
2482065 | Jan 2012 | GB |
2486935 | Sep 2013 | GB |
S58143305 | Aug 1983 | JP |
H01130783 | Sep 1989 | JP |
H11174489 | Jul 1999 | JP |
2005316470 | Nov 2005 | JP |
2005345799 | Dec 2005 | JP |
2006139160 | Jun 2006 | JP |
2007501966 | Feb 2007 | JP |
2007148279 | Jun 2007 | JP |
2007273288 | Oct 2007 | JP |
2009020293 | Jan 2009 | JP |
2011103241 | May 2011 | JP |
2014032953 | Feb 2014 | JP |
2014099363 | May 2014 | JP |
20120011228 | Feb 2012 | KR |
1020150021937 | Mar 2015 | KR |
1020170013915 | Feb 2017 | KR |
1020170040565 | Apr 2017 | KR |
101990286 | Jun 2019 | KR |
M537663 | Mar 2017 | TW |
I612360 | Jan 2018 | TW |
2005071449 | Aug 2005 | WO |
2006030702 | Mar 2006 | WO |
2008001896 | Jan 2008 | WO |
2008078764 | Jul 2008 | WO |
2008093445 | Aug 2008 | WO |
2009008406 | Jan 2009 | WO |
2009011199 | Jan 2009 | WO |
2010021926 | Feb 2010 | WO |
2010143705 | Dec 2010 | WO |
2014011328 | Jan 2014 | WO |
2014130860 | Aug 2014 | WO |
2015040776 | Mar 2015 | WO |
2015057625 | Apr 2015 | WO |
2015143227 | Sep 2015 | WO |
2015157184 | Oct 2015 | WO |
2015190311 | Dec 2015 | WO |
2015200814 | Dec 2015 | WO |
2016195786 | Dec 2016 | WO |
2017050631 | Mar 2017 | WO |
2017117570 | Jul 2017 | WO |
2018035492 | Feb 2018 | WO |
2018178790 | Oct 2018 | WO |
2018208618 | Nov 2018 | WO |
2019055755 | Mar 2019 | WO |
2019067846 | Apr 2019 | WO |
2019147762 | Aug 2019 | WO |
Entry |
---|
Adachi, et al. “P-228L: Late-News Poster: Controllable Viewing-Angle Displays using a Hybrid Aligned Nematic Liquid Crystal Cell”, ISSN, SID 2006 Digest, pp. 705-708. |
Brudy et al., “Is Anyone Looking? Mitigating Shoulder Surfing on Public Displays through Awareness and Protection”, Proceedings of the International Symposium on Persuasive Displays (Jun. 3, 2014), pp. 1-6. |
CN201780030715.3 Notification of the First Office Action dated Jan. 21, 2020. |
CN201880042320.X Notification of the First Office Action dated May 25, 2021. |
EP-16860628.3 Extended European Search Report of European Patent Office dated Apr. 26, 2019. |
EP-17799963.8 Extended European Search Report of European Patent Office dated Oct. 9, 2019. |
EP-18855604.7 Extended European Search Report of European Patent Office dated Jun. 1, 2021. |
EP-18857077.4 Extended European Search Report of European Patent Office dated Jun. 16, 2021. |
Gass, et al. “Privacy LCD Technology for Cellular Phones”, Sharp Laboratories of Europe Ltd, Mobile LCD Group, Feb. 2007, pp. 45-49. |
Ishikawa, T., “New Design for a Highly Collimating Turning Film”, SID 06 Digest, pp. 514-517. |
Kalantar, et al. “Backlight Unit With Double Surface Light Emission,” J. Soc. Inf. Display, vol. 12, Issue 4, pp. 379-387 (Dec. 2004). |
PCT/US2016/058695 International search report and written opinion of the international searching authority dated Feb. 28, 2017. |
PCT/US2017/032734 International search report and written opinion of the international searching authority dated Jul. 27, 2017. |
PCT/US2018/031206 International search report and written opinion of the international searching authority dated Jul. 20, 2018. |
PCT/US2018/031218 International search report and written opinion of the international searching authority dated Jul. 19, 2018. |
PCT/US2018/051021 International search report and written opinion of the international searching authority dated Nov. 21, 2018. |
PCT/US2018/051027 International search report and written opinion of the international searching authority dated Nov. 30, 2018. |
PCT/US2018/053328 International search report and written opinion of the international searching authority dated Nov. 30, 2018. |
PCT/US2018/059249 International search report and written opinion of the international searching authority dated Jan. 3, 2019. |
PCT/US2018/059256 International search report and written opinion of the international searching authority dated Jan. 3, 2019. |
PCT/US2019/014889 International search report and written opinion of the international searching authority dated May 24, 2019. |
PCT/US2019/014902 International search report and written opinion of the international searching authority dated Jun. 25, 2019. |
PCT/US2019/023659 International search report and written opinion of the international searching authority dated Jun. 10, 2019. |
PCT/US2019/038409 International search report and written opinion of the international searching authority dated Sep. 19, 2019. |
PCT/US2019/038466 International search report and written opinion of the international searching authority dated Nov. 5, 2019. |
PCT/US2019/042027 International search report and written opinion of the international searching authority dated Oct. 15, 2019. |
PCT/US2019/054291 International search report and written opinion of the international searching authority dated Jan. 6, 2020. |
