The disclosed subject matter relates generally to instruments useful in the drilling of wells and, more particularly, to a directional drilling instrument that may be useful in guiding the direction of the borehole as it is being drilled.
When drilling vertical, horizontal, or extended reach wells, obtaining accurate measurements of inclination and azimuth is a fundamental requirement. Typically, the drilling equipment includes a directional drilling instrument located within the drill string near the drill bit. The directional drilling instrument is configured to collect data regarding its orientation, and communicate that data to the surface where it may be analyzed to determine its current position, such that the position of the drill bit may be derived. Collecting and analyzing this data over a period of time allows the operator of the drilling process to accurately guide the drill bit to a desired location that will enhance production from the resulting well.
Typically, as is shown in
Historically, oil well drilling trajectories were originally most often vertical wells. However, over time the trajectories have varied to low angle slant wells (build and hold), to directional “S” shaped wells (Directional Drilling, with gradual changes in both inclination and direction) then to Extended Reach (3D designer well paths) and then to the current standard, “Long Lateral” horizontal wells. Currently, the typical development drilling well profile consists of a vertical segment drilled deep enough to get close to the production depth, a curved section with a borehole angle build up rate (and direction) calculated for the best fit between the hole size and the completion tubular program as well as the specified reservoir target(s) and the production volume. The horizontal section is designed for enhanced resource recovery. The horizontal section of these wells may commonly be almost as long, or longer, than the vertical section. Wells of this type only produce at desired capacities if they are actually located accurately in the target reservoir. Accordingly, wellbore position uncertainty is critical to well productivity.
The orthogonal orientation of the sensors in a conventional directional drilling instrument 10 is problematic in these types of wells. For example, the orthogonal orientation of the sensors 12, 13, 14 causes the output of one or more of the sensors to be either almost zero or full scale when the directional drilling instrument is oriented so that the direction of drilling substantially aligns with one of the X, Y, or Z-axis, such as would occur in the vertical or horizontal portions of the well. For example, when the directional sensor 10 is oriented vertically with the gravitational vector generally aligned with the Z-axis, the X and Y-axis sensors 13, 14 will typically experience little variation, and thus, be at or near zero output, whereas the Z-axis sensor 12 will undergo substantial variation and may be at or near maximum output. Similarly, when directional sensor 10 is oriented horizontally with the gravitational vector, as shown in
Turning now to
Both conditions (zero and full scale) are sub-optimum for the sensors in use in directional drilling instruments, and the corresponding accuracy of the resulting calculations suffers a significant degradation. Of course, this degradation in the calculations will undesirably affect the ability of the operator to guide the drilling process and locate the well at its desired location.
Moreover, those skilled in the art will appreciate that the sensors 12, 13, 14 are more prone to physical damage when the sensitive axis is perpendicular to the direction that a force is applied to the sensor. For example, when drilling a vertical section of the well such that the sensitive axis and gravity vector of the sensor 12 are aligned, a substantial jarring or shock in the vertical direction can result in damage to and ultimate failure of the sensor 12, whereas the sensors 13, 14 are less likely to be damaged.
The following presents a simplified summary of the disclosed subject matter in order to provide a basic understanding of some aspects of the disclosed subject matter. This summary is not an exhaustive overview of the disclosed subject matter. It is not intended to identify key or critical elements of the disclosed subject matter or to delineate the scope of the disclosed subject matter. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
One aspect of the disclosed subject matter is seen in a directional drilling instrument that comprises a chassis, a first sensor and a second sensor. The chassis has a longitudinal axis, and the first sensor is coupled to the chassis and oriented at a first angle (w1) relative to the longitudinal axis of the chassis. The second sensor is coupled to the chassis and oriented at a second angle (w2) relative to the longitudinal axis of the chassis. The first and second angles are non-identical and non-orthogonal relative to the longitudinal axis.
The disclosed subject matter will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
While the disclosed subject matter is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the disclosed subject matter to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosed subject matter as defined by the appended claims.
One or more specific embodiments of the disclosed subject matter will be described below. It is specifically intended that the disclosed subject matter not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made to achieve the developers' specific goals, such as compliance with system-related and business related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but may nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure. Nothing in this application is considered critical or essential to the disclosed subject matter unless explicitly indicated as being “critical” or “essential.”
The disclosed subject matter will now be described with reference to the attached figures. Various structures, systems and devices are schematically depicted in the drawings for purposes of explanation only and so as to not obscure the disclosed subject matter with details that are well known to those skilled in the art. Nevertheless, the attached drawings are included to describe and explain illustrative examples of the disclosed subject matter. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, i.e., a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, i.e., a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase.
