Subterranean “sliding” drilling operation typically involves rotating a drill bit on a downhole motor at the remote end of a drill pipe string. Drilling fluid forced through the drill pipe rotates the motor and bit. The assembly is directed or “steered” from a vertical drill path in any number of directions, allowing the operator to guide the wellbore to desired underground locations. For example, to recover an underground hydrocarbon deposit, the operator may drill a vertical well to a point above the reservoir and then steer the wellbore to drill a deflected or “directional” well that penetrates the deposit. The well may pass horizontally through the deposit. Friction between the drill string and the bore generally increases as a function of the horizontal component of the bore, and slows drilling by reducing the force that pushes the bit into new formations.
Such directional drilling requires accurate orientation of a bent segment of the downhole motor that drives the bit. Rotating the drill string changes the orientation of the bent segment and the toolface. To effectively steer the assembly, the operator must first determine the current toolface orientation, such as via measurement-while-drilling (MWD) apparatus. Thereafter, if the drilling direction needs adjustment, the operator must rotate the drill string to change the toolface orientation.
If no friction acts on the drill string, such as when the drill string is very short and/or oriented in a substantially vertical bore, rotating the drill string may correspondingly rotate the bit. However, where the drill string is increasingly horizontal and substantial friction exists between the drill string and the bore, the drill string may require several rotations at the surface to overcome the friction before rotation at the surface translates to rotation of the bit.
Conventionally, such toolface orientation requires the operator to manipulate the drawworks brake, and rotate the rotary table or top drive quill to find the precise combinations of hook load, mud motor differential pressure, and drill string torque, to position the toolface properly. Each adjustment has different effects on the toolface orientation, and each must be considered in combination with other drilling requirements to drill the hole. Thus, reorienting the toolface in a bore is very complex, labor intensive, and often inaccurate.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The present disclosure is related to and incorporates by reference the entirety of U.S. Pat. No. 6,050,348 to Richarson, et al.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
Referring to
Apparatus 100 includes a mast 105 supporting lifting gear above a rig floor 110. The lifting gear includes a crown block 115 and a traveling block 120. The crown block 115 is coupled at or near the top of the mast 105, and the traveling block 120 hangs from the crown block 115 by a drilling line 125. The drilling line 125 extends from the lifting gear to draw works 130, which is configured to reel out and reel in the drilling line 125 to cause the traveling block 120 to be lowered and raised relative to the rig floor 110.
A hook 135 is attached to the bottom of the traveling block 120. A top drive 140 is suspended from the hook 135. A quill 145 extending from the top drive 140 is attached to a saver sub 150, which is attached to a drill string 155 suspended within a wellbore 160. Alternatively, the quill 145 may be attached to the drill string 155 directly.
The term “quill” as used herein is not limited to a component which directly extends from the top drive, or which is otherwise conventionally referred to as a quill. For example, within the scope of the present disclosure, the “quill” may additionally or alternatively comprise a main shaft, a drive shaft, an output shaft, and/or another component which transfers torque, position, and/or rotation from the top drive or other rotary driving element to the drill string, at least indirectly. Nonetheless, albeit merely for the sake of clarity and conciseness, these components may be collectively referred to herein as the “quill.”
The drill string 155 includes interconnected sections of drill pipe 165, a bottom hole assembly (BHA) 170, and a drill bit 175. The bottom hole assembly 170 may include stabilizers, drill collars, and/or measurement-while-drilling (MWD) or wireline conveyed instruments, among other components. The drill bit 175, which may also be referred to herein as a tool, is connected to the bottom of the BHA 170 or is otherwise attached to the drill string 155. One or more pumps 180 may deliver drilling fluid to the drill string 155 through a hose or other conduit 185, which may be connected to the top drive 140.
The downhole MWD or wireline conveyed instruments may be configured for the evaluation of physical properties such as pressure, temperature, torque, weight-on-bit (WOB), vibration, inclination, azimuth, toolface orientation in three-dimensional space, and/or other downhole parameters. These measurements may be made downhole, stored in solid-state memory for some time, and downloaded from the instrument(s) at the surface and/or transmitted to the surface. Data transmission methods may include, for example, digitally encoding data and transmitting the encoded data to the surface, possibly as pressure pulses in the drilling fluid or mud system, acoustic transmission through the drill string 155, electronically transmitted through a wireline or wired pipe, and/or transmitted as electromagnetic pulses. MWD tools and/or other portions of the BHA 170 may have the ability to store measurements for later retrieval via wireline and/or when the BHA 170 is tripped out of the wellbore 160.
In an exemplary embodiment, the apparatus 100 may also include a rotating blow-out preventer (BOP) 158, such as if the well 160 is being drilled utilizing under-balanced or managed-pressure drilling methods. In such embodiment, the annulus mud and cuttings may be pressurized at the surface, with the actual desired flow and pressure possibly being controlled by a choke system, and the fluid and pressure being retained at the well head and directed down the flow line to the choke by the rotating BOP 158. The apparatus 100 may also include a surface casing annular pressure sensor 159 configured to detect the pressure in the annulus defined between, for example, the wellbore 160 (or casing therein) and the drill string 155.
In the exemplary embodiment depicted in
The apparatus 100 also includes a controller 190 configured to control or assist in the control of one or more components of the apparatus 100. For example, the controller 190 may be configured to transmit operational control signals to the drawworks 130, the top drive 140, the BHA 170 and/or the pump 180. The controller 190 may be a stand-alone component installed near the mast 105 and/or other components of the apparatus 100. In an exemplary embodiment, the controller 190 comprises one or more systems located in a control room proximate the apparatus 100, such as the general purpose shelter often referred to as the “doghouse” serving as a combination tool shed, office, communications center and general meeting place. The controller 190 may be configured to transmit the operational control signals to the drawworks 130, the top drive 140, the BHA 170 and/or the pump 180 via wired or wireless transmission means which, for the sake of clarity, are not depicted in
The controller 190 is also configured to receive electronic signals via wired or wireless transmission means (also not shown in
It is noted that the meaning of the word “detecting,” in the context of the present disclosure, may include detecting, sensing, measuring, calculating, and/or otherwise obtaining data. Similarly, the meaning of the word “detect” in the context of the present disclosure may include detect, sense, measure, calculate, and/or otherwise obtain data.
The apparatus 100 may additionally or alternatively include a shock/vibration sensor 170b that is configured for detecting shock and/or vibration in the BHA 170. The apparatus 100 may additionally or alternatively include a mud motor delta pressure (ΔP) sensor 172a that is configured to detect a pressure differential value or range across one or more motors 172 of the BHA 170. The one or more motors 172 may each be or include a positive displacement drilling motor that uses hydraulic power of the drilling fluid to drive the bit 175, also known as a mud motor. One or more torque sensors 172b may also be included in the BHA 170 for sending data to the controller 190 that is indicative of the torque applied to the bit 175 by the one or more motors 172.
The apparatus 100 may additionally or alternatively include a toolface sensor 170c configured to detect the current toolface orientation. The toolface sensor 170c may be or include a conventional or future-developed “magnetic toolface” which detects toolface orientation relative to magnetic north or true north. Alternatively, or additionally, the toolface sensor 170c may be or include a conventional or future-developed “gravity toolface” which detects toolface orientation relative to the Earth's gravitational field. The toolface sensor 170c may also, or alternatively, be or comprise a conventional or future-developed gyro sensor. The apparatus 100 may additionally or alternatively include a WOB sensor 170d integral to the BHA 170 and configured to detect WOB at or near the BHA 170.
The apparatus 100 may additionally or alternatively include a torque sensor 140a coupled to or otherwise associated with the top drive 140. The torque sensor 140a may alternatively be located in or associated with the BHA 170. The torque sensor 140a may be configured to detect a value or range of the torsion of the quill 145 and/or the drill string 155 (e.g., in response to operational forces acting on the drill string). The top drive 140 may additionally or alternatively include or otherwise be associated with a speed sensor 140b configured to detect a value or range of the rotational speed of the quill 145.
The top drive 140, draw works 130, crown or traveling block, drilling line or dead line anchor may additionally or alternatively include or otherwise be associated with a WOB sensor 140c (e.g., one or more sensors installed somewhere in the load path mechanisms to detect WOB, which can vary from rig-to-rig) different from the WOB sensor 170d. The WOB sensor 140c may be configured to detect a WOB value or range, where such detection may be performed at the top drive 140, draw works 130, or other component of the apparatus 100.
The detection performed by the sensors described herein may be performed once, continuously, periodically, and/or at random intervals. The detection may be manually triggered by an operator or other person accessing a human-machine interface (HMI), or automatically triggered by, for example, a triggering characteristic or parameter satisfying a predetermined condition (e.g., expiration of a time period, drilling progress reaching a predetermined depth, drill bit usage reaching a predetermined amount, etc.). Such sensors and/or other detection means may include one or more interfaces which may be local at the well/rig site or located at another, remote location with a network link to the system.
Referring to
The method 200 includes a step 210 during which the current toolface orientation TFM is measured. The TFM may be measured using a conventional or future-developed “magnetic toolface” which detects toolface orientation relative to magnetic north or true north. Alternatively, or additionally, the TFM may be measured using a conventional or future-developed “gravity toolface” which detects toolface orientation relative to the Earth's gravitational field. In an exemplary embodiment, the TFM may be measured using a magnetic toolface when the end of the wellbore is less than about 7° from vertical, and subsequently measured using a gravity toolface when the end of the wellbore is greater than about 7° from vertical. However, gyros and/or other means for determining the TFM are also within the scope of the present disclosure.
In a subsequent step 220, the TFM is compared to a desired toolface orientation TFD. If the TFM is sufficiently equal to the TFD, as determined during decisional step 230, the method 200 is iterated and the step 210 is repeated. “Sufficiently equal” may mean substantially equal, such as varying by no more than a few percentage points, or may alternatively mean varying by no more than a predetermined angle, such as about 5°. Moreover, the iteration of the method 200 may be substantially immediate, or there may be a delay period before the method 200 is iterated and the step 210 is repeated.
If the TFM is not sufficiently equal to the TFD, as determined during decisional step 230, the method 200 continues to a step 240 during which the quill is rotated by the drive system by, for example, an amount about equal to the difference between the TFM and the TFD. However, other amounts of rotational adjustment performed during the step 240 are also within the scope of the present disclosure. After step 240 is performed, the method 200 is iterated and the step 210 is repeated. Such iteration may be substantially immediate, or there may be a delay period before the method 200 is iterated and the step 210 is repeated.
Referring to
The method 202 includes steps 210, 220, 230 and 240 described above with respect to method 200 and shown in
Each of the steps of the methods 200 and 202 may be performed automatically. For example, the controller 190 of
Referring to
The user-interface 405 and the controller 425 may be discrete components that are interconnected via wired or wireless means. Alternatively, the user-interface 405 and the controller 425 may be integral components of a single system 427, as indicated by the dashed lines in
The user-interface 405 includes means 430 for user-input of one or more toolface set points, and may also include means for user-input of other set points, limits, and other input data. The data input means 430 may include a keypad, voice-recognition apparatus, dial, joystick, mouse, data base and/or other conventional or future-developed data input device. Such data input means may support data input from local and/or remote locations. Alternatively, or additionally, the data input means 430 may include means for user-selection of predetermined toolface set point values or ranges, such as via one or more drop-down menus. The toolface set point data may also or alternatively be selected by the controller 425 via the execution of one or more database look-up procedures. In general, the data input means and/or other components within the scope of the present disclosure support operation and/or monitoring from stations on the rig site as well as one or more remote locations with a communications link to the system, network, local area network (LAN), wide area network (WAN), Internet, satellite-link, and/or radio, among other means.
The user-interface 405 may also include a display 435 for visually presenting information to the user in textual, graphical or video form. The display 435 may also be utilized by the user to input the toolface set point data in conjunction with the data input means 430. For example, the toolface set point data input means 430 may be integral to or otherwise communicably coupled with the display 435.
The BHA 410 may include an MWD casing pressure sensor 440 that is configured to detect an annular pressure value or range at or near the MWD portion of the BHA 410, and that may be substantially similar to the pressure sensor 170a shown in
The BHA 410 may also include an MWD shock/vibration sensor 445 that is configured to detect shock and/or vibration in the MWD portion of the BHA 410, and that may be substantially similar to the shock/vibration sensor 170b shown in
The BHA 410 may also include a mud motor ΔP sensor 450 that is configured to detect a pressure differential value or range across the mud motor of the BHA 410, and that may be substantially similar to the mud motor ΔP sensor 172a shown in
The BHA 410 may also include a magnetic toolface sensor 455 and a gravity toolface sensor 460 that are cooperatively configured to detect the current toolface, and that collectively may be substantially similar to the toolface sensor 170c shown in
The BHA 410 may also include an MWD torque sensor 465 that is configured to detect a value or range of values for torque applied to the bit by the motor(s) of the BHA 410, and that may be substantially similar to the torque sensor 172b shown in
The BHA 410 may also include an MWD WOB sensor 470 that is configured to detect a value or range of values for WOB at or near the BHA 410, and that may be substantially similar to the WOB sensor 170d shown in
The drawworks 420 includes a controller 490 and/or other means for controlling feed-out and/or feed-in of a drilling line (such as the drilling line 125 shown in
The drive system 415 includes a surface torque sensor 475 that is configured to detect a value or range of the reactive torsion of the quill or drill string, much the same as the torque sensor 140a shown in
In an exemplary embodiment, the drive system 415, controller 485, and/or other component of the apparatus 400 may include means for accounting for friction between the drill string and the wellbore. For example, such friction accounting means may be configured to detect the occurrence and/or severity of the friction, which may then be subtracted from the actual “reactive” torque, perhaps by the controller 485 and/or another control component of the apparatus 400.
The controller 425 is configured to receive one or more of the above-described parameters from the user interface 405, the BHA 410 and the drive system 415, and utilize the parameters to continuously, periodically, or otherwise determine the current toolface orientation. The controller 425 may be further configured to generate a control signal, such as via intelligent adaptive control, and provide the control signal to the drive system 415 and/or the drawworks 420 to adjust and/or maintain the toolface orientation. For example, the controller 425 may execute the method 202 shown in
Moreover, as in the exemplary embodiment depicted in
Referring to
In the exemplary embodiment depicted in
The apparatus 500a also includes or is associated with a quill drive 540. The quill drive 540 may form at least a portion of a top drive or another rotary drive system, such as the top drive 140 shown in
The toolface controller 520a may compare the actual torque of the quill to the quill torque positive limit received from the corresponding user input 510a. The actual torque of the quill may be determined utilizing data received from the quill torque sensor 530b. For example, if the actual torque of the quill exceeds the quill torque positive limit, then the quill drive control signal may direct the quill drive 540 to reduce the torque being applied to the quill. In an exemplary embodiment, the toolface controller 520a may be configured to optimize drilling operation parameters related to the actual torque of the quill, such as by maximizing the actual torque of the quill without exceeding the quill torque positive limit.
The toolface controller 520a may alternatively or additionally compare the actual torque of the quill to the quill torque negative limit received from the corresponding user input 510b. For example, if the actual torque of the quill is less than the quill torque negative limit, then the quill drive control signal may direct the quill drive 540 to increase the torque being applied to the quill. In an exemplary embodiment, the toolface controller 520a may be configured to optimize drilling operation parameters related to the actual torque of the quill, such as by minimizing the actual torque of the quill while still exceeding the quill torque negative limit.
The toolface controller 520a may alternatively or additionally compare the actual speed of the quill to the quill speed positive limit received from the corresponding user input 510c. The actual speed of the quill may be determined utilizing data received from the quill speed sensor 530c. For example, if the actual speed of the quill exceeds the quill speed positive limit, then the quill drive control signal may direct the quill drive 540 to reduce the speed at which the quill is being driven. In an exemplary embodiment, the toolface controller 520a may be configured to optimize drilling operation parameters related to the actual speed of the quill, such as by maximizing the actual speed of the quill without exceeding the quill speed positive limit.
The toolface controller 520a may alternatively or additionally compare the actual speed of the quill to the quill speed negative limit received from the corresponding user input 510d. For example, if the actual speed of the quill is less than the quill speed negative limit, then the quill drive control signal may direct the quill drive 540 to increase the speed at which the quill is being driven. In an exemplary embodiment, the toolface controller 520a may be configured to optimize drilling operation parameters related to the actual speed of the quill, such as by minimizing the actual speed of the quill while still exceeding the quill speed negative limit.
The toolface controller 520a may alternatively or additionally compare the actual orientation (azimuth) of the quill to the quill oscillation positive limit received from the corresponding user input 510e. The actual orientation of the quill may be determined utilizing data received from the quill position sensor 530d. For example, if the actual orientation of the quill exceeds the quill oscillation positive limit, then the quill drive control signal may direct the quill drive 540 to rotate the quill to within the quill oscillation positive limit, or to modify quill oscillation parameters such that the actual quill oscillation in the positive direction (e.g., clockwise) does not exceed the quill oscillation positive limit. In an exemplary embodiment, the toolface controller 520a may be configured to optimize drilling operation parameters related to the actual oscillation of the quill, such as by maximizing the amount of actual oscillation of the quill in the positive direction without exceeding the quill oscillation positive limit.
The toolface controller 520a may alternatively or additionally compare the actual orientation of the quill to the quill oscillation negative limit received from the corresponding user input 510f. For example, if the actual orientation of the quill is less than the quill oscillation negative limit, then the quill drive control signal may direct the quill drive 540 to rotate the quill to within the quill oscillation negative limit, or to modify quill oscillation parameters such that the actual quill oscillation in the negative direction (e.g., counter-clockwise) does not exceed the quill oscillation negative limit. In an exemplary embodiment, the toolface controller 520a may be configured to optimize drilling operation parameters related to the actual oscillation of the quill, such as by maximizing the actual amount of oscillation of the quill in the negative direction without exceeding the quill oscillation negative limit.
The toolface controller 520a may alternatively or additionally compare the actual neutral point of quill oscillation to the desired quill oscillation neutral point input received from the corresponding user input 510g. The actual neutral point of the quill oscillation may be determined utilizing data received from the quill position sensor 530d. For example, if the actual quill oscillation neutral point varies from the desired quill oscillation neutral point by a predetermined amount, or falls outside a desired range of the oscillation neutral point, then the quill drive control signal may direct the quill drive 540 to modify quill oscillation parameters to make the appropriate correction.
The toolface controller 520a may alternatively or additionally compare the actual orientation of the toolface to the toolface orientation input received from the corresponding user input 510h. The toolface orientation input received from the user input 510h may be a single value indicative of the desired toolface orientation. For example, if the actual toolface orientation differs from the toolface orientation input value by a predetermined amount, then the quill drive control signal may direct the quill drive 540 to rotate the quill an amount corresponding to the necessary correction of the toolface orientation. However, the toolface orientation input received from the user input 510h may alternatively be a range within which it is desired that the toolface orientation remain. For example, if the actual toolface orientation is outside the toolface orientation input range, then the quill drive control signal may direct the quill drive 540 to rotate the quill an amount necessary to restore the actual toolface orientation to within the toolface orientation input range. In an exemplary embodiment, the actual toolface orientation is compared to a toolface orientation input that is automated, perhaps based on a predetermined and/or constantly updating plan, possibly taking into account drilling progress path error.
In each of the above-mentioned comparisons and/or calculations performed by the toolface controller, the actual mud motor ΔP and/or the actual bit torque may also be utilized in the generation of the quill drive signal. The actual mud motor ΔP may be determined utilizing data received from the mud motor ΔP sensor 530e, and/or by measurement of pump pressure before the bit is on bottom and tare of this value, and the actual bit torque may be determined utilizing data received from the bit torque sensor 530a. Alternatively, the actual bit torque may be calculated utilizing data received from the mud motor ΔP sensor 530e, because actual bit torque and actual mud motor ΔP are proportional.
One example in which the actual mud motor ΔP and/or the actual bit torque may be utilized is when the actual toolface orientation cannot be relied upon to provide accurate or fast enough data. For example, such may be the case during “blind” drilling, or other instances in which the driller is no longer receiving data from the toolface orientation sensor 530f. In such occasions, the actual bit torque and/or the actual mud motor ΔP can be utilized to determine the actual toolface orientation. For example, if all other drilling parameters remain the same, a change in the actual bit torque and/or the actual mud motor ΔP can indicate a proportional rotation of the toolface orientation in the same or opposite direction of drilling. For example, an increasing torque or ΔP may indicate that the toolface is changing in the opposite direction of drilling, whereas a decreasing torque or ΔP may indicate that the toolface is moving in the same direction as drilling. Thus, in this manner, the data received from the bit torque sensor 530a and/or the mud motor ΔP sensor 530e can be utilized by the toolface controller 520 in the generation of the quill drive signal, such that the quill can be driven in a manner which corrects for or otherwise takes into account any bit rotation which is indicated by a change in the actual bit torque and/or actual mud motor ΔP.
Moreover, under some operating conditions, the data received by the toolface controller 520 from the toolface orientation sensor 530f can lag the actual toolface orientation. For example, the toolface orientation sensor 530f may only determine the actual toolface periodically, or a considerable time period may be required for the transmission of the data from the toolface to the surface. In fact, it is not uncommon for such delay to be 30 seconds or more. Consequently, in some implementations, it may be more accurate or otherwise advantageous for the toolface controller 520a to utilize the actual torque and pressure data received from the bit torque sensor 530a and the mud motor ΔP sensor 530e in addition to, if not in the alternative to, utilizing the actual toolface data received from the toolface orientation sensor 530f.
Referring to
In the exemplary embodiment depicted in
As described above, the toolface controller 520a is configured to generate a quill drive control signal utilizing data received from ones of the user inputs 510 and the sensors 530, and subsequently provide the quill drive control signal to the quill drive 540, thereby controlling the toolface orientation by driving the quill orientation and speed. Thus, the quill drive control signal is configured to control (at least partially) the quill orientation (e.g., azimuth) as well as the speed and direction of rotation of the quill (if any).
The drawworks controller 520b is configured to generate a drawworks drum (or brake) drive control signal also utilizing data received from ones of the user inputs 510 and the sensors 530. Thereafter, the drawworks controller 520b provides the drawworks drive control signal to the drawworks drive 550, thereby controlling the feed direction and rate of the drawworks. The drawworks drive 550 may form at least a portion of, or may be formed by at least a portion of, the drawworks 130 shown in
The apparatus 500b also includes a comparator 520c which compares current hook load data with the WOB tare to generate the current WOB. The current hook load data is received from the hook load sensor 530g, and the WOB tare is received from the corresponding user input 510i.
The drawworks controller 520b compares the current WOB with WOB input data. The current WOB is received from the comparator 520c, and the WOB input data is received from the corresponding user input 510i. The WOB input data received from the user input 510i may be a single value indicative of the desired WOB. For example, if the actual WOB differs from the WOB input by a predetermined amount, then the drawworks drive control signal may direct the drawworks drive 550 to feed cable in or out an amount corresponding to the necessary correction of the WOB. However, the WOB input data received from the user input 510i may alternatively be a range within which it is desired that the WOB be maintained. For example, if the actual WOB is outside the WOB input range, then the drawworks drive control signal may direct the drawworks drive 550 to feed cable in or out an amount necessary to restore the actual WOB to within the WOB input range. In an exemplary embodiment, the drawworks controller 520b may be configured to optimize drilling operation parameters related to the WOB, such as by maximizing the actual WOB without exceeding the WOB input value or range.
The apparatus 500b also includes a comparator 520d which compares mud pump pressure data with the mud motor ΔP tare to generate an “uncorrected” mud motor ΔP. The mud pump pressure data is received from the mud pump pressure sensor 530h, and the mud motor ΔP tare is received from the corresponding user input 510j.
The apparatus 500b also includes a comparator 520e which utilizes the uncorrected mud motor ΔP along with bit depth data and casing pressure data to generate a “corrected” or current mud motor ΔP. The bit depth data is received from the bit depth sensor 530i, and the casing pressure data is received from the casing pressure sensor 530j. The casing pressure sensor 530j may be a surface casing pressure sensor, such as the sensor 159 shown in
The drawworks controller 520b compares the current mud motor ΔP with mud motor ΔP input data. The current mud motor ΔP is received from the comparator 520e, and the mud motor ΔP input data is received from the corresponding user input 510m. The mud motor ΔP input data received from the user input 510m may be a single value indicative of the desired mud motor ΔP. For example, if the current mud motor ΔP differs from the mud motor ΔP input by a predetermined amount, then the drawworks drive control signal may direct the drawworks drive 550 to feed cable in or out an amount corresponding to the necessary correction of the mud motor ΔP. However, the mud motor ΔP input data received from the user input 510m may alternatively be a range within which it is desired that the mud motor ΔP be maintained. For example, if the current mud motor ΔP is outside this range, then the drawworks drive control signal may direct the drawworks drive 550 to feed cable in or out an amount necessary to restore the current mud motor ΔP to within the input range. In an exemplary embodiment, the drawworks controller 520b may be configured to optimize drilling operation parameters related to the mud motor ΔP, such as by maximizing the mud motor ΔP without exceeding the input value or range.
The drawworks controller 520b may also or alternatively compare actual ROP data with ROP input data. The actual ROP data is received from the ROP sensor 530k, and the ROP input data is received from the corresponding user input 510k. The ROP input data received from the user input 510k may be a single value indicative of the desired ROP. For example, if the actual ROP differs from the ROP input by a predetermined amount, then the drawworks drive control signal may direct the drawworks drive 550 to feed cable in or out an amount corresponding to the necessary correction of the ROP. However, the ROP input data received from the user input 510k may alternatively be a range within which it is desired that the ROP be maintained. For example, if the actual ROP is outside the ROP input range, then the drawworks drive control signal may direct the drawworks drive 550 to feed cable in or out an amount necessary to restore the actual ROP to within the ROP input range. In an exemplary embodiment, the drawworks controller 520b may be configured to optimize drilling operation parameters related to the ROP, such as by maximizing the actual ROP without exceeding the ROP input value or range.
The drawworks controller 520b may also utilize data received from the toolface controller 520a when generating the drawworks drive control signal. Changes in the actual WOB can cause changes in the actual bit torque, the actual mud motor ΔP and the actual toolface orientation. For example, as weight is increasingly applied to the bit, the actual toolface orientation can rotate opposite the direction of drilling, and the actual bit torque and mud motor pressure can proportionally increase. Consequently, the toolface controller 520a may provide data to the drawworks controller 520b indicating whether the drawworks cable should be fed in or out, and perhaps a corresponding feed rate, as necessary to bring the actual toolface orientation into compliance with the toolface orientation input value or range provided by the corresponding user input 510h. In an exemplary embodiment, the drawworks controller 520b may also provide data to the toolface controller 520a to rotate the quill clockwise or counterclockwise by an amount and/or rate sufficient to compensate for increased or decreased WOB, bit depth, or casing pressure.
As shown in
In an exemplary embodiment, the drawworks controller 520b may also provide data to the toolface controller 520a to cause the toolface controller 520a to rotate the quill, such as by an amount, direction and/or rate sufficient to compensate for the pull limit being reached or exceeded. The toolface controller 520a may also provide data to the drawworks controller 520b to cause the drawworks controller 520b to increase or decrease the WOB, or to adjust the drill string feed, such as by an amount, direction and/or rate sufficient to adequately adjust the toolface orientation.
Referring to
Like the apparatus 500a and 500b, the apparatus 500c includes the plurality of user inputs 510 and the at least one processor 520. The at least one processor 520 includes the toolface controller 520a and the drawworks controller 520b, described above, and also a mud pump controller 520c. The apparatus 500c also includes or is otherwise associated with the plurality of sensors 530, the quill drive 540, and the drawworks drive 550, like the apparatus 500a and 500b. The apparatus 500c also includes or is otherwise associated with a mud pump drive 560, which is configured to control operation of the mud pump, such as the mud pump 180 shown in
The mud pump controller 520c is configured to generate a mud pump drive control signal utilizing data received from ones of the user inputs 510 and the sensors 530. Thereafter, the mud pump controller 520c provides the mud pump drive control signal to the mud pump drive 560, thereby controlling the speed, flow rate, and/or pressure of the mud pump. The mud pump controller 520c may form at least a portion of, or may be formed by at least a portion of, the controller 425 shown in
As described above, the mud motor ΔP may be proportional or otherwise related to toolface orientation, WOB, and/or bit torque. Consequently, the mud pump controller 520c may be utilized to influence the actual mud motor ΔP to assist in bringing the actual toolface orientation into compliance with the toolface orientation input value or range provided by the corresponding user input. Such operation of the mud pump controller 520c may be independent of the operation of the toolface controller 520a and the drawworks controller 520b. Alternatively, as depicted by the dual-direction arrows 562 shown in
The controllers 520a, 520b and 520c shown in
Referring to
A computer system typically includes at least hardware capable of executing machine readable instructions, as well as software for executing acts (typically machine-readable instructions) that produce a desired result. In addition, a computer system may include hybrids of hardware and software, as well as computer sub-systems.
Hardware generally includes at least processor-capable platforms, such as client-machines (also known as personal computers or servers), and hand-held processing devices (such as smart phones, PDAs, and personal computing devices (PCDs), for example). Furthermore, hardware typically includes any physical device that is capable of storing machine-readable instructions, such as memory or other data storage devices. Other forms of hardware include hardware sub-systems, including transfer devices such as modems, modem cards, ports, and port cards, for example. Hardware may also include, at least within the scope of the present disclosure, multi-modal technology, such as those devices and/or systems configured to allow users to utilize multiple forms of input and output—including voice, keypads, and stylus—interchangeably in the same interaction, application, or interface.
Software may include any machine code stored in any memory medium, such as RAM or ROM, machine code stored on other devices (such as floppy disks, CDs or DVDs, for example), and may include executable code, an operating system, as well as source or object code, for example. In addition, software may encompass any set of instructions capable of being executed in a client machine or server—and, in this form, is often called a program or executable code.
Hybrids (combinations of software and hardware) are becoming more common as devices for providing enhanced functionality and performance to computer systems. A hybrid may be created when what are traditionally software functions are directly manufactured into a silicon chip—this is possible since software may be assembled and compiled into ones and zeros, and, similarly, ones and zeros can be represented directly in silicon. Typically, the hybrid (manufactured hardware) functions are designed to operate seamlessly with software. Accordingly, it should be understood that hybrids and other combinations of hardware and software are also included within the definition of a computer system herein, and are thus envisioned by the present disclosure as possible equivalent structures and equivalent methods.
Computer-readable mediums may include passive data storage such as a random access memory (RAM), as well as semi-permanent data storage such as a compact disk or DVD. In addition, an embodiment of the present disclosure may be embodied in the RAM of a computer and effectively transform a standard computer into a new specific computing machine.
Data structures are defined organizations of data that may enable an embodiment of the present disclosure. For example, a data structure may provide an organization of data or an organization of executable code (executable software). Furthermore, data signals are carried across transmission mediums and store and transport various data structures, and, thus, may be used to transport an embodiment of the invention. It should be noted in the discussion herein that acts with like names may be performed in like manners, unless otherwise stated.
The controllers and/or systems of the present disclosure may be designed to work on any specific architecture. For example, the controllers and/or systems may be executed on one or more computers, Ethernet networks, local area networks, wide area networks, internets, intranets, hand-held and other portable and wireless devices and networks.
In view of all of the above and
Monitoring the drilling operation parameter may comprise monitoring data received from a toolface orientation sensor, and the amount of quill position adjustment may be dependent upon the toolface orientation sensor data. The toolface sensor may comprises a gravity toolface sensor and/or a magnetic toolface sensor.
The drilling operation parameter may comprise a weight applied to the tool (WOB), a depth of the tool within the wellbore, and/or a rate of penetration of the tool into the wellbore (ROP). The drilling operation parameter may comprise a hydraulic pressure differential across the hydraulic motor (ΔP), and the ΔP may be a corrected ΔP based on monitored pressure of fluid existing in an annulus defined between the wellbore and the drill string.
In an exemplary embodiment, monitoring the drilling operation parameter indicative of the difference between the actual and desired toolface orientations comprises monitoring data received from a toolface orientation sensor, monitoring a weight applied to the tool (WOB), monitoring a depth of the tool within the wellbore, monitoring a rate of penetration of the tool into the wellbore (ROP), and monitoring a hydraulic pressure differential across the hydraulic motor (ΔP). Adjusting the quill position may comprise adjusting the quill position by an amount that is dependent upon the monitored toolface orientation sensor data, the monitored WOB, the monitored depth of the tool within the wellbore, the monitored ROP, and the monitored ΔP.
Monitoring the drilling operation parameter and adjusting the quill position may be performed simultaneously with operating the hydraulic motor. Adjusting the quill position may comprise causing a drawworks to adjust a weight applied to the tool (WOB) by an amount dependent upon the monitored drilling operation parameter. Adjusting the quill position may comprise adjusting a neutral rotational position of the quill, and the method may further comprise oscillating the quill by rotating the quill through a predetermined angle past the neutral position in clockwise and counterclockwise directions.
The present disclosure also introduces a system for using a quill to steer a hydraulic motor when elongating a wellbore in a direction having a horizontal component, wherein the quill and the hydraulic motor are coupled to opposing ends of a drill string. In an exemplary embodiment, the system comprises means for monitoring an actual toolface orientation of a tool driven by the hydraulic motor, including means for monitoring a drilling operation parameter indicative of a difference between the actual toolface orientation and a desired toolface orientation; and means for adjusting a position of the quill by an amount that is dependent upon the monitored drilling operation parameter.
The present disclosure also provides an apparatus for using a quill to steer a hydraulic motor when elongating a wellbore in a direction having a horizontal component, wherein the quill and the hydraulic motor are coupled to opposing ends of a drill string. In an exemplary embodiment, the apparatus comprises a sensor configured to detect a drilling operation parameter indicative of a difference between an actual toolface orientation of a tool driven by the hydraulic motor and a desired toolface orientation of the tool; and a toolface controller configured to adjust the actual toolface orientation by generating a quill drive control signal directing a quill drive to adjust a rotational position of the quill based on the monitored drilling operation parameter.
The present disclosure also introduces a method of using a quill to steer a hydraulic motor when elongating a wellbore in a direction having a horizontal component, wherein the quill and the hydraulic motor are coupled to opposing ends of a drill string. In an exemplary embodiment, the method comprises monitoring a hydraulic pressure differential across the hydraulic motor (ΔP) while simultaneously operating the hydraulic motor, and adjusting a toolface orientation of the hydraulic motor by adjusting a rotational position of the quill based on the monitored ΔP. The monitored ΔP may be a corrected ΔP that is calculated utilizing monitored pressure of fluid existing in an annulus defined between the wellbore and the drill string. The method may further comprise monitoring an existing toolface orientation of the motor while simultaneously operating the hydraulic motor, and adjusting the rotational position of the quill based on the monitored toolface orientation. The method may further comprise monitoring a weight applied to a bit of the hydraulic motor (WOB) while simultaneously operating the hydraulic motor, and adjusting the rotational position of the quill based on the monitored WOB. The method may further comprise monitoring a depth of a bit of the hydraulic motor within the wellbore while simultaneously operating the hydraulic motor, and adjusting the rotational position of the quill based on the monitored depth of the bit. The method may further comprise monitoring a rate of penetration of the hydraulic motor into the wellbore (ROP) while simultaneously operating the hydraulic motor, and adjusting the rotational position of the quill based on the monitored ROP. Adjusting the toolface orientation may comprise adjusting the rotational position of the quill based on the monitored WOB and the monitored ROP. Alternatively, adjusting the toolface orientation may comprise adjusting the rotational position of the quill based on the monitored WOB, the monitored ROP and the existing toolface orientation. Adjusting the toolface orientation of the hydraulic motor may further comprise causing a drawworks to adjust a weight applied to a bit of the hydraulic motor (WOB) based on the monitored ΔP. The rotational position of the quill may be a neutral position, and the method may further comprise oscillating the quill by rotating the quill through a predetermined angle past the neutral position in clockwise and counterclockwise directions.
The present disclosure also introduces a system for using a quill to steer a hydraulic motor when elongating a wellbore in a direction having a horizontal component, wherein the quill and the hydraulic motor are coupled to opposing ends of a drill string. In an exemplary embodiment, the system comprises means for detecting a hydraulic pressure differential across the hydraulic motor (ΔP) while simultaneously operating the hydraulic motor, and means for adjusting a toolface orientation of the hydraulic motor, wherein the toolface orientation adjusting means includes means for adjusting a rotational position of the quill based on the detected ΔP. The system may further comprise means for detecting an existing toolface orientation of the motor while simultaneously operating the hydraulic motor, wherein the quill rotational position adjusting means may be further configured to adjust the rotational position of the quill based on the monitored toolface orientation. The system may further comprise means for detecting a weight applied to a bit of the hydraulic motor (WOB) while simultaneously operating the hydraulic motor, wherein the quill rotational position adjusting means may be further configured to adjust the rotational position of the quill based on the monitored WOB. The system may further comprise means for detecting a depth of a bit of the hydraulic motor within the wellbore while simultaneously operating the hydraulic motor, wherein the quill rotational position adjusting means may be further configured to adjust the rotational position of the quill based on the monitored depth of the bit. The system may further comprise means for detecting a rate of penetration of the hydraulic motor into the wellbore (ROP) while simultaneously operating the hydraulic motor, wherein the quill rotational position adjusting means may be further configured to adjust the rotational position of the quill based on the monitored ROP. The toolface orientation adjusting means may further include means for causing a drawworks to adjust a weight applied to a bit of the hydraulic motor (WOB) based on the detected ΔP.
The present disclosure also introduces an apparatus for using a quill to steer a hydraulic motor when elongating a wellbore in a direction having a horizontal component, wherein the quill and the hydraulic motor are coupled to opposing ends of a drill string. In an exemplary embodiment, the apparatus comprises a pressure sensor configured to detect a hydraulic pressure differential across the hydraulic motor (ΔP) during operation of the hydraulic motor, and a toolface controller configured to adjust a toolface orientation of the hydraulic motor by generating a quill drive control signal directing a quill drive to adjust a rotational position of the quill based on the detected ΔP. The apparatus may further comprise a toolface orientation sensor configured to detect a current toolface orientation, wherein the toolface controller may be configured to generate the quill drive control signal further based on the detected current toolface orientation. The apparatus may further comprise a weight-on-bit (WOB) sensor configured to detect data indicative of an amount of weight applied to a bit of the hydraulic motor, and a drawworks controller configured to cooperate with the toolface controller in adjusting the toolface orientation by generating a drawworks control signal directing a drawworks to operate the drawworks, wherein the drawworks control signal may be based on the detected WOB. The apparatus may further comprise a rate-of-penetration (ROP) sensor configured to detect a rate at which the wellbore is being elongated, wherein the drawworks control signal may be further based on the detected ROP.
Methods and apparatus within the scope of the present disclosure include those directed towards automatically obtaining and/or maintaining a desired toolface orientation by monitoring drilling operation parameters which previously have not been utilized for automatic toolface orientation, including one or more of actual mud motor ΔP, actual toolface orientation, actual WOB, actual bit depth, actual ROP, actual quill oscillation. Exemplary combinations of these drilling operation parameters which may be utilized according to one or more aspects of the present disclosure to obtain and/or maintain a desired toolface orientation include:
In an exemplary embodiment, a desired toolface orientation is provided (e.g., by a user, computer, or computer program), and apparatus according to one or more aspects of the present disclosure will subsequently track and control the actual toolface orientation, as described above. However, while tracking and controlling the actual toolface orientation, drilling operation parameter data may be monitored to establish and then update in real-time the relationship between: (1) mud motor ΔP and bit torque; (2) changes in WOB and bit torque; and (3) changes in quill position and actual toolface orientation; among other possible relationships within the scope of the present disclosure. The learned information may then be utilized to control actual toolface orientation by affecting a change in one or more of the monitored drilling operation parameters.
Thus, for example, a desired toolface orientation may be input by a user, and a rotary drive system according to aspects of the present disclosure may rotate the drill string until the monitored toolface orientation and/or other drilling operation parameter data indicates motion of the downhole tool. The automated apparatus of the present disclosure then continues to control the rotary drive until the desired toolface orientation is obtained. Directional drilling then proceeds. If the actual toolface orientation wanders off from the desired toolface orientation, as possibly indicated by the monitored drill operation parameter data, the rotary drive may react by rotating the quill and/or drill string in either the clockwise or counterclockwise direction, according to the relationship between the monitored drilling parameter data and the toolface orientation. If an oscillation mode is being utilized, the apparatus may alter the amplitude of the oscillation (e.g., increasing or decreasing the clockwise part of the oscillation) to bring the actual toolface orientation back on track. Alternatively, or additionally, a drawworks system may react to the deviating toolface orientation by feeding the drilling line in or out, and/or a mud pump system may react by increasing or decreasing the mud motor ΔP. If the actual toolface orientation drifts off the desired orientation further than a preset (user adjustable) limit for a period longer than a preset (user adjustable) duration, then the apparatus may signal an audio and/or visual alarm. The operator may then be given the opportunity to allow continued automatic control, or take over manual operation.
This approach may also be utilized to control toolface orientation, with knowledge of quill orientation before and after a connection, to reduce the amount of time required to make a connection. For example, the quill orientation may be monitored on-bottom at a known toolface orientation, WOB, and/or mud motor ΔP. Slips may then be set, and the quill orientation may be recorded and then referenced to the above-described relationship(s). The connection may then take place, and the quill orientation may be recorded just prior to pulling from the slips. At this point, the quill orientation may be reset to what it was before the connection. The drilling operator or an automated controller may then initiate an “auto-orient” procedure, and the apparatus may rotate the quill to a position and then return to bottom. Consequently, the drilling operator may not need to wait for a toolface orientation measurement, and may not be required to go back to the bottom blind. Consequently, aspects of the present disclosure may offer significant time savings during connections.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1891329 | Le Compte et al. | Dec 1932 | A |
2005889 | Dillon et al. | Jun 1935 | A |
2724574 | Ledgerwood, Jr. | Nov 1955 | A |
3223183 | Varney | Dec 1965 | A |
3265359 | Bowden | Aug 1966 | A |
3407886 | Bennett | Oct 1968 | A |
3550697 | Hobhouse | Dec 1970 | A |
4492276 | Kamp | Jan 1985 | A |
4535972 | Millheim et al. | Aug 1985 | A |
4662608 | Ball | May 1987 | A |
4854397 | Warren et al. | Aug 1989 | A |
4958125 | Jardine et al. | Sep 1990 | A |
5205163 | Sananikone | Apr 1993 | A |
5358059 | Ho | Oct 1994 | A |
5390748 | Goldman | Feb 1995 | A |
5467832 | Orban et al. | Nov 1995 | A |
5474142 | Bowden | Dec 1995 | A |
5551286 | Booer | Sep 1996 | A |
5713422 | Dhindsa | Feb 1998 | A |
5730234 | Putot | Mar 1998 | A |
5738178 | Williams et al. | Apr 1998 | A |
5842149 | Harrell et al. | Nov 1998 | A |
6026912 | King et al. | Feb 2000 | A |
6029951 | Guggari | Feb 2000 | A |
6050348 | Richarson et al. | Apr 2000 | A |
6065332 | Dominick | May 2000 | A |
6092610 | Kosmala et al. | Jul 2000 | A |
6192998 | Pinckard | Feb 2001 | B1 |
6382331 | Pinckard | May 2002 | B1 |
6405808 | Edwards et al. | Jun 2002 | B1 |
6802378 | Haci et al. | Oct 2004 | B2 |
6820702 | Niedermayr et al. | Nov 2004 | B2 |
6892812 | Niedermayr et al. | May 2005 | B2 |
7000710 | Umbach | Feb 2006 | B1 |
7032689 | Goldman et al. | Apr 2006 | B2 |
7059427 | Power et al. | Jun 2006 | B2 |
7085696 | King | Aug 2006 | B2 |
7096979 | Haci et al. | Aug 2006 | B2 |
20020104685 | Pinckard et al. | Aug 2002 | A1 |
20030024738 | Schuh | Feb 2003 | A1 |
20040028476 | Payne et al. | Feb 2004 | A1 |
20040238222 | Harrison | Dec 2004 | A1 |
20070203651 | Blanz et al. | Aug 2007 | A1 |
20070256861 | Hulick | Nov 2007 | A1 |
20090090555 | Boone et al. | Apr 2009 | A1 |
20090159336 | Boone | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
0774563 | Jul 2002 | EP |
WO 9312318 | Jun 1993 | WO |
WO 2004055325 | Jul 2004 | WO |
WO 2008070829 | Dec 2008 | WO |
WO 2009039448 | Mar 2009 | WO |
WO 2009039453 | Mar 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090078462 A1 | Mar 2009 | US |