PCT/US2019/059990 International search report and written opinion of the international searching authority dated Feb. 28, 2020. |
PCT/US2019/066208 International search report and written opinion of the international searching authority dated Feb. 27, 2020. |
PCT/US2020/017537 International search report and written opinion of the international searching authority dated Apr. 29, 2020. |
PCT/US2020/040686 International search report and written opinion of the international searching authority dated Nov. 20, 2020. |
PCT/US2020/044574 International search report and written opinion of the international searching authority dated Oct. 21, 2020. |
PCT/US2020/053863 International search report and written opinion of the international searching authority dated Mar. 12, 2021. |
PCT/US2020/060155 International search report and written opinion of the international searching authority dated Feb. 5, 2021. |
PCT/US2020/060191 International search report and written opinion of the international searching authority dated Feb. 8, 2021. |
PCT/US2020/063638 International search report and written opinion of the international searching authority dated Mar. 2, 2021. |
PCT/US2020/064633 International search report and written opinion of the international searching authority dated Mar. 15, 2021. |
Robson, et al. “Spatial and temporal contrast-sensitivity functions of the visual system”, J. Opt. Soc. Amer., vol. 56, pp. 1141-1142 (1966). |
Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR 2015. |
Weindorf et al., “Active Circular Polarizer OLED E-Mirror”, Proceedings of the Society for Information Display 25th Annual Symposium of Vehicle Displays, Livonia, MI, pp. 225-237, Sep. 25-26, 2018. |
CN201680061632.6 Notification of the First Office Action dated Sep. 14, 2021. |
CN201880073578.6 Notification of the First Office Action dated Aug. 27, 2021. |
EP-19743619.9 Extended European Search of European Patent Office dated Nov. 23, 2021. |
EP-19743701.5 Extended European Search Report of European Patent Office dated Nov. 24, 2021. |
EP19771688.9 Extended European Search Report of European Patent Office dated Dec. 2, 2021. |
PCT/US2021/043435 International search report and written opinion of the international searching authority dated Nov. 1, 2021. |
PCT/US2021/043444 International search report and written opinion of the international searching authority dated Nov. 1, 2021. |
CN201980030279.9 Notification of the First Office Action dated Mar. 29, 2022. |
EP-19825448.4 Extended European Search Report of European Patent Office dated Mar. 10, 2022. |
JP2019-561773 Non-Final Notice of Reasons for Rejection dated Mar. 22, 2022. |
EP-19881483.2 Extended European Search Report of European Patent Office dated Aug. 5, 2022. |
JP2020-509511 Non-Final Notice of Reasons for Rejection dated Jul. 19, 2022. |
Nelkon et al., “Advanced Level Physics”, Third edition with SI units, Heinemann Educational Books Ltd, London, 1970. |
TW107132221 First Office Action dated Apr. 28, 2022. |
CN-201980020303.0—Notification of the First Office Action dated Dec. 16, 2021. |
Cheng, et al., “Fast-Response Liquid Crystal Variable Optical Retarder and Multilevel Attenuator,” Optical Engineering 52 (10), 107105 (Oct. 16, 2013). (Year: 2013). |
PCT/US2021/029937 International search report and written opinion of the international searching authority dated Aug. 6, 2021. |
PCT/US2021/029944 International search report and written opinion of the international searching authority dated Aug. 3, 2021. |
PCT/US2021/029947 International search report and written opinion of the international searching authority dated Aug. 10, 2021. |
PCT/US2021/029954 International search report and written opinion of the international searching authority dated Aug. 10, 2021. |
PCT/US2021/029958 International search report and written opinion of the international searching authority dated Aug. 10, 2021. |
EP-20754927.0 Extended European Search Report of European Patent Office dated Sep. 19, 2022. |
CN-201880042320.X Notification of the Third Office Action from the Chinese Patent Office dated Dec. 30, 2022. |
CN-201980082757.0 Notification of the 1st Office Action of the Chinese Patent Office dated Dec. 5, 2022. |
JP2020-540724 Non-Final Notice of Reasons for Rejection dated Jan. 4, 2023. |
JP-2020-540797 Non-Final Notice of Reasons for Rejection from the Japan Patent Office dated Dec. 6, 2022. |
PCT/US2022/045030 International search report and written opinion of the international searching authority dated Jan. 3, 2023. |
EP19771688.9 Notification of the First Office Action dated Mar. 6, 2023. |
JP2020-550747 Non-Final Notice of Reasons for Rejection dated Mar. 29, 2023. |
KR10-2020-7010753 Notice of Preliminary Rejection dated Feb. 17, 2023. |
Number | Date | Country | |
---|---|---|---|
20210341768 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63017721 | Apr 2020 | US |