As will be discussed in more detail throughout, a directional drilling instrument is described that utilizes one or more of the principals associated with sensor axis orientation to provide for a directional drilling instrument (or any like navigational platform) that reduces individual sensor output degradation arising from the orientation of the instrument body. The principals described herein can be applied to a variety of sensors that may be utilized in directional drilling instruments, including accelerometers and magnetometers. The principals described herein allow the use higher order mathematical algorithms to detect and correct for misalignments in either the directional drilling sensor itself, a corresponding bottomhole assembly, or both. Moreover, the principals described herein may also be used to facilitate the detection and compensation for other environmental conditions, including, but not limited to, drillstring magnetism, adjacent cased hole well bores (magnetic interference), well bore geometric stability, drilling fluids (type and condition), thermal effects and individual sensor failure/s.
In one embodiment, the sensors within the directional drilling instrument may include a cluster of two, three or four accelerometers and two, three or four magnetometers where one or more of the sensor axes may be skewed relative to a conventional right-handed array. Additionally, one or more of the axes may be skewed relative to each other. This orientation creates a condition where each of the sensors delivers an output signal that falls near the middle of its capable range of output signals. Such a situation is highly desirable in that it enhances the accuracy of the measurement made by each individual sensor, and thus, the accuracy of the directional drilling instrument as a whole.
Those skilled in the art will appreciate that the principals set forth herein may be utilized to produce a directional drilling instrument that may provide accurate results in situations where only two sensors are employed. Such a two-sensor embodiment may be implemented to provide a lower cost design, or alternatively to allow a three or four-sensor instrument to continue to operate and provide acceptable results in the event that one or more of its sensors are damaged.
Referring now to the drawings wherein like reference numbers correspond to similar components throughout the several views and, specifically, referring to
Turning now to
The first sensor 402 is located in a pocket 430 formed in the chassis 400, wherein the pocket 402 includes a longitudinal axis 435 that is skewed from the 3-dimension coordinate system 415, 420, 425 according to the relationships described above. Further, the second, third and fourth sensors 403-405 are similarly positioned in pockets 431-433 with each of these pockets having longitudinal axes 436-438, respectively. The axes 436-438 are also skewed from the 3-dimension coordinate system 415, 420, 425 according to the relationships described above. Those skilled in the art will appreciate that the chassis 400 may be formed from any suitably rigid material, including plastics, metals, etc., and the pockets 430-433 may be formed by casting or forming the chassis 400 with the pockets 430-433 formed therein. Alternatively, the chassis 400 could be initially formed without pockets and the pockets 430-433 could be subsequently formed therein via a machining or similar process. The size and construction of the pockets 430-433 may be sufficient to securely retain the sensors 401-404 in a desired orientation while limiting movement between the sensors 401-404 and the chassis 400. It is envisioned that any of a variety of conventional retention systems may be employed. For example, in one embodiment it may be useful to retain the sensors 401-404 using a conventional snap ring arrangement; however, other methods, including, various mechanical and chemical processes may be employed, including, but not limited to, gluing, soldering, welding, screws, bolts, nuts, etc.
As can be seen in the stylistic drawing of
Turning now to
Output=sin(Angle of sensor+Angle of Instrument relative to the Gravity vector)×Gravity
Output=sin(30°+0°)×Gravity
Output=0.5 G.
Thus, when the instrument is arranged vertically, the output of the accelerometer 504 is advantageously at about its mid-range. Those skilled in the art will appreciate that similar mathematical relationships exist between accelerometers 501-503, based on the degree to which each accelerometer is skewed from the gravity vector such that each of their output signals is a fraction of full scale.
Turning now to
Output=sin(Angle of sensor+Angle of Instrument relative to the Gravity vector)×Gravity
Output=sin(30°+90°)×Gravity
Output=0.866 G.
Thus, the output of the accelerometer 504, whether it is vertically or horizontally oriented, is advantageously at a fraction of full scale. Those skilled in the art will appreciate that similar mathematical relationships exist between accelerometers 501-503, based on the degree to which each is skewed from the gravity vector such that each of their output signals is a fraction of full scale in both horizontal and vertical orientations.
Those skilled in the art, having the benefit of the instant description, will appreciate that the precise angular orientation of each of the accelerometers/magnetometers relative to the longitudinal axis of the instrument may vary substantially without departing from the spirit and scope of the instant invention. For example, it is anticipated that varying the angular orientation of each of the sensors by as much as 5° from their designed orientation in any plane will nevertheless produce results having acceptable accuracy for at least some applications.
Those skilled in the art will also appreciate that the sensors may be oriented in a variety of positions and still result in acceptable accuracy. For example, three embodiments that describe orientations that may be useful are set forth in Tables I-III below. In these tables, a simpler convention is adopted to define the orientation of the individual sensors, as opposed to the convention used to describe the embodiment set forth in
Table III, set forth below, represents the angles W and T for the embodiment set forth in
The particular embodiments disclosed above are illustrative only, as the disclosed subject matter may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the disclosed subject matter. Accordingly, the protection sought herein is as set forth in the claims